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Abstract: Neuraminidase (NA)-based immunity could reduce the harmful impact of novel antigenic
variants of influenza viruses. The detection of neuraminidase-inhibiting (NI) antibodies in parallel
with anti-hemagglutinin (HA) antibodies may enhance research on the immunogenicity and duration
of antibody responses to influenza vaccines. To assess anti-NA antibodies after vaccination with
seasonal inactivated influenza vaccines, we used the enzyme-linked lectin assay, and anti-HA anti-
bodies were detected in the hemagglutination inhibition assay. The dynamics of the anti-NA antibody
response differed depending on the virus subtype: antibodies to A/H3N2 virus neuraminidase
increased later than antibodies to A/H1N1pdm09 subtype neuraminidase and persisted longer.
In contrast to HA antibodies, the fold increase in antibody titers to NA after vaccination poorly
depended on the preexisting level. At the same time, NA antibody levels after vaccination directly
correlated with titers before vaccination. A difference was found in response to NA antigen between
split and subunit-adjuvanted vaccines and in NA functional activity in the vaccine formulations.

Keywords: influenza; vaccines; antibodies; neuraminidase-inhibition; persistence

1. Introduction

Since the start of the COVID-19 pandemic, the World Health Organization (WHO)
has reported an unprecedented decrease in global influenza virus circulation. Since April
2020, in most countries, influenza circulation has been significantly reduced due to travel
restrictions, social distancing, the closure of workplaces and schools, enhanced hygiene,
and the use of personal protective equipment. At the same time, the lack of influenza
circulation may reduce herd immunity and increase the susceptibility of the population to
future epidemics. In this regard, influenza vaccination is of great importance [1].

Various approaches are used to prevent and reduce the incidence of seasonal and
pandemic influenza; among them, vaccination is the most effective. Currently used seasonal
influenza vaccines are usually available in trivalent or quadrivalent forms, including
two subtypes of influenza A viruses—A/H1N1 and A/H3N2—and influenza B viruses
of one or two antigenic lineages, B/Victoria and B/Yamagata, according to the WHO’s
annual vaccine recommendations. The production of quadrivalent vaccines reduces the
risk of vaccine mismatch with epidemic strains [2]. Nevertheless, recently, for the first time
in 35 years, there has been an observed disappearance of influenza B/Yamagata antigenic
lineage viruses from the circulation [1].

Split and subunit-inactivated influenza vaccines (IIVs) are mainly used for seasonal
influenza prevention [3]. In a split virion vaccine, the viral particles are destroyed with
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diethyl ether or detergents. Split vaccines contain 15 micrograms of HA antigen for
each currently recommended influenza strain (A/H1N1pdm09, A/H3N2, B) [4]. Subunit
vaccines contain hemagglutinin (HA) and neuraminidase (NA), which are purified by the
exclusion of viral RNP and several internal proteins. Vaccines must comply with WHO
safety and efficacy requirements. The production of influenza vaccine in chick embryos is
a highly productive and reliable technology that meets the quality criteria established by
the WHO and is set out in the guidelines for influenza vaccine production and control [5].
Parenteral split or subunit influenza vaccines induce a strain-specific serum IgG antibody
response and can be used to prevent influenza in children as young as 6 months of age,
as well as in older people suffering from chronic diseases [6,7]. To enhance the immune
response to vaccination, a search is being made for safe adjuvants that can enhance the
immune response and increase its rate and duration [8].

Seroconversion of hemagglutination-inhibiting (HI) antibodies represents the “gold-
standard” criteria to evaluate the immunogenicity of inactivated influenza vaccines. At
the same time, the development of new, improved, and standardized methods for the
evaluation of neuraminidase-inhibiting (NI) antibodies is repeatedly emphasized by the
WHO [9,10]. In recent years, research on NA-specific antibodies has intensified, and NI-
antibodies have been described as possessing cross-reactive and protective properties [11].
NA research can promote a better understanding of how NA properties can help develop
new cross-reactive vaccines [12].

Neuraminidase-specific antibodies were shown to limit influenza transmission, de-
crease the severity of infection, and reduce the occurrence of secondary complications [13,14].
The fact that NI antibodies acquired after infection or prior vaccination demonstrate a
broad spectrum associated with a reduction in the likelihood of influenza disease supports
the inclusion of NA in next-generation vaccines aimed at better protection against drift
variants [15,16]. Despite the recognized importance of NA-reactive antibodies in protec-
tion against influenza, the content of NA in seasonal influenza vaccines is currently not
regulated or measured by manufacturers [16]. Since NA-based immunity may enhance
protection against novel antigenic variants of the influenza virus [17], the study of antibod-
ies to NA may play a role in predicting herd immunity against newly emerging influenza
viruses, as well as estimating the protection of seasonal influenza vaccines in cases of
vaccine mismatch.

The aim of the study was to evaluate the production of NA-inhibiting (NI) antibodies
after immunization with seasonal influenza vaccines, the duration of antibody persis-
tence, and the relationship with other quantitative parameters of the immune response
to vaccination.

2. Materials and Methods
2.1. Vaccines

The study included three seasonal trivalent splits or subunit-adjuvanted IIVs. The
strain composition of the vaccines corresponded to the WHO recommendations for the
northern hemisphere in the 2018–2019 season: A/Michigan/45/2015 (H1N1)pdm09-like
virus; A/Singapore/INFIMH-16-0019/2016 (H3N2)-like virus; and B/Colorado/06/2017-
like virus (B/Victoria/2/87 lineage) [18]. All vaccines were produced according to Russian
Pharmacopeia from purified egg-grown candidate vaccine viruses. HA content in vaccine
formulations was indicated according to a single-radial-immunodiffusion assay; NA con-
tent was not indicated. The split vaccine ‘Ultrix’ (produced by FORT Biopharmaceutical
Company, Moscow, Russia) contained 15 µg of HA of each strain in a 0.5 mL dose [19]. Sub-
unit vaccine ‘Grippol plus’ (produced by Petrovax Pharm, Moscow, Russia) contained 5 µg
of HA of each strain (antigens produced by Abbott Biologicals B.V., Olst, The Netherlands)
and 500 µg of Polyoxidonium® adjuvant in a 0.5 mL dose [20]. Another subunit vaccine
‘Sovigripp’ (produced by NPO Microgen, Republic of Bashkortostan, Russia) contained
5 µg of HA of influenza A (H1N1)pdm09 and A (H3N2) strains, 11 µg of influenza B strain,
and 500 µg of Sovidon® adjuvant in a 0.5 mL dose [21].
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2.2. Study Design

Serum samples were obtained within the framework of the serological survey. The
study included healthy volunteers >18 years old who had no contradictions to vaccina-
tion and who had signed the written informed consent. Vaccination was conducted in
a specialized clinic of the Smorodintsev Research Institute of Influenza in an open-label
regime. Blood samples were collected at the planned time points, including one point
before vaccination (day 0) and five points after vaccination (day 7, day 21, 3 months,
6 months, and 12 months). The study was approved by the Local Ethics Committee of the
Smorodintsev Research Institute of Influenza, protocol #131 date 10 October 2018.

2.3. Hemagglutination Inhibition Assay

The assay was performed as recommended by the WHO [22], using influenza antigens
bearing the same HA as in the vaccine strains. Antigens for the HI reaction were type A
influenza viruses (subtypes H1N1pdm09, H3N2), antigenically relevant, avid to antibodies,
but resistant to nonspecific hemagglutination inhibitors of human sera, grown in the
allantoic cavity of chick embryos, inactivated, and lyophilized (LLC “PPDP”, St Petersburg,
Russia). Sera were treated with receptor-destroying enzyme (RDE, Denka Seiken Co., Tokyo,
Japan) according to the manufacturer’s instructions. Each sample (tested in duplicate) was
2-fold serially diluted in 96-well U-bottom polymer plates starting from 1:10 and mixed with
4 hemagglutination units (HAU) of influenza antigen. After 1 h of incubation, 0.5% chicken
erythrocyte suspension was added. The titer of the HI antibody was calculated as the
highest serum dilution that inhibited erythrocyte agglutination. Antibody seroconversion
was identified as a four-fold or greater increase in the HI antibody titer in comparison
to baseline.

2.4. Influenza Viruses

Neuraminidase-specific antibodies were assessed in the enzyme-linked assay (ELLA)
using purified reassortant influenza viruses: HA from A/herring gull/Sarma/51c/2006
(H6N1) influenza virus and NA from A/South Africa/3626/13 (H1N1)pdm09 or A/Hong
Kong/4801/2014 (H3N2) strains. Viruses were obtained from the collection of the Virology
Department, Institute of Experimental Medicine, Saint Petersburg, Russian Federation. The
viruses were propagated in 10-day-old chicken embryos. The virus-containing allantois
fluid was first clarified by centrifugation at 3000 rpm for 20 min. Then the virus was
pelleted by ultracentrifugation at 17,000 rpm for 3 h (rotor Type 19, Beckman Optima TM
L-100 XP Ultracentrifuge, Brea, CA, USA). The virus pellet was resuspended in ice-cold
calcium-borate buffer pH 7.2 and subsequently purified through a sucrose step gradient
(30–60%) by ultracentrifugation at 20,000 rpm for 2.5 h (rotor SW40Ti, Beckman, Brea, CA,
USA). The virus-containing fraction was extracted and concentrated by centrifugation at
20,000 rpm for 2.5 h (SW 40 Ti rotor, Beckman, Brea, CA, USA). The purified, concentrated
virus was resuspended and stored in calcium-borate buffer. The antigen concentration was
expressed in HAU.

2.5. Enzyme-Linked Lectin Assay (ELLA)

NA-inhibiting antibodies were evaluated by ELLA as described previously in heat-
inactivated serum samples (56 ◦C for 30 min) [23]. In brief, 96-well ELISA plates (Greiner
Bio-One, Kremsmünster, Austria) were coated with 50 µg/mL fetuin (Cat. No. F3004,
Sigma-Aldrich, St. Louis, MO, USA) overnight at 2–8 ◦C. Serum samples serially pre-
diluted in PBS-1% BSA (Cat. No. A7030, Sigma-Aldrich, St. Louis, MO, USA) were
incubated with an equal volume of pre-diluted virus for 30 min at 37 ◦C. The content of
influenza viruses was 128–256 HAU/0.1 mL, which gave OD450 in the range of 0.4–0.6.
After incubation, 100 µL of the mixtures was applied to the fetuin-coated wells. After
incubation for 1 h at 37 ◦C, the plates were washed, and NA activity was assessed by
incubating with peroxidase-labeled peanut lectin (2.5 µg/mL, Cat. No. L7759, Sigma-
Aldrich, St. Louis, MO, USA) for 1 h, RT, followed by a washing step. Then, TMB substrate
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(BD Biosciences, San Diego, CA, USA) was added for 5 min, and the reaction was stopped
by 1N sulfuric acid. Optical density (450 nm) was measured by an ELx800 microplate reader
(Bio-Tek Instruments Inc., Winooski, VT, USA). The titer of NI antibodies was determined
as a serum dilution, which provided a 50% decrease in optical density in comparison with
the virus control wells. A two-fold increase in NI antibody titer after vaccination was
considered antibody seroconversion.

2.6. NA Activity of Influenza Viruses and Influenza Vaccines

The NA activity of influenza viruses and influenza vaccines was measured by ELLA
using the high molecular substrate fetuin (Sigma-Aldrich, St Lous, MO, USA). Virus or
vaccine 2-fold dilutions were prepared in phosphate-buffered saline containing bovine
serum albumin (PBS-BSA) starting from 256 HAU in triplicate.

2.7. Statistical Analysis

Statistical data analysis and visualization were performed using MS Excel 2016, RStu-
dio 2022.12.0, and GraphPad Prizm 8.4.3. A number of group descriptive statistics, includ-
ing proportion (%), mean, median, interquartile range (IQR), and geometric mean, were
calculated. The confidence interval for the geometric mean was calculated by transform-
ing the titers to logarithms, then calculating the 95% CI, and then taking the antilog of
the interval limits. The confidence interval (95%CI) for proportion was calculated by the
Clopper–Pearson method. Statistical analysis was exploratory and was performed post hoc;
particular statistical tests are indicated in the text. For statistical analysis, the logarithmic
values of antibody titers were used. The difference was considered statistically significant
at a p-value of <0.05. Regression analyses were performed with the ‘glm’ function from
the ‘stats’ package in RStudio using the binomial family model. The correlation matrix
and heatmap were generated using Spearman correlation analysis for multiple variables as
implemented in Prism 8.4.3 (GraphPad, Boston, MA, USA).

2.8. Study Limitations

The present study included participants 18 years of age and older with an unknown
history of previous vaccinations and infections, both seropositive and seronegative. The
study was open-label, and no special inclusion criteria were used except for eligibility for
vaccination, so the study cohort does not represent any specific population. The study
aimed to analyze the humoral immune response to HA and NA influenza antigens and
did not include analyses of cell-mediated responses after vaccination or the protection
rate in vaccinated groups. The study focuses on antibody analysis at one time point
before vaccination and five time points within a year after vaccination with the inactivated
influenza vaccine, and presents the data from 73 subjects with a complete specimen set.

3. Results
3.1. Antibody Levels throughout the Year after Vaccination

Assessment of NA and HA inhibiting antibodies was performed in serum samples
obtained from 73 healthy individuals (aged from 20 to 87) before and throughout the year
after influenza vaccination. Among the study group, 46 participants were immunized with
a subunit-adjuvanted vaccine, and 27 volunteers were immunized using a split vaccine.
The main demographic characteristics of the study population are presented in Table 1.

The majority of subjects had a previously unknown history of influenza vaccination.
The overall level of seropositivity to HA and NA antigens at the moment of vaccination
varied from middle (37% against N2) to high (85% against H1pdm09).

The levels of NI and HI antibodies throughout the year after vaccination showed ex-
pected and similar dynamics. With the exception of anti-N2 antibodies, the rise of geometric
mean antibody titers (GMTs) was detected already at day 7 after vaccination, continued
until day 21, and fell down 3 months after vaccination (Figure 1, Supplementary Table S1).
Slower dynamics was observed for N2-specific antibodies, with the maximum GMT ob-
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served at 3 months after vaccination. Overall NI antibody titers before and after vaccination
using both split IIV and adjuvanted IIVs were noticeably lower than the HI antibody titers.

Table 1. Study population.

Vaccine Type Split
(n = 27)

Subunit-Adjuvanted
(n = 46)

Vaccine (n) Ultrix (n = 27) Sovigripp (n =19)
Grippol plus (n = 27)

Age group
18–60, n (%) 13 (48%) 33 (72%)
>60, n (%) 14 (52%) 13 (28%)

Age—years
Median (IQR)

18–60 39 (32–42) 37 (34–48)
>60 65 (61–67) 72 (66–79)

Sex
Female, n (%) 22 (81%) 31 (67%)
Male, n (%) 5 (19%) 15 (33%)

Seronegative, HA *
H1N1pdm09, n (%) 4 (15%) 13 (28%)

H3N2, n (%) 5 (19%) 18 (39%)

Seronegative, NA **
H1N1pdm09, n (%) 12 (44%) 29 (63%)

H3N2, n (%) 18 (67%) 24 (52%)
* Seronegativity to HA was defined as antibody titer < 10 in HI; ** seronegativity to NA was defined as antibody
titer <10 in ELLA.

Compared to baseline, a statistically significant increase in the average HI and NI
titers was observed at almost all time points starting from day 7 after vaccination for both
split and subunit-adjuvanted vaccine groups. All p-values are given in the supplementary
data (Supplementary Table S2). A year after immunization with the split IIV, a statistically
significant increase in antibody titers to both antigens of the A/H3N2 influenza virus
still persisted. A year after immunization with adjuvanted IIVs, the level of antibodies
significantly differed from the pre-vaccination level only for H1-specific HI antibodies and
NI antibodies to N2 (Supplementary Table S2).

Exploratory analysis of variance did not find statistically significant differences be-
tween the split and subunit-adjuvant vaccine groups in HI and NI antibody titers at any
of the time points. Stratification by high or low baseline antibody titers (<1:40 for HI
antibodies and <1:20 for NI antibodies) also showed no statistically significant difference
between split and subunit-adjuvanted vaccine groups (Supplementary Figures S1 and S2).

3.2. Antibody Seroconversion Rates after Vaccination

To compare HA- and NA-specific antibody responses, we compared the seroconver-
sion rates of HI and NI antibodies on day 21 after vaccination. Split IIVs caused significantly
more NI antibody conversions to the A/H1N1 influenza virus compared to adjuvanted
IIVs (Table 2).

The same trend was observed for A/H3N2 virus NI antibodies; however, the difference
was not statistically significant. It is worth noting that both vaccines met the Committee
for Proprietary Medicinal Products (CPMP) criteria on the number of HI antibody sero-
conversions, which exceeded the 40% threshold [24]. Regression analyses performed for
the probability of a positive seroconversion outcome confirmed the statistically significant
impact of the vaccine type factor on the response to N1 neuraminidase and showed no
impact of age, sex, or initial antibody titer (Appendix A Table A1). To demonstrate the
neutralization properties of the sera, we used a microneutralization assay. A strong cor-
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relation between HI and MNA antibody titers and the same dynamics of antibodies after
vaccination are shown (Supplementary Figure S3). The combined seroconversions to HA
and NA were observed on average in half of the participants (Figure 2).
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Table 2. Percent of seroconversions among vaccinees on day 21 after vaccination (with 95% CI).

Assay
Subtype Split (n = 27) Subunit-Adjuvanted (n = 46)

Percent 95%CI Percent 95%CI

HI test
H1 44 (25–64) 57 (42–72)

H3 67 (46–84) 54 (39–69)

ELLA
N1 74 * (54–89) 37 * (23–53)

N2 59 (39–77) 39 (25–54)
* p = 0.0022, Chi-square test.

The distribution of the numbers for participants who seroconverted for all four com-
ponents (H1-HA, N1-NA, H3-HA, and N2-NA) and seroconverted for three of the four
components is presented in Supplementary Figure S4.

Figure 3 represents the correlation analysis of post-vaccination HI and NI antibody
titers fold-increase for all subjects in the cohort, including all study participants, both
seronegative and seropositive, on day 21 after immunization. The total number of seroposi-
tive/negative participants is presented in Table 1. A poor to moderate correlation between
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HI and NI post-vaccination antibody titer fold increase (Figure 3) assumes some degree of
independence in the response to different antigens of the same virus.
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and 46 in the subunit-adjuvanted vaccine group. The number of non-responders to both antigens is
not shown on Venn’s diagram.

Vaccines 2023, 11, x FOR PEER REVIEW 8 of 16 
 

 

The distribution of the numbers for participants who seroconverted for all four com-
ponents (H1-HA, N1-NA, H3-HA, and N2-NA) and seroconverted for three of the four 
components is presented in Supplementary Figure S4. 

Figure 3 represents the correlation analysis of post-vaccination HI and NI antibody 
titers fold-increase for all subjects in the cohort, including all study participants, both ser-
onegative and seropositive, on day 21 after immunization. The total number of seroposi-
tive/negative participants is presented in Table 1. A poor to moderate correlation between 
HI and NI post-vaccination antibody titer fold increase (Figure 3) assumes some degree 
of independence in the response to different antigens of the same virus. 

 
Figure 3. Correlation between post-vaccination HI and NI antibody fold increases. Each dot repre-
sents one participant. The results of the Pearson correlation test applied to logarithmic values are 
presented on graphs. The population in the analyses included all participants, regardless of the vac-
cine type. The shaded area represents the 95% CI for the regression line. The dashed lines mark the 
conventional seroconversion threshold (4-fold increase in HI antibody titer and 2-fold increase in 
NI antibody titer). 

3.3. Preexisting Immunity Impact and Correlation Analysis of HI and NI Antibody Titers 
Next, we analyzed the dependence of the response to vaccination on the preexisting 

level of HI and NI antibodies. Figure 4 represents the dependence of the post-vaccination 
antibody fold increase on the baseline (preexisting) antibody level for all subjects in the 
cohort. On the left side of the graph X axis are participants with low baseline titers (in-
cluding seronegative), and on the right side are those with high baseline titers (seroposi-
tive). This type of analysis does not presume grouping by the baseline titer. As expected, 
the post-vaccination HI antibody fold increase is strongly negatively correlated with ini-
tial antibody titers (Figure 4a). A poor negative correlation was found between post-vac-
cination NI antibody titer fold increase and preexisting NI antibody level (Figure 4b). 

Figure 3. Correlation between post-vaccination HI and NI antibody fold increases. Each dot rep-
resents one participant. The results of the Pearson correlation test applied to logarithmic values
are presented on graphs. The population in the analyses included all participants, regardless of the
vaccine type. The shaded area represents the 95% CI for the regression line. The dashed lines mark
the conventional seroconversion threshold (4-fold increase in HI antibody titer and 2-fold increase in
NI antibody titer).
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3.3. Preexisting Immunity Impact and Correlation Analysis of HI and NI Antibody Titers

Next, we analyzed the dependence of the response to vaccination on the preexisting
level of HI and NI antibodies. Figure 4 represents the dependence of the post-vaccination
antibody fold increase on the baseline (preexisting) antibody level for all subjects in the
cohort. On the left side of the graph X axis are participants with low baseline titers (includ-
ing seronegative), and on the right side are those with high baseline titers (seropositive).
This type of analysis does not presume grouping by the baseline titer. As expected, the
post-vaccination HI antibody fold increase is strongly negatively correlated with initial an-
tibody titers (Figure 4a). A poor negative correlation was found between post-vaccination
NI antibody titer fold increase and preexisting NI antibody level (Figure 4b).
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(a) HI antibodies; (b) NI antibodies. Each dot represents one participant. The results of the Pearson
correlation test applied to logarithmic values are presented on graphs. The population in the analyses
included all participants, regardless of the vaccine type. The shaded area represents the 95% CI for
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the regression line. Participants with an antibody titer of < 10 are considered seronegative. The
dashed lines mark the conventional seroconversion threshold (4-fold increase in HI antibody titer
and 2-fold increase in NI antibody titer).

Further, we performed the rough correlation matrix analyses of HI and NI antibody
titers to A/H1N1pdm09 and A/H3N2 influenza viruses before, shortly after vaccination,
and throughout a year (Figure 5). Analysis of HI antibody titers has shown a strong positive
correlation between titers on days 7 and 21, and 3, 6, and 12 months after vaccination, and a
much weaker correlation with day 0 (Figure 5a,b), which can be interpreted as the higher the
antibody titer after vaccination, the higher it will be during the whole year independently
of the titer before vaccination. On the contrary, the titer of NI antibodies at day 0 was more
strongly correlated with titers at any time point after vaccination (Figure 5c,d), which can be
interpreted as the higher the initial NI antibody titer before vaccination, the higher it will be
during the year after vaccination. A positive correlation was also found between anti-NA
antibody titers against two influenza A subtypes (Figure 5e) and almost no correlation
between anti-HA and anti-NA antibody titers (Figure 5f).
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Figure 5. Correlation matrix between HI and NI antibody titers throughout the year after vaccination.
The population in the analyses included all participants, regardless of the vaccine type. The heatmap
represents the level of correlation between each pair of listed parameters. The color scale shows the
Spearman correlation coefficient for positive (blue) or negative (red) correlation; a white color means
no correlation. The lower left and upper right corners present the same data (the map is symmetrical
about the diagonal), and the squares on the diagonal should not be considered as they represent the
“self-correlation.” White-outlined areas can be interpreted as follows: (a,b) show a positive correlation
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of anti-HA antibody titers early and late after vaccination, except for the baseline titer for
A/H1N1pdm09 and A/H3N2 viruses, respectively; (c,d) show positive correlation of anti-NA
antibody titers early and late after vaccination, including the baseline titer for A/H1N1pdm09 and
A/H3N2 viruses, respectively; (e) shows a low positive correlation between anti-NA antibody titers
against two influenza A subtypes; (f) shows an absence of correlation between anti-HA and anti-NA
antibody titers.

3.4. Neuraminidase Functional Activity in the Vaccine Formulation

Finally, we attempted to evaluate if the NA included in the vaccine preparations
was functionally active. The identification of NA ingredients in the formulation of Ultrix
and Sovigripp vaccines was previously described in a recently published study [25]. The
presence of the NA in the Grippol vaccine is stated in the instructions on medical use of
the medicinal product, published on the manufacturer’s official site (https://grippol.ru/
en/grippol-kvadrivalent/instruction/, accessed on 6 November 2023). No NA quantity
measurement can be found in any of the above publications. In the present study, the
sialidase activity of the vaccine preparations was compared with that of the reassortant
influenza viruses containing NA of the N1 or N2 subtype (Figure 6).
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It turned out that all three vaccines exhibit enzymatic activity, although significantly
lower than whole influenza viruses with the same hemagglutination activity (p = 0.0009,
Kruskal–Wallis test). Therefore, the increase in antibody titers to NA may well be specific
rather than non-specific steric hiding of the NA active site by antibodies attached to the
highly conserved HA stem region [26].

4. Discussion

Vaccination is the most effective and scientifically proven way to prevent influenza
infection. Current influenza vaccines have been optimized and standardized specifically
to induce high titers of anti-HA antibodies, and the production of anti-NA antibodies is
not considered a criterion for immunogenicity. There is evidence that NA can make an
additional contribution to the protective efficacy of influenza vaccination [25]; therefore, the
study of NI antibody seroconversion may be important for assessing the immunogenicity
of influenza vaccines, and this issue has repeatedly attracted the attention of experts
from the World Health Organization [9,10]. Since NI antibodies block the enzymatic
function of NA [27], this determines the possible mechanisms of their protective action,
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such as preventing the release of viral progeny from the cell [28]. At the initial stage of
the infectious cycle of the influenza virus, NI antibodies can prevent the attachment of
HA to sialic receptors by steric shielding [29]. In addition, by attaching to the cell surface,
NA antibodies can promote the induction of Fc receptor-mediated effector functions, such
as ADCC [30], and mediate the activation of the complement system in the process of
complement-dependent cytotoxicity [31].

Animal models have shown that NA-directed antibodies do not completely prevent
infection with the influenza virus but reduce the lethality and reproduction of the virus in
the lungs [32–34]. In humans, NI antibodies are not inferior to HI antibodies in protecting
against influenza infection or in preventing the development or reducing the severity of the
disease [35]. Natural influenza infection results in high seroconversion rates against both
HA and NA [28]. A number of studies have shown that the induction of antibodies towards
NA after immunization with seasonal vaccines is substantially reduced when compared
to influenza infection [36] and varies widely between manufacturers [35,37–40]. After a
natural influenza infection, the number of NA-reactive B cells was equal to or exceeded HA-
reactive B cells, while seasonal influenza vaccines rarely induce NA-reactive B cells [36]. In
addition, widely cross-reactive anti-NA antibodies acquired from natural infection did not
bind several inactivated vaccines available, suggesting that vaccines lack the NA epitopes
targeted by these antibodies [36]. The NA enzymatic activity is an excellent indicator of the
native structure and correlates well with immunogenicity [41]. Quite often, it is believed
that during the production of IIVs, NA loses its structure and, consequently, its enzymatic
activity and immunogenicity [25]. The stability and immunogenicity of NA in a vaccine
may depend on the method of virus inactivation and also vary between manufacturers.
In our study, it was shown that both split and subunit IIVs exhibited similar enzymatic
activity, albeit lower than whole viruses.

The antigenic competition between HA and NA has been postulated, which is mainly
due to the larger number of HA proteins found on the virion surface and their amplified
presentation to the antigen-recognition cells of the immune system [42]. The amount of
NA in vaccines also differs depending on the proportions of HA and NA in each strain.
Thus, in the whole virus, the ratio of HA to NA is usually 4–5:1 [43]. Seasonal inactivated
vaccines usually contain 15 µg of the HA of each component [38]. In the present study, we
used seasonal IIVs: the split vaccine contained 15 µg of HA of each vaccine strain, and
both subunit-adjuvant vaccines contained 5 µg of HA. The NA content of the vaccines
was unknown. In our study, NI antibody titers after vaccination using both split IIV and
subunit-adjuvanted IIVs were noticeably lower than the HI antibody titers, which can
partly be explained in terms of the differences in the tests used to detect these antibodies.
At the same time, we have demonstrated a statistically significant antibody increase for
both HI and NI antibodies to A/H1N1 and A/H3N2 influenza viruses starting from day
7 after vaccination with both the split and subunit-adjuvant IIVs. Besides, the increase in
average titers compared with the pre-vaccination level persisted for 12 months in relation
to both HI and NI antibodies.

Previously, it was shown that the most pronounced rise in the levels of NA-specific
antibodies was observed on the 21st day after immunization with IIV, and after 180 days,
the average levels of antibodies to NA were still significantly different from those before
vaccination [43]. In our study, the levels of NI antibodies increased already on day 7 after
immunization, and it can be noted that they did not differ significantly from those on day
21, while the level of antibodies to HA almost always increased from 7 to 21 days after
vaccination (Supplementary Tables S1 and S2).

The weak correlation of immune responses to HA and NA on day 21 post-vaccination
shown in our study coincides with previously obtained data [34] and once again empha-
sizes that NI antibodies can be independent indicators of post-vaccination immunity to
influenza. Multivariate analyses performed in earlier studies have shown that serum HI
and NI antibodies are independently correlated with resistance to infection and infection-
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associated disease. Notably, only serum NI antibodies independently predicted a reduction
in incidence among infected subjects [44].

A number of studies have focused on the effect of pre-existing antibody levels on
the immune response after vaccination. So, during the 2007–2008 influenza season, it was
shown that for individuals with high HI or NI titers before vaccination, the inactivated
vaccine may not induce antibody increases due to natural immunity and may not provide
additional protection and/or immune response [45]. At the same time, it has recently
been shown that infection with the A(H3N2) virus prior to vaccination can increase the
number and spectrum of A(H3N2)-reactive antibodies induced by vaccination [46]. Our
study showed that the formation of HI antibodies after immunization depended on a low
pre-vaccination level of these antibodies; no such dependence was found with respect
to NI antibodies.

As mentioned above, to detect HI antibodies, we used the same strains of influenza
viruses A/H1N1 and A/H3N2 that were included in the vaccine composition in the
2018–2019 flu season [18]. To detect increases in NI antibodies after immunization, we
used reassortant viruses A/H6N1 and A/H6N2 containing the NA of viruses isolated
earlier—A/South Africa/3626/13 (H1N1)pdm09 and A/Hong Kong/4801/2014(H3N2).
Based on the February 2018 report of the Worldwide Influenza Center (https://www.crick.
ac.uk/sites/default/files/2018-07/crick_feb2018_report_for_the_web.pdf, accessed on 6
November 2023), it can be concluded that NA of A/H1N1 viruses underwent minimal evo-
lutionary changes from 2013 to 2018, but A/H3N2 viruses circulating since 2016 acquired a
N-linked glycosylation site in N2 at position 245 which is close to the enzymatic site and
can sterically shield NA-inhibiting antibodies [47,48]. However, in our study, we did not
focus on the absolute values of antibody titers but rather on seroconversions and antibody
persistence; thus, we believe the abovementioned difference in NA is not significantly
influencing the overall conclusions of the study.

In conclusion, it should be said that studying the immunogenicity of NA in seasonal
vaccines will help to improve the effectiveness of influenza vaccination. This can be fa-
cilitated by studying the properties of NA when selecting candidates for vaccine strains,
standardizing the content of NA in vaccine preparations, and optimizing the manufac-
turing process to preserve the antigenic structure of NA [49]. Adding a known quantity
of conformationally correct NA to current seasonal vaccines may improve efficacy and,
potentially, cross-reactivity against drifted strains of influenza [16].

5. Conclusions

Immunization with inactivated influenza vaccines led to a significant increase in serum
anti-NA antibody titers, slowly waning one year after vaccination.

The dynamics of anti-NA antibody titers differed depending on the virus subtype: an-
tibodies to A/H3N2 virus NA increased later than antibodies to subtypes A/H1N1pdm09
and persisted longer. The increase in antibody titers to NA of influenza A viruses after
vaccination did not depend on their preexisting level.

The values of NA antibody titers after vaccination directly correlated with titers before
vaccination, in contrast to antibodies to HA.

The split vaccine was more immunogenic in relation to the NI antibody seroconversion rate.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/vaccines11111731/s1, Table S1: Average level of NI and HI
antibodies throughout a year after vaccination with split and subunit adjuvanted influenza vaccines;
Supplementary Table S2: Statistical analyses results of within group antibody titer comparison in
dependence of time point; Figure S1: Antibody dynamics throughout 1 year after vaccination in the
subgroups of participants with initially low specific antibody titers; Figure S2: Antibody dynamics
throughout 1 year after vaccination in the subgroups of participants with initially high specific
antibody titers; Figure S3: Neutralizing antibody dynamics and correlation with hemagglutination
inhibiting antibody; Figure S4: Distribution of the numbers for participants who seroconverted for
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Supplementary Methods: Microneutralization assay.
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Appendix A

Table A1. Regression analyses results. The impact of preexisting factors on the response (seroconver-
sion) to particular antigens in immunized participants on day 21 after vaccination was analyzed by
generalized linear model method (binomial family). The parameter analyzed by the model was the
chance of response to vaccination, where the seroconversion on day 21 was considered as positive
outcome (1) and the lack of seroconversion as negative outcome (0), thus the binomial family was
chosen. * p < 0.05, ** p < 0.01, *** p < 0.001.

Response→ HI seroconversion NI seroconversion
Factor
↓ H1 H3 N1 N2

Titer at day 0 p = 0.0009 *** p = 0.0268 * p = 0.0914 p = 0.0522
Vaccine type p = 0.7699 p = 0.5658 p = 0.0031 ** p = 0.1097
Age p = 0.5432 p = 0.5389 p = 0.8303 p = 0.7365
Sex p = 0.0511 p = 0.8002 p = 0.7034 p = 0.1209
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