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Gdańsk, 80-210 Gdańsk, Poland; leszek.tylicki@gumed.edu.pl

The outbreak of the COVID-19 pandemic at the turn of 2019 and 2020 posed a sub-
stantial challenge for the world. The number of infected people and deaths reached
unprecedented levels, paralyzing health services in many countries [1]. Vaccination was
the most effective tool to control the pandemic. In clinical practice, decreased infections, a
milder course of COVID-19, and a reduced mortality rate were visible after vaccinations [2].
Nevertheless, the following remains an open question: To what extent did natural immu-
nity (pre-vaccinations) contribute to these numbers? We should also remember that the
natural course of the pandemic and subsequent mutations of the SARS-CoV-2 weakened
the virus and led to a milder course of the disease and the gradual extinction of the pan-
demic [3]. Regardless of the above considerations, vaccination remains the only option that
effectively protects against primary infection. Despite the efforts of the scientific world
and vaccination of a large part of the world’s population, many aspects of the immune
response against COVID-19 remain unclear. This Special Issue of Vaccines is a platform
where scientists from different countries can present the current state of knowledge and
the results of their studies in this area. Eleven interesting articles, including two review
papers, were published there.

In a fascinating overview, Kaminska et al. (Contribution 1) presented the current
knowledge on immunity after SARS-CoV-2 infection and vaccination against COVID-19.
The authors also discussed the diagnostic and research tools available to examine the anti-
SARS-CoV-2 cellular and humoral immune responses. In general, the immune responses
generated after SARS-CoV-2 infection or vaccination seem similar. However, they differ in
the details, e.g., higher post-vaccination antibody titers and a somewhat longer duration
of post-infectious response. In addition, infection induces immune responses to a broader
array of viral antigens. SARS-CoV-2 induces both humoral and cellular immune responses
against spike (S), membrane (M), and nucleocapsid (N) antigens [4]. Clinically, infection
was found to provide higher protection against reinfection and more sustained protection
against hospital admission or severe disease than vaccination alone [5].

The adaptive immune response consists of two complementary branches: humoral
and cellular T cell-mediated immunity. Cellular immunity is less understood, largely due
to a lack of validated diagnostic tests. T cells, with their diverse set of receptors, seem
to have the advantage of recognizing a wider range of epitopes displayed in infected
or antigen-presenting cells as being either an MHC class I or II surface protein. In the
context of SARS-CoV-2 infection, while antibodies can protect us from developing an
infection, T lymphocytes prevent the disease from becoming severe by eliminating infected
cells [6]. Primorac et al. (Contribution 2) presented interesting results of their original study
on cellular immunity. They showed that cellular immunity, determined by measuring
interferon-gamma levels, provided long-term protection against SARS-CoV-2. At the same
time, measurements of humoral immunity (antibody levels) decreased over time. The level
of cellular immunity in the vaccinated patients was equal to that of study participants
previously infected with SARS-CoV-2.

Two other papers are devoted to hybrid immunity against COVID-19, obtained via
vaccination and SARS-CoV-2 infection at any order (Contributions 3 and 4). Nicola Serra
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et al. retrospectively evaluated antibody responses in a sample of 538 healthcare workers
with a documented complete immunization cycle of three doses of mRNA vaccine against
COVID-19 via multiplex assays. They found that patients who had also a history of
asymptomatic SARS-CoV-2 infection had the highest titers of the anti-RBD and anti-S1
antibodies (Contribution 3). Blaszczuk et al. (Contribution 5) reported that individual SARS-
CoV-2 variants can induce an immune response of varying strength in patients previously
vaccinated against COVID-19, specifically the level of antibodies after SARS CoV-2 Omicron
variant infection was lower than after Delta infection. A history of COVID-19 is associated
with much stronger humoral immunity observed after vaccination in immunocompromised
individuals [7]. Hybrid immunity seems not only robust but also more durable than
either natural immunity alone or vaccine immunity alone. The longer duration of antigen
expression following natural infection compared with mRNA vaccination may be related
to the greater durability of immune memory [8]. Hybrid immunization also improves the
functional antibody response, especially in those who have received the vector vaccine [9].
It is, therefore, not surprising that real-life efficacy data indicate that vaccination after prior
SARS-CoV2 infection provides the highest level of protection against severe COVID-19
disease [10]. This is also in line with the results of the latest meta-analysis on this issue [5].
One can assume that the hybrid immunity that a large part of the world’s population
had, combined with the attenuated viral pathogenicity of the Omicron variant prevalent,
considerably reduced COVID-19 hospitalization and mortality compared with the early
phase of the pandemic achieved in 2022 and 2023.

COVID-19 is a threat to immunocompromised individuals, owing to their impaired
natural immunity and suboptimal response to vaccines or immunosuppressive treatment.
Consequently, they are at increased risk of hospitalization and death. These include subjects
with primary immunodeficiency, end-stage renal disease patients, solid organ transplants,
and subjects with solid tumors, among others [11]. For instance, the mortality rate of
chronically hemodialyzed patients in the early period of the COVID-19 pandemic before
vaccination was close to 31% of the total infected subjects; among patients over 75 years of
age, it was close to 44% and appeared nearly 5.5 times higher than in the general popula-
tion [12]. Several papers published in this Special Issue dealt with the clinical experience of
COVID-19 vaccination in immunocompromised individuals. A reduced humoral response
after receiving a second or third mRNA vaccine dose compared to healthy individuals
was demonstrated in chronically hemodialyzed patients, solid organ transplant recipi-
ents, subjects with prostate cancer, pediatric patients with inflammatory bowel disease
receiving anti-TNFα therapies (infliximab or adalimumab) (Contributions 6–9). The re-
sults of these studies also indicate that the degree of impairment of the post-vaccination
immune response varies between these populations. Thus, only 23.5% of solid organ
transplant recipients treated with belatacept developed a detectable anti-spike response
after three doses of the BNT162b2 mRNA COVID-19 vaccine (Contribution 9). In contrast,
the humoral response in hemodialyzed patients after the third dose of mRNA COVID-19
vaccine was very good, raising the level of antibodies to a higher level than in subjects
from the general population who received the primary two-dose scheme of vaccination
(Contribution 8). This indicates the need for an individualized approach to the primary
and boosting vaccination schedule in different immunocompromised populations and the
need to monitor immunological responses [13]. Khong et al. present interesting findings
in their overview paper in which the benefits of a fourth booster dose are evaluated from
four perspectives, including the effectiveness of the booster dose against virus variants
(why), susceptible groups of individuals who may benefit from additional booster dose
(who), selection of vaccine platforms to better enhance immunity (what), and appropriate
intervals between the third and fourth booster dose (when) (Contribution 11). A fourth
dose can be considered for certain groups of individuals, such as older people, the immuno-
compromised, and previous vaccine platforms. A heterologous vaccine strategy using an
mRNA-based platform in subjects primed with inactivated vaccines may boost immunity
against variants. The timing of the fourth dose should be individualized, but a 4-month
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interval after the third booster shot seems appropriate. The results of the studies presented
in our Special Issue also confirm the validity of administering complementary vaccine
doses (going beyond the basic scheme) to those immunocompromised individuals who did
not respond to previous doses of the vaccine or whose humoral responses were too small
(Contributions 8 and 10).

Although many aspects of COVID-19 immunity and vaccine response have already
been clarified, there is still a sizable gap between clinicians’ questions and the available
explanations, especially given the evolution of SARS-CoV-2 and new emerging variants.
This will certainly be a subject of further research.
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