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Abstract: Gonorrhea, a sexually transmitted disease caused by Neisseria gonorrhoeae, poses a signifi-
cant global public health threat. Infection in women can be asymptomatic and may result in severe
reproductive complications. Escalating antibiotic resistance underscores the need for an effective
vaccine. Approaches being explored include subunit vaccines and outer membrane vesicles (OMVs),
but an ideal candidate remains elusive. Meningococcal OMV-based vaccines have been associated
with reduced rates of gonorrhea in retrospective epidemiologic studies, and with accelerated gono-
coccal clearance in mouse vaginal colonization models. Cross-protection is attributed to shared
antigens and possibly cross-reactive, bactericidal antibodies. Using a Candidate Antigen Selection
Strategy (CASS) based on the gonococcal transcriptome during human mucosal infection, we iden-
tified new potential vaccine targets that, when used to immunize mice, induced the production of
antibodies with bactericidal activity against N. gonorrhoeae strains. The current study determined
antigen recognition by human sera from N. gonorrhoeae-infected subjects, evaluated their potential as
a multi-antigen (combination) vaccine in mice and examined the impact of different adjuvants (Alum
or Alum+MPLA) on functional antibody responses to N. gonorrhoeae. Our results indicated that a
stronger Th1 immune response component induced by Alum+MPLA led to antibodies with improved
bactericidal activity. In conclusion, a combination of CASS-derived antigens may be promising for
developing effective gonococcal vaccines.
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1. Introduction

Neisseria gonorrhoeae is the obligate human pathogen causative agent of gonorrhea,
a sexually transmitted infection (STI) with over 82 million cases worldwide and more
than 700,000 reported cases in the U.S. alone in 2021 [1]. Gonorrhea is a multi-faceted
disease. While urethral infection is mostly symptomatic in men, leading to prompt diag-
nosis and treatment, infected women are often asymptomatic, and thus, treatment may
be delayed, leading to significant sequelae (i.e., endometritis, PID, ectopic pregnancies
and infertility) [2,3]. Furthermore, gonococcal infection in men who have sex with men
(MSM), limited to the rectum or the pharynx, is also largely asymptomatic and therefore
evades timely diagnosis and treatment [4]. The treatment of N. gonorrhoeae infections is
complicated by the widespread increase in antimicrobial resistance, even to the last effective
FDA-approved extended spectrum cephalosporins, exacerbating the risk of untreatable
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gonorrhea [5,6]. Recurring gonococcal exposure may result in some strain-specific immu-
nity, but protective memory responses are scarce [7,8]. Disseminated gonococcal infections
(DGI) and co-infections with Chlamydia, syphilis and HIV are also reported [9]. There is a
critical need for a vaccine against gonorrhea.

Several approaches to developing a human gonococcal vaccine have been explored
in clinical trials. A killed, whole-organism vaccine in a human volunteer male urethral
infection model (an acute infection model, unlike chronic reproductive tract infections in
women [3]) did not induce heterologous and long-term protection [10,11]. A pilin-based
subunit vaccine only led to strain-specific antibody-mediated protection in a controlled
male urethral challenge model due to protein’s sequence variability [12,13]. A gonococcal
outer membrane (OM) vaccine enriched in gonococcal porin was thwarted by blocking
antibodies against reduction-modifiable protein (Rmp) [14,15], a conserved, antigenic
gonococcal surface protein present in a small quantities, and did not show a significant
difference among vaccinated and placebo infected groups [16]. Other gonococcal vaccine
candidates in pre-clinical development include a peptide mimic (mimotope) of a gonococ-
cal lipooligosaccharide (LOS) epitope called 2C7 [17,18] and several surface membrane
proteins, identified in vitro by conventional screening methods, reverse vaccinology [19]),
“omics” and bioinformatics [20–24]. Several vaccine candidates have shown variable rates
of success in an estradiol-treated female mouse model of gonococcal vaginal colonization
using different adjuvants and delivery systems [25–29]. Despite their limitations, mouse
models of gonococcal colonization have replicated findings related to gonococcal virulence
factors in humans, for example, LOS sialylation [30] and lipid A phosphoethanolamine [31],
supporting their use for vaccine preclinical analyses. Vaccination with the 2C7 peptide
mimic and passive immunization with mAb 2C7 have demonstrated that protection against
gonococcal challenge in mice correlates with the presence of complement-dependent bacte-
ricidal antibodies [32,33]. Although the correlates of protection against natural gonococcal
mucosal infection in humans remain unclear, most vaccine studies rely on complement-
dependent antibody-mediated bacterial killing (also called serum bactericidal activity, or
SBA), which serves as a correlate of protective immunity to N. meningitidis in humans [34].
SBA is regarded as an in vitro surrogate of protection to guide the evaluation of vaccine
candidates’ efficacy in vitro [35,36]. Other mechanisms of protection may include antibody-
dependent opsonophagocytosis, the blocking of bacteria adhesion/invasion at the site
of colonization, and T cell responses [37], although these are not all confirmed in human
studies or unequivocally in experimental mouse models of gonococcal vaginal colonization.

Interest in the use of outer membrane vesicles (OMVs) as a multi-antigen vaccine has
been revitalized by the recent observation of the decreased risk of gonococcal infection in
individuals vaccinated with meningococcal OMV-based vaccines. The MeNZB vaccine
was reported to have 31% efficacy against gonococcal infection in a retrospective epidemi-
ologic study of people immunized with the MenZB vaccine [38,39]. VA-MENGOC-BC-
and 4CMenB (Bexsero)-vaccinated cohorts were also reported to incur in lower rates of
gonorrhea [40–44]. Currently, there are multiple randomized clinical trials underway to
evaluate the protective efficacy of existing N. meningitidis OMV vaccines against gonococcal
infection [45]. In mice, 4CMenB accelerated the clearance of gonococcal infection and in-
duced antibodies with bactericidal activity [46–48]. Cross-protection is attributed to shared
meningococcal and gonococcal antigens [49–51]. The administration of OMVs with IL-12
as an adjuvant accelerated bacterial clearance in a mouse model of gonococcal colonization,
likely due to the stimulation of protective Th1 responses and the concomitant reduction
in deleterious Th17 responses [52]. Protection in mice afforded by this vaccine has also
relied on antibodies, evidenced by a lack of efficacy in B cell-deficient mice [53]. Using a
“collection” of antigens, such as in an OMV, may result in a more diversified functional
response against multiple epitopes compared to mono-antigen vaccines [54–56].

Our previous studies using the gonococcal transcriptome expressed during natural
human mucosal infection in men and women highlighted the following: (1) N. gonorrhoeae
gene expression varies in the male and female reproductive tract environments, (2) gonococ-
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cal gene expression and regulation are different in vivo and in vitro, and (3) a large number
of gonococcal genes expressed during human infection encode hypothetical proteins. Fo-
cusing on the latter, we designed a novel bioinformatics-based Candidate Antigen Selection
Strategy (CASS) and identified several new potential vaccine antigens that are expressed
in vivo during natural human gonococcal infection [24] (in contrast to antigens expressed
in bacteria grown in vitro). Our initial studies in mice with three CASS antigens, NGO0690,
NGO0948 and NGO1701, showed the robust induction of antibodies with serum bacteri-
cidal activity (SBA) against several N. gonorrhoeae strains in mice immunized with Alum
as the adjuvant. SBA titers were increased by combining individual mouse sera, showing
that the presence of bactericidal antibodies against more than one antigen enhanced the
killing of N. gonorrhoeae [24]. Here, we expand the characterization of these antigens by
verifying recognition by human serum antibodies from N. gonorrhoeae-infected subjects,
and by investigating their potential as a multi-antigen vaccine in mouse immunization
studies. Furthermore, we examined the effect of different adjuvants (Alum (Th2 adjuvant)
and MPLA (Th1 adjuvant)) on the type and magnitude of functional antibody responses
against N. gonorrhoeae.

2. Materials and Methods
2.1. Antigens

Expression and purification of recombinant NGO0690, NGO0948 and NGO1701 was
carried out as previously described [24].

2.2. Immunization of Mice

Female BALB/c mice (4–6 weeks old) (Jackson Labs, Bar Harbor, ME, USA) were
housed, cared for and immunized according to NIH, Tufts University, and University
of Massachusetts Chan Medical School IACUC-approved protocols. Mice (n = 5) were
immunized subcutaneously three times following a three-week schedule with recombinant
NGO0690, NGO0948 and NGO1701 combined (10 µg each), adsorbed with Alum (Imject,
40 mg/mL aluminum hydroxide, 40 mg/mL magnesium hydroxide) (Thermo Fisher Scien-
tific, Waltham, MA, USA, #77161) at a 1:1 v/v ratio, as specified by the manufacturer, in
a final volume of 100 µL of antigen/adjuvant mixture. For adsorption, Alum was added
dropwise to the antigens and mixed for 30 min at room temperature (R.T.) prior to use, as
specified by the manufacturer. Additional mice (n = 10) were immunized with antigens
adsorbed with Alum as above and with MPLA (10 µg/mouse/dose) (Avanti Lipids, Al-
abaster, AL, USA) as an adjuvant. Control groups were immunized with adjuvants alone
in PBS. Before the first immunization, preimmune sera were collected, and immune sera
two weeks after each immunization (weeks 2, 5 and 8). Vaginal lavages were also collected
two weeks after the last immunization. All sera and lavages were stored at −80 ◦C.

2.3. Bacterial Strains and Growth Conditions

N. gonorrhoeae strains F62 (Pil+/Opa+) and MS11 were plated overnight from frozen
glycerol stocks on GC base agar plates containing 1% (v/v) IsoVitaleX® at 37 ◦C with 5%
CO2 and grown in liquid GC broth (GCB) with 1% IsoVitaleX® [24]. Bacterial growth was
monitored spectrophotometrically at O.D.600. For some experiments, aliquots of bacteria
suspension at O.D.600 > 1 were formalin-killed by incubation with 1% paraformaldehyde
for 1 h at 4 ◦C, washed and resuspended in PBS.

2.4. Human Sera

Banked, de-identified sera from women with disseminated gonococcal infection
(DGI) [57] (n = 7) were provided by Dr. Peter Rice, MD, University of Massachusetts Chan
Medical School. Use of the human serum was approved by the University of Massachusetts
Chan Medical School IRB. The collection and use of DGI sera were approved by the Insti-
tutional Review Board (IRB) of (–at that time) the Trustee of Health and Hospitals of the
City of Boston; subjects provided informed consent. We also utilized banked, de-identified
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sera from male (n = 25) and female (n = 25) armed service members with uncomplicated
acute gonococcal infection (10–30 days following diagnosis) and convalescent sera from
additional male (n = 25) and female (n = 25) subjects (180–240 days from diagnosis). These
serum samples were from a collection of specimens from the Department of Defense Serum
Repository: The Armed Forces Health Surveillance Branch, Defense Health Agency, Silver
Spring, Maryland (serum specimen year(s) 2010–2017; specimens received 5 September
2019) provided in collaboration with COL Eric C. Garges, MD, MPH—Uniformed Services
University of the Health Sciences, Department of Preventive Medicine and Biostatistics.
Use of the human serum was approved by the USUHS Human Subjects Research Program
Office. Human serum was collected as part of routine public health surveillance, and
therefore, consent for this study was not available. However, samples provided for this
work were de-identified and approved for use by the Armed Forces Health Surveillance
Branch, Defense Health Agency. All banked human sera used were determined to not
involve human subject research and did not require IRB approval for use in this study at
Tufts University. Commercially available, pooled whole normal human serum (abbreviated
as NHS) (Pel-Freez Biologicals, Rogers, AK, USA, #34019) was also used.

2.5. Human Antibody ELISA

ELISA plates (Immulon 4 HBX) were coated with 2 µg/mL of purified recombi-
nant NGO0690, NGO0948, NGO1701 and native gonococcal PIB (PIB1B) [58] in carbonate
buffer pH 9.0 (100 µL/well) or with formalin-fixed N. gonorrhoeae (1–1.5 × 108 CFU/mL)
in PBS (100 µL/well) overnight at 4 ◦C. Plates were washed, and blocked with 1% BSA
in PBS/0.05% Tween-20 (PBS/T) for 1 h at R.T. prior to overnight incubation at 4 ◦C with
human sera as above (1:100 dilution), followed by incubation with an AP-conjugated
secondary anti-human total IgG (Southern Biotech, Birmingham, AL, USA) and 1-step
PNPP (p-nitrophenyl phosphate) reagent (Thermo Fisher Scientific). O.D.405 values were
measured spectrophotometrically. Individual serum specimens were tested in triplicate
and IgG levels expressed as the combined mean O.D.405 minus the O.D.405 of the control
antigen without serum (referred to as blank throughout the Methods and Results sections)
± SD for each antigen.

2.6. Mouse Antibody ELISA

ELISA plates were coated with purified proteins (2 µg/mL) or formalin-fixed N. gonor-
rhoeae (1–1.5 × 108 bacteria/mL) as described above. Blocking and incubations were carried
out as above, using serial dilutions of pooled mouse preimmune sera, immune sera or vagi-
nal lavages, and AP-conjugated secondary anti-mouse total IgG, IgG1, IgG2a, IgG3 or IgM
antibodies (Southern Biotech). Pooled sera and vaginal lavages were tested in triplicate or
quadruplicate. Total IgG, IgG1, IgG2a, IgG3 and IgM were quantified (µg/mL ± SD) using
antibody reference standard curves (Southern Biotech) and a linear regression function [24].
The Th1:Th2 ratios were calculated as IgG2a (O.D.405 − blank)/IgG1 (O.D.405 − blank).

2.7. Antibody Avidity

Avidity was measured using a chaotrope-based ELISA assay to disrupt low-avidity
antigen–antibody binding [59,60]. Briefly, plates were coated with whole N. gonorrhoeae as
above and blocked with 3% non-fat dry milk in PBS/T for 1 h at R.T., followed by incubation
with serial dilutions of mouse sera overnight. The next day, plates were washed, and two
duplicate sets of wells were treated with 8M Urea in PBS/T or PBS/T alone (untreated)
for 5 min at R.T. Plates were washed again prior to secondary antibody incubation and
detection as above. The avidity index (AI) was expressed as the average of urea (O.D.405 −
blank)/untreated (O.D.405 − blank) values × 100 ± SD.

2.8. Cytokine ELISA

Th2-type cytokines (IL-4 and IL-10), Th1-type cytokines (IL-12p70 and IFN-γ), IL-6
and TNF-α were assessed in pooled preimmune and immune mouse sera by ELISA with
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Opt-EIA kits (BD Biosciences, San Jose, CA, USA) per the manufacturer’s specifications.
Cytokines were expressed in pg/mL ± SD and the values were used to calculate the
IL-12p70/IL-10 and the IFN-γ/IL-4 ratios.

2.9. Serum Bactericidal Activity (SBA)

SBA was carried out in 96-well U-bottom plates in a 75 µL total volume as previously
described [24]. Commercially available IgG/IgM-depleted normal human serum (pooled
serum, Pel-Freez Biologicals, #34010) was used as the source of complement. Briefly, N.
gonorrhoeae cultures, grown as above, were diluted to an O.D.600 of 0.2 (2–4 × 108 CFU/mL),
followed by serial dilution to 2–4 × 104 CFU/mL. 12.5 µL of the suspension was transferred
to wells containing HBSS with 0.15 mM CaCl2 and 1 mM MgCl2, in the presence or absence
of 2% BSA [48]. Wells were incubated for 20 min at R.T. with serial dilutions of mouse sera
that were previously heat-inactivated (56 ◦C for 30 min), including: whole preimmune
and immune sera, and preimmune and immune sera previously depleted of IgM using an
anti-mouse IgM (µ-chain specific)−Agarose conjugated antibody (Sigma-Aldrich, Louis,
MO, USA, #A4540). Complement (10%) was added, and 5–10 µL aliquots of the suspension
were immediately plated in triplicate on IsoVitaleX®-GC agar plates (Time 0). After a
further incubation at 37 ◦C for 30 min, additional aliquots were plated in triplicate as above
(Time 30). The next day, bacterial survival (a measure of killing) was determined by CFU
counting. Survival was expressed as the percentage of CFUs at T30/T0 ± SD, and the
bactericidal titer as the reciprocal of the lowest serum dilution with ≤50% survival after
30 min. Controls included bacteria alone and bacteria incubated with complement alone.

2.10. Statistical Analysis

GraphPad Prism 10 (GraphPad Software, Inc., San Diego, CA, USA) was used to
determine statistical significance using one-way or two-way analyses of variance (ANOVA)
with Tukey’s multiple comparisons or with Dunnett’s tests. Statistically significant p values
are indicated as **** p < 0.0001, *** p < 0.001, ** p < 0.01 or * p < 0.05 in the text and in Figure
legends.

2.11. Modeling and B Cell Epitope Predictions

Protein structure predictions of NGO0690 (hypothetical protein; NCBI Accession number
WP_003691259.1; UniProtKB Q5F8S0_NEIG1), NGO0948 (outer membrane protein assembly
factor BamC; NCBI Accession number WP_003693315.1; UniProtKB D6H8H8) and NGO1701
(four-helix bundle copper-binding protein; NCBI Accession number WP_003689877.1; UniPro-
tKB Q5F665_NEIG1) were obtained with AlphaFold [61,62] based on the available pro-
tein sequences in the NCBI Reference Sequence: NC_002946. Linear (continuous) and
conformational (discontinuous) B cell epitopes were predicted with ElliPro [63] using
standard cut-offs (protrusion index: minimum score (S) = 0.5, maximum distance (R)
(in Angstroms) = 6). Linear epitope predictions were also confirmed by BepiPred 3.0 [64]
(percentage cut-off = 20, default threshold = 0.1512). Structure modeling was rendered
with PyMol 2.5.4 [65].

3. Results
3.1. Antigen Recognition by Human Sera

The gonococcal hypothetical proteins NGO0690, NGO0948 and NGO1701 are gono-
coccal vaccine antigens discovered using a novel Candidate Antigen Selection Strategy
(CASS) [24,66–68]. The immunization of mice with the individual purified proteins and
Alum as an adjuvant induced the robust production of IgG that recognized several N. gonor-
rhoeae strains. Here, NGO0690, NGO0948 and NGO1701 recognition by human sera from N.
gonorrhoeae-infected subjects was determined by ELISA. As a comparator of IgG responses,
we used purified PIB porin (PorB1B) (from N. gonorrhoeae F62), an antigen known to induce
an antibody response following natural infection [69], and N. gonorrhoeae strain F62 (whole
organisms). We first examined banked de-identified sera from women (n = 25) and men
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(n = 25) with uncomplicated acute gonococcal infection (10–30 days from diagnosis, des-
ignated as acute sera) and banked de-identified convalescent sera from different women
(n = 25) and men (n = 25) with uncomplicated infection (180–240 days from diagnosis).
IgG levels in each serum were expressed as the mean O.D.405 minus the blank. All sera
recognized N. gonorrhoeae F62 similarly (Figure 1A–D, black bars), and the three proteins
with some variability (i.e., levels of IgG against NGO0948 (Figure 1A–D, striped bars) were
consistently lower than levels of IgG against NGO0690 and NGO1701) (Figure 1A–D, dotted
and dashed bars, respectively). All sera also recognized N. gonorrhoeae PIB (Figure 1A–D,
white bars). Interestingly, lower levels of IgG against the purified antigens, including PIB,
were observed in convalescent sera from women compared to acute sera taken 10–30 days
from diagnosis (Figure 1A,B). Because uncomplicated N. gonorrhoeae infection does not
induce significant immune responses [70,71], we also examined banked sera from women
with disseminated gonococcal infection (DGI) [57]. We reasoned that the invasive nature of
DGI would elicit higher antibody responses. As shown in Figure 1E, levels of IgG against
NGO0690, NGO0948 and NGO1701 in the DGI sera were higher than the corresponding
IgG levels in acute or convalescent sera from both women and men with uncomplicated
infection (see Figure 1A–D). Interestingly, IgG reactivity to PIB was similar across groups
(Figure 1E); this could be due, in part, to the limited cross-reactivity of anti-porin antibodies
in the sera (the majority of strains causing DGI express the PIB1A porin allele [72]) against
the N. gonorrhoeae PIB1B porin that was used as the target in the ELISA assay. Uncompli-
cated infection is mostly caused by PIB1B strains, which are more prevalent than PIB1A
among circulating strains [72]. As a control, commercially available, pooled whole normal
human sera (NHS) were used, which showed lower IgG reactivity against all the purified
antigens compared to the DGI sera (Figure 1F), indicating the induction of specific antibod-
ies following invasive natural gonococcal infection in humans. Of note, normal human
serum showed IgG levels comparable to post-infection sera, suggesting the presence of
cross-reactive antibodies against N. gonorrhoeae, possibly elicited by colonization with other
Neisserial species.

3.2. Antibody Responses in Mice to a Multi-Antigen Vaccine and Effects of Adjuvants

We previously reported that the combination of anti-NGO0690 + anti-NGO1701 mouse
sera increased the killing of N. gonorrhoeae when compared to the respective individual
antisera [24]. Here, we immunized mice with a combination of NGO0690, NGO0948 and
NGO1701 to assess quantitative and qualitative antibody responses. We used Alum (Th2-
biased adjuvant that induces higher IgG1 levels relative to IgG2a [73]) as a comparator to
bridge our prior results, and Alum+MPLA as an adjuvant to elicit a balanced Th1 and Th2
response. MPLA (monophosphoryl lipid A) is a TLR4 adjuvant that induces preferentially
Th1-skewed responses [74]. Th1 responses offer better protection against gonococcal
infection than Th2-type responses in mice [52], and Th1-type antibodies (IgG2a/b) have
higher complement-dependent bactericidal activity against N. gonorrhoeae than IgG1 [75].

3.2.1. Total IgG Antibody Responses to Purified Antigens

We measured total serum IgG responses elicited by immunization with NGO0690+
NGO0948+NGO1701 with Alum or with Alum+MPLA as an adjuvant. The combined
antigens with Alum induced higher anti-NGO0690 and anti-NGO0948 total IgG antibodies
than the combined antigens with Alum+MPLA (Figure 2A,B, dotted and dashed bars,
respectively), while using Alum+MPLA as an adjuvant led to higher anti-NGO1701 IgG
levels (Figure 2C, striped bars). The levels of IgG against all the antigens in preimmune
sera or sera from mice immunized with the adjuvant alone were very low to negligible
(Figure 2A–C, white bars and gray bars, respectively).
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gens mixed with Alum inducing higher anti-NGO0690 IgG (Figure 3A, dotted bars), and 
antigens with Alum+MPLA inducing higher anti-NGO1701 IgG levels (Figure 3B, striped 
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lipoproteins [24]) or, possibly, interactions with the adjuvant [76]. 

Figure 2. Mouse serum IgG antibodies against purified antigens. Total IgG (µg/mL ± SD) in sera
from mice immunized with NGO0690+NGO0948+NGO1701 and Alum or Alum+MPLA as an adjuvant
measured by ELISA against (A) NGO0690 (dotted bars), (B) NGO0948 (dashed bars) and (C) NGO1701
(striped bars). Preimmune sera, white bars; sera from mice immunized with adjuvant only, gray bars.
Sera were tested in triplicate or quadruplicate. ***, ****—p value is significant according to one-way
ANOVA with Tukey’s multiple comparisons test. Note the different scale in (A) and (C) vs. (B).

The IgG levels in the mouse vaginal lavages paralleled the serum levels, with antigens
mixed with Alum inducing higher anti-NGO0690 IgG (Figure 3A, dotted bars), and anti-
gens with Alum+MPLA inducing higher anti-NGO1701 IgG levels (Figure 3B, striped bars).
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Consistent with the observed low anti-NGO0948 IgG levels in sera, vaginal lavage IgG
antibodies against NGO0948 were also low (0.054 µg/mL with Alum and 0.0098 µg/mL
with Alum+MPLA as an adjuvant). The differences in the immunogenicity of each anti-
gen may be related to their nature or structure (NGO0690 and NGO0948 are predicted
lipoproteins [24]) or, possibly, interactions with the adjuvant [76].

3.2.2. Serum and Vaginal Lavage Total IgG Induced by Combined Antigens against Whole
N. gonorrhoeae

The immune IgG recognition of the N. gonorrhoeae strains F62 and MS11 was assessed
by whole-cell ELISA. Immunization with NGO0690+NGO0948+NGO1701 adjuvanted with
Alum+MPLA induced higher total IgG against both strains than the Alum-adjuvanted
antigens (Figure 4A,B, black bars). Low, non-specific reactivity to N. gonorrhoeae strains
was observed in preimmune sera and sera from mice immunized with either adjuvant
alone (Figure 4A,B, white and gray bars, respectively). Mouse vaginal lavage IgG against
N. gonorrhoeae F62 induced by the combined antigens and Alum were higher than when
using Alum+MPLA (Figure 4C, black bars), while similar vaginal lavage IgG were detected
against N. gonorrhoeae MS11, regardless of the adjuvant used (Figure 4D, black bars).
However, vaginal lavage levels of IgG against whole N. gonorrhoeae were lower overall than
to the purified antigens (See Figure 3). Vaginal lavage IgG induced by immunization with
the adjuvant alone were low to negligible (Figure 4C,D, gray bars).

Vaccines 2023, 11, x FOR PEER REVIEW 8 of 22 
 

 

 
Figure 3. Mouse vaginal lavage IgG antibodies against purified antigens. Total IgG (µg/mL ± SD) in 
vaginal lavages from mice immunized with NGO0690+NGO0948+NGO1701 and Alum or 
Alum+MPLA as an adjuvant measured by ELISA against (A) NGO0690 (dotted bars) and (B) 
NGO1701 (striped bars). Lavages from mice immunized with adjuvant only, gray bars. Lavages 
were tested in quadruplicate. *, ***, ****—p value is significant according to one-way ANOVA with 
Tukey’s multiple comparisons test. 

3.2.2. Serum and Vaginal Lavage Total IgG Induced by Combined Antigens against 
Whole N. gonorrhoeae 

The immune IgG recognition of the N. gonorrhoeae strains F62 and MS11 was assessed 
by whole-cell ELISA. Immunization with NGO0690+NGO0948+NGO1701 adjuvanted 
with Alum+MPLA induced higher total IgG against both strains than the Alum-adju-
vanted antigens (Figure 4A,B, black bars). Low, non-specific reactivity to N. gonorrhoeae 
strains was observed in preimmune sera and sera from mice immunized with either adju-
vant alone (Figure 4A,B, white and gray bars, respectively). Mouse vaginal lavage IgG 
against N. gonorrhoeae F62 induced by the combined antigens and Alum were higher than 
when using Alum+MPLA (Figure 4C, black bars), while similar vaginal lavage IgG were 
detected against N. gonorrhoeae MS11, regardless of the adjuvant used (Figure 4D, black 
bars). However, vaginal lavage levels of IgG against whole N. gonorrhoeae were lower over-
all than to the purified antigens (See Figure 3). Vaginal lavage IgG induced by immuniza-
tion with the adjuvant alone were low to negligible (Figure 4C,D, gray bars). 

 

Figure 3. Mouse vaginal lavage IgG antibodies against purified antigens. Total IgG (µg/mL ± SD)
in vaginal lavages from mice immunized with NGO0690+NGO0948+NGO1701 and Alum or
Alum+MPLA as an adjuvant measured by ELISA against (A) NGO0690 (dotted bars) and
(B) NGO1701 (striped bars). Lavages from mice immunized with adjuvant only, gray bars. Lavages
were tested in quadruplicate. *, ***, ****—p value is significant according to one-way ANOVA with
Tukey’s multiple comparisons test.

3.2.3. Serum IgG Antibody Subclasses against Whole N. gonorrhoeae

The IgG subclasses’ responses to N. gonorrhoeae were examined by whole-cell ELISA,
and as expected, immunization with NGO0690+NGO0948+NGO1701 and Alum elicited
primarily IgG1, low levels of IgG2a and lower amounts of IgG3 antibodies that recognized
N. gonorrhoeae F62 and MS11 (Figure 5A,B, black bars). In contrast, immunization with
combined antigens using Alum+MPLA induced higher IgG1 and IgG2a levels that reacted
with N. gonorrhoeae F62 (Figure 5C, black bars), and higher IgG2a and IgG3 against N.
gonorrhoeae MS11 (Figure 5D, black bars). The Th1:Th2 antibody subclass ratio (IgG2a/IgG1)
indicated a stronger Th1 component (IgG2a/IgG1 ratio approaching 1) when MPLA was
added to Alum (Table 1) compared to Alum alone (IgG2a/IgG1 ratio less than 0.5). These
results confirmed that the addition of MPLA to Alum promoted a stronger Th1-biased
antibody response.



Vaccines 2023, 11, 1846 9 of 21

Vaccines 2023, 11, x FOR PEER REVIEW 8 of 22 
 

 

 
Figure 3. Mouse vaginal lavage IgG antibodies against purified antigens. Total IgG (µg/mL ± SD) in 
vaginal lavages from mice immunized with NGO0690+NGO0948+NGO1701 and Alum or 
Alum+MPLA as an adjuvant measured by ELISA against (A) NGO0690 (dotted bars) and (B) 
NGO1701 (striped bars). Lavages from mice immunized with adjuvant only, gray bars. Lavages 
were tested in quadruplicate. *, ***, ****—p value is significant according to one-way ANOVA with 
Tukey’s multiple comparisons test. 

3.2.2. Serum and Vaginal Lavage Total IgG Induced by Combined Antigens against 
Whole N. gonorrhoeae 

The immune IgG recognition of the N. gonorrhoeae strains F62 and MS11 was assessed 
by whole-cell ELISA. Immunization with NGO0690+NGO0948+NGO1701 adjuvanted 
with Alum+MPLA induced higher total IgG against both strains than the Alum-adju-
vanted antigens (Figure 4A,B, black bars). Low, non-specific reactivity to N. gonorrhoeae 
strains was observed in preimmune sera and sera from mice immunized with either adju-
vant alone (Figure 4A,B, white and gray bars, respectively). Mouse vaginal lavage IgG 
against N. gonorrhoeae F62 induced by the combined antigens and Alum were higher than 
when using Alum+MPLA (Figure 4C, black bars), while similar vaginal lavage IgG were 
detected against N. gonorrhoeae MS11, regardless of the adjuvant used (Figure 4D, black 
bars). However, vaginal lavage levels of IgG against whole N. gonorrhoeae were lower over-
all than to the purified antigens (See Figure 3). Vaginal lavage IgG induced by immuniza-
tion with the adjuvant alone were low to negligible (Figure 4C,D, gray bars). 

 
Figure 4. Mouse serum IgG antibodies against whole N. gonorrhoeae. Total IgG (µg/mL ± SD)
in sera from mice immunized with NGO0690+NGO0948+NGO1701 and Alum or Alum+MPLA,
measured by whole-cell ELISA against (A) N. gonorrhoeae F62 (black bars) and (B) N. gonorrhoeae MS11
(black bars). Preimmune sera, white bars; sera from mice immunized with adjuvant only, gray bars.
(C,D) Total IgG in vaginal lavages from mice immunized with NGO0690+NGO0948+NGO1701 and
Alum or Alum+MPLA, measured as above. Lavages from mice immunized with adjuvant only, gray
bars. Sera and lavages were tested in triplicate or quadruplicate. *, **, ****—p value is significant
according to one-way ANOVA with Tukey’s multiple comparisons test.
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Table 1. Th1:Th2 ratio (IgG2a (O.D.405 − blank)/IgG1 (O.D.405 − blank) ± SEM). 

Adjuvant Group N. gonorrhoeae F62 N. gonorrhoeae MS11 
Alum 0.35 ± 0.02 a 0.31 ± 0.006 a 

Alum+MPLA 0.93 ± 0.02 b  0.51 ± 0.02  
a p < 0.001 vs. Alum+MPLA and b p < 0.0001 vs. N. gonorrhoeae MS11 according to one-way ANOVA 
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3.3. Serum Cytokine Production Induced by Combined Antigens 

Figure 5. Mouse serum IgG antibody subclasses against whole N. gonorrhoeae. IgG1, IgG2a
and IgG3 (µg/mL ± SD) measured by whole-cell ELISA in sera from mice immunized with
NGO0690+NGO0948+NGO1701 with Alum (A,B) or with Alum+MPLA (C,D) as adjuvants against
(A,C) N. gonorrhoeae F62 (black bars) and (B,D) N. gonorrhoeae MS11 (black bars). Preimmune sera,
white bars; adjuvant-only sera, gray bars. Sera were tested in triplicate or quadruplicate. *, **, ***,
****—p value is significant according to one-way ANOVA with Tukey’s multiple comparisons test.
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Table 1. Th1:Th2 ratio (IgG2a (O.D.405 − blank)/IgG1 (O.D.405 − blank) ± SEM).

Adjuvant Group N. gonorrhoeae F62 N. gonorrhoeae MS11

Alum 0.35 ± 0.02 a 0.31 ± 0.006 a

Alum+MPLA 0.93 ± 0.02 b 0.51 ± 0.02
a p < 0.001 vs. Alum+MPLA and b p < 0.0001 vs. N. gonorrhoeae MS11 according to one-way ANOVA with Tukey’s
multiple comparison test.

3.3. Serum Cytokine Production Induced by Combined Antigens

Serum cytokines were examined by ELISA to establish a more complete view of
the (cellular in addition to humoral) response elicited by immunization with NGO0690+
NGO0948+NGO1701 with Alum or Alum+MPLA. Immunization with Alum induced sig-
nificantly higher IL-4 and IL-10 (Th2-type cytokines) levels than Alum+MPLA (Figure 6A,B,
black bars), and Alum+MPLA induced significantly higher IL-12p70 than Alum (Figure 6D,
black bars), while INF-γ levels were similar using either adjuvant (Figure 6C). As a result,
IFN-γ/IL-4 and IL-12p70/IL-10 ratios were significantly higher when Alum+MPLA was
used as an adjuvant (Figure 6E). Together with the IgG subclass results, the serum cytokine
profiles supported a stronger Th1-biased response when Alum+MPLA was used as an
adjuvant. The induction of IL-6 and TNF-α was comparable when using either adjuvant
(Figure 6F,G).
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3.4. Serum IgM Antibodies against Whole N. gonorrhoeae Induced by Combined Antigens 
IgM antibodies that reacted with N. gonorrhoeae were measured by whole-cell ELISA. 

Natural IgM against N. gonorrhoeae F62 and MS11 were detected in preimmune mouse 
sera (Figure 7A,B, white bars), and were increased in sera from mice immunized with the 
adjuvant alone (Figure 7A,B, gray bars). Pre-existing cross-reactive IgM antibodies may 
increase with advancing age in mice or via a non-specific effect of the adjuvants. There 
was a small but statistically significant increase in IgM levels that recognized both gono-
coccal strains in sera from mice immunized with NGO0690+NGO0948+NGO1701 and 
Alum+MPLA compared to Alum (Figure 7A,B, black bars).  

Figure 6. Mouse serum cytokine profile. Th2 cytokines (A) IL-10 and (B) IL-4, and Th1 cytokines (C) IFN-
γ and (D) IL-12p70 measured by ELISA. Adjuvant-only sera (gray bars), NGO0690+NGO0948+NGO1701
and Alum sera and NGO0690+NGO0948+NGO1701 and Alum+MPLA (black bars) were tested in
quadruplicate and cytokine levels are expressed in pg/mL ± SD. *, ***, ****—p value is significant
according to one-way ANOVA with Tukey’s multiple comparisons test. (E) IL-12p70/IL-10 ratio and
IFN-γ/IL-4 ratio. * p < 0.05 according to Mann–Whitney test. (F,G) IL-6 and TNF-α measured as above.
***—p value is significant according to one-way ANOVA with Tukey’s multiple comparisons test.

3.4. Serum IgM Antibodies against Whole N. gonorrhoeae Induced by Combined Antigens

IgM antibodies that reacted with N. gonorrhoeae were measured by whole-cell ELISA.
Natural IgM against N. gonorrhoeae F62 and MS11 were detected in preimmune mouse
sera (Figure 7A,B, white bars), and were increased in sera from mice immunized with
the adjuvant alone (Figure 7A,B, gray bars). Pre-existing cross-reactive IgM antibodies
may increase with advancing age in mice or via a non-specific effect of the adjuvants.
There was a small but statistically significant increase in IgM levels that recognized both
gonococcal strains in sera from mice immunized with NGO0690+NGO0948+NGO1701 and
Alum+MPLA compared to Alum (Figure 7A,B, black bars).
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murine natural and elicited IgM against N. gonorrhoeae. At higher serum concentrations, 
there was a small statistically significant difference in IgM binding. The avidity index (AI) 
(percentage of antibodies bound to the antigen after treatment with urea) of IgM was low 
(≤10) for all sera [77]. A similar low AI was also observed for IgG antibodies in sera from 
adjuvant-only immunized groups in the presence or absence of urea treatment (Figure 
8C,D, closed and open circles). In contrast, immunization with 
NGO0690+NGO0948+NGO1701 and either adjuvant induced IgG with high avidity, 
shown by the partial disruption of IgG-N. gonorrhoeae binding by treatment with urea 
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Figure 7. Mouse serum IgM antibodies against whole N. gonorrhoeae. IgM (µg/mL ± SD) in sera
from mice immunized with NGO0690+NGO0948+NGO1701 and Alum or Alum+MPLA, measured
by whole-cell ELISA against (A) N. gonorrhoeae F62 (black bars) and (B) N. gonorrhoeae MS11 (black
bars). Preimmune sera, white bars; adjuvant-only sera, gray bars. Sera were tested in triplicate or
quadruplicate. *, **, ****—p value is significant according to one-way ANOVA with Tukey’s multiple
comparisons test.

3.5. Antibody Avidity

Serum IgG and IgM antibody specificity for N. gonorrhoeae was evaluated by measuring
antibody avidity in a modified ELISA using the chaotropic agent urea to disrupt low-affinity
antigen–antibody binding. IgM binding to N. gonorrhoeae F62 in sera from mice immunized
with NGO0690+NGO0948+NGO1701 and either Alum or Alum+MPLA was low, similar to
IgM binding in sera from adjuvant-only-immunized mice (Figure 8A,B, closed triangles
and circles, respectively). Treatment with urea (8M) disrupted IgM antibody binding
(Figure 8A,B, open triangles and circles), consistent with the low avidity of murine natural
and elicited IgM against N. gonorrhoeae. At higher serum concentrations, there was a small
statistically significant difference in IgM binding. The avidity index (AI) (percentage of
antibodies bound to the antigen after treatment with urea) of IgM was low (≤10) for all
sera [77]. A similar low AI was also observed for IgG antibodies in sera from adjuvant-
only immunized groups in the presence or absence of urea treatment (Figure 8C,D, closed
and open circles). In contrast, immunization with NGO0690+NGO0948+NGO1701 and
either adjuvant induced IgG with high avidity, shown by the partial disruption of IgG-N.
gonorrhoeae binding by treatment with urea (Figure 8C,D, closed and open squares). The AI
for IgG antibodies was 41.2 and 50.3, respectively.

The analysis of the IgG subclass avidity showed that immunization with NGO0690+
NGO0948+NGO1701 and either Alum or Alum+MPLA induced IgG1 antibodies with
comparably high avidity for N. gonorrhoeae F62 (AI of 53 and 67, respectively), and that
Alum+MPLA induced IgG2a antibodies with higher avidity than Alum (AI of 67 vs. 26,
respectively).

3.6. Serum Bactericidal Activity

The complement-mediated antibody-dependent bactericidal activity (SBA) of sera
from mice immunized with NGO0690+NGO0948+NGO1701 and Alum was examined
against N. gonorrhoeae F62 using IgM-depleted mouse sera. The bactericidal titers (i.e., the
highest serum dilution that resulted in <50% survival of bacteria after 30 min. incubation
with mouse sera and IgG/IgM-depleted pooled human sera as a source of complement)
were about 1/80 (Figure 9, white bars). These titers were comparable to our previous
results with anti-NGO0690 sera and anti-NGO1701 sera combined [24]. Bacterial killing
was not observed by incubation with IgG/IgM-depleted human complement alone or with
non-heat-inactivated mouse sera, as previously shown [24] or with IgM-depleted sera from
mice immunized with Alum alone (Figure 9, gray bar).
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Figure 8. Serum IgM and IgG antibody avidity against N. gonorrhoeae F62. (A) IgM (O.D.405 minus
the blank ± SD) determined with a modified ELISA in the presence (open symbols) or absence
(closed symbols) of 8M urea treatment. NGO0690+NGO0948+NGO1701 and Alum sera (triangles) or
Alum-alone sera (circles) and (B) NGO0690+NGO0948+NGO1701 and Alum+MPLA sera (triangles)
or Alum+MPLA-alone sera (circles). (C) IgG antibody avidity as above. Alum-alone sera (circles)
and NGO0690+NGO0949+NGO1701 with Alum sera (squares) and (D) Alum+MPLA-alone sera
(circles) and NGO0690+NGO0949+NGO1701 with Alum+MPLA sera (squares). Sera were tested in
triplicate. *, ***, ****—p value is significant according to two-way ANOVA with Tukey’s multiple
comparisons test.
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Figure 9. Serum bactericidal activity (SBA). N. gonorrhoeae F62 survival (% CFU at T30/T0 ± SD). IgM-
depleted sera from mice immunized with Alum alone (gray bar) and NGO0690+NGO0948+NGO1701
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0.0001 according to one-way ANOVA with Dunnett’s multiple comparison test vs. the Alum-only sera.
*, **, ***, ****—p = 0.04 to <0.0001 according to one-way ANOVA with Tukey’s multiple comparisons
test among sera dilutions.

IgM depletion avoids the interference of SBA by natural (or induced) bactericidal
IgM antibodies in mouse sera. As an alternative to IgM depletion, the addition of 2%
BSA in the SBA has been shown to efficiently block killing by nonspecific or low-binding
antibodies [48]. Indeed, whole mouse sera from the Alum-only-immunized group killed
N. gonorrhoeae, but live bacteria were rescued in the presence of 2% BSA (Supplemen-
tal Figure S1A,B, gray bars). In contrast, the SBA of sera from mice immunized with
NGO0690+NGO0948+NGO1701 and Alum was only slightly decreased in the presence of
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2% BSA (bacterial survival increased from 4.5% to 14% in a 1/10 serum dilution) (Supple-
mental Figure S1A,B, white bars). These results indicate that the bactericidal activity of
nonspecific (or natural) IgM antibodies against N. gonorrhoeae is blocked by 2% BSA.

Using these assay conditions, the SBA titers of sera from mice immunized with
NGO0690+NGO0948+NGO1701 and Alum remained about 1/80–1/160 overall (Figure 10A),
similar to the IgM-depleted SBA results in the absence of 2% BSA (Figure 9). The SBA titers
of sera from mice immunized with NGO0690+NGO0948+NGO1701 and Alum+MPLA
were ~2-fold higher (about 1/160–1/320) (Figure 10B). It is possible that the higher amount
of IgG2a antibody against N. gonorrhoeae induced by using Alum+MPLA as an adjuvant
(~6-fold higher than when using Alum alone; see Figure 5) and their higher avidity to N.
gonorrhoeae contribute to the observed increase in SBA.
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Figure 10. Serum bactericidal activity (SBA) in the presence of 2% BSA. N. gonorrhoeae F62 sur-
vival (% CFU T30/T0 ± SD). Sera from mice immunized with (A) Alum alone (gray bar) or with
NGO0690+NGO0948+NGO1701 and Alum (white bars), and (B) Alum+MPLA-alone (gray bar) or
NGO0690+NGO0948+NGO1701 and Alum+MPLA (white bars). Serum dilutions are indicated on
the X-axis. *, **, ***, ****—p = 0.04 to <0.0001 according to one-way ANOVA with Tukey’s multiple
comparisons test among sera dilutions. ##, ####—p = 0.002 and <0.0001 according to one-way ANOVA
with Tukey’s multiple comparisons test vs. adjuvant alone.

4. Discussion

There is an urgent need for a vaccine against N. gonorrhoeae infection. Currently, several
potential candidate vaccines are being investigated, including individual antigens and outer
membrane vesicles options [78,79]. The latter offers the opportunity to induce a diverse
pool of antibodies that recognize multiple antigens. Previous work from our group has
identified new gonococcal hypothetical proteins as potential vaccine candidates via a novel
Candidate Antigen Selection Strategy (CASS) that combines an analysis of the gonococcal
transcriptome during natural human mucosal infection and immunobioinformatics [24].
Three candidates, selected by CASS, NGO0690, NGO0948 and NGO1701, induced robust
bactericidal antibody responses in mice. Immunogenicity in mice is important for study-
ing potential vaccine candidates, but antigen recognition by human immune responses
is crucial. Because our antigens were identified through an analysis of human natural
mucosal infection specimens, it is likely that the corresponding proteins are expressed by
the gonococcus during infection. However, although the three target antigens showed
comparable levels of mRNA expression in samples from both infected men and women,
the actual levels of expressed proteins during infection are unknown. If expression is low,
if a protein is not easily accessible, or if it is not very immunogenic in humans, antibodies
may be quantitatively or qualitatively insufficient and not recognize the antigen in vivo.
Using sera from naturally infected humans, we showed the presence of IgG antibodies
against NGO0690, NGO0948 and NGO1701 in women and men with uncomplicated gon-
orrhea. A comparative analysis of our sera from acute infections and convalescent sera
(non-longitudinal samples) showed variability in levels of IgG antibodies against some
antigens in convalescent sera from infected women (NGO0690, NGO0948 and PIB). It
remains unclear whether this might be due to declining antibody responses, and its signifi-
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cance could only be expanded in studies using longitudinal samples. Sera from women
with DGI showed higher IgG levels, consistent with the induction of antibodies resulting
from the systemic nature of this disease [70]. The levels of antibodies induced against the
three antigens were similar overall, suggesting that they were sufficiently expressed by N.
gonorrhoeae during natural infection and were immunogenic in humans. Differences in the
levels of antibodies against PIB and N. gonorrhoeae F62 in the DGI sera may be attributable
to differences in the porin type and the original infecting strains in this small number of
samples. Of note, IgG in commercially available human sera from uninfected subjects
reacted strongly with N. gonorrhoeae F62 but showed low levels of IgG against the antigens.

Although immune correlates of protection against N. gonorrhoeae in humans have
not been defined, complement-dependent antibody-mediated bacterial killing (serum
bactericidal activity, SBA) may be considered a surrogate of protection against vaginal
colonization in preclinical vaccine evaluation [36,48]. For at least two vaccine antigens, the
2C7 LOS mimotope and chimeric antigen comprising NGO0265 plus FtsN [33,80], evidence
suggests that SBA may constitute a mechanistic correlate of protection against gonococcal
vaginal colonization of mice. Bactericidal antibodies are also induced by the immunization
of mice with 4CMenB [46,48], although no studies have correlated this with protection
in vivo in mice yet, nor have they determined whether a strong SBA translates to higher
protection. However, although SBA cannot be considered the only surrogate of protection,
it is a valuable in vitro tool to move forward with preclinical analyses of potential vaccine
candidates prior to testing them all in mouse models of vaginal colonization. We previously
reported that a combination of anti-NGO0690 and anti-NGO1701 mouse sera had greater
bactericidal activity than the individual antisera [24]. We sought to expand these results
by using NGO0690, NGO0948 and NGO1701 as a multi-component vaccine candidate.
Multivalent vaccines against bacterial and viral pathogens, and even cancer, may elicit
broader and possibly better protection than monovalent vaccines; this is especially true for
bacterial vaccines where antigen expression varies among strains [54–56]. An example is
the meningococcal OMV vaccine, where the addition of NadA (Neisserial adhesin A) and
fHbp (factor H binding protein) results in a synergistic increase in (N. meningitidis) killing
antibodies [54,81,82]. Targeting multiple epitopes also raises the bar for the development of
vaccine resistance, because pathogens would have to alter several epitopes, each potentially
important for virulence, to escape the vaccine. Thus, ‘vaccine-resistant’ mutants may be
attenuated in vivo because of compromised fitness and/or virulence [54]. We also evaluated
adjuvants that skew immune responses differently. Alum, which we used previously, is a
Th2-skewed adjuvant that induces predominantly IgG1 antibodies [73]. Protection from
gonococcal infection mostly correlates with Th1 responses in mice and in humans (whereas
Th17 responses are non-protective) [52,53,83,84]; Th1-biased antibody subclasses, IgG2a
and IgG2b, activate complement better than IgG1, and potentiate serum bactericidal activity
against N. gonorrhoeae [75]. For this reason, we added MPLA to Alum in an attempt to
enhance Th1 responses. Alum and MPLA are components of the AS04 adjuvant licensed
for use in human vaccines (Fendrix and Cervarix [85]), which could also potentially be
used for a gonococcal vaccine.

We reported an overall increase in IgG responses to individual antigens and to whole
N. gonorrhoeae in sera from mice immunized with NGO0690+NGO0948+NGO1701 and
Alum+MPLA compared to using only Alum. Specific IgG, but not IgA, were also detected
in vaginal lavages, likely due to the systemic immunization route used. Although serum
antibody responses may not necessarily reflect mucosal responses, IgG are dominant
in vaginal secretions in humans, because they are transported across epithelial cells by
FcRn [86,87]. IgG in human vaginal fluid may permit complement-dependent bacterial
killing in the reproductive tract because a hemolytically active complement system is
present in cervical secretions [88]. Serum antibody binding to purified antigens was greater
than to whole bacteria, possibly related to the actual amount of protein captured in the
microtiter wells, but also perhaps to diminished epitope exposure on and/or antibody
access to whole organisms. Lastly, the differences in antibody production to a given
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protein with different adjuvants may be attributable to antigen–adjuvant interactions [76].
The analysis of the antibody subclasses indicated that adding MPLA to Alum induced a
shift towards a more robust Th1 antibody component (IgG2a), although IgG1 remained
the predominant subclass due to the effect of Alum. Cytokine identification, which also
represents a surrogate marker for Th1 and Th2 skewing, confirmed that the addition of
MPLA to Alum resulted in higher IL-12 and INF-γ and lower IL-10 and IL-4 levels than
Alum alone. IL-12 and IL-10 have antagonistic and interdependent functions [89], and their
balance suggests that MPLA mitigated the strong Th2 bias of Alum.

IgM antibodies that recognized whole N. gonorrhoeae organisms were also detected
in mouse preimmune sera, likely non-specific natural IgM (produced by B-1a cells in
mice [90]). IgM levels were increased by immunization with the adjuvant alone, which
could be due to aging of the mice or, in the case of MPLA, to an effect of MPLA it-
self via TLR4 signaling [85,91]. Antigen-specific low-avidity IgM were also induced
by NGO0690+NGO0948+NGO1701 with both adjuvants. As expected, IgG elicited by
the adjuvants alone had low avidity for N. gonorrhoeae, which contrasted with the high-
avidity-specific IgG elicited by NGO0690+NGO0948+NGO1701 adjuvanted with Alum or
Alum+MPLA. While Alum induced only IgG1 with high avidity, the addition of MPLA also
led to the induction of IgG2a with high avidity, supporting specificity and more prominent
skewing towards a Th1 antibody response.

The bactericidal activity of mouse antisera raised with NGO0690+NGO0948+NGO1701
and Alum was examined using IgM-depleted sera or sera treated with 2% BSA, two meth-
ods that allow for the exclusion of the potential killing of N. gonorrhoeae by natural pathogen-
binding IgM in whole mouse sera [92]. In both cases, the SBA titers in immune sera were
between 1/80 and 1/160, consistent with titers previously reported using a combination
of sera from mice immunized with individual antigens (NGO0690 and NGO1701) [24].
When using Alum+MPLA as an adjuvant, the SBA titers were ~1/160–1/320, suggesting
that by increasing Th1-type responses, the addition of MPLA may also have an effect on
SBA. Antibody avidity and bactericidal activity correlate [59,60,93], as do antibody avidity
and protection by the meningococcal and HiB vaccines, where low-avidity antibodies are
cited as one of the causes for limited success in infants [94,95]. Whether or not there is a
similar relationship between IgG avidity and gonorrhea vaccine efficacy remains unclear,
but we speculate that a vaccine that induces high concentrations of high-avidity antibodies
with robust SBA titers, accompanied by a Th1-skewed profile, that recognize multiple
gonococcal strains is desirable. Other antibody-mediated functions frequently examined
in vitro include opsonophagocytic killing and the inhibition of host cell adhesion/invasion,
all of which may be impacted by vaccination with a multi-antigen vaccine composed of
outer membrane/periplasmic proteins. Targeting multiple epitopes in several antigens
may also increase strain coverage.

Thus, the intelligent design of a combination subunit vaccine may be an effective
mechanism to induce varied protective responses. This could be achieved either by using
individual antigens combined, or possibly by generating chimeric antigens, as recently
shown for two gonococcal candidates discovered via a machine learning platform [80].
Should a gonococcal OMV-based vaccine be pursued, an additive approach could be taken,
as for the meningococcal 4CMenB vaccine, using CASS antigens or other candidates. On the
other hand, some caveats that should be considered for expanding the number of antigens
in a subunit vaccine, or possibly even in an OMV vaccine, include potential antagonism
between antibodies, which could diminish the effect of otherwise protective antigens in
the challenge model (as previously seen with Rmp, a target for blocking Ab) [96]. Existing
challenges in the production of recombinant (CASS or other) antigens by conventional meth-
ods, particularly outer membrane proteins, could be eased by expression in non-bacterial
systems and cell-free systems. As an alternative to individual or multi-antigen subunit
vaccines, peptide-based synthetic vaccines (epitope vaccines) could also be designed to
include B cell and T cell peptides individually or as chimeric antigens corresponding the in-
dividual targets. The images in Figure 11 show (1) the predicted structure of (A) NGO0690,
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(B) NGO0948 and (C) NGO1701 colored by confidence (darker blue, highest confidence;
orange/yellow, lowest confidence); (2) the predicted linear epitopes (LE) (Figure 11AI–CI)
and (3) the predicted conformational epitopes (CE) (Figure 11AII–CII) for each protein. The
amino acid sequence of the predicted peptides is shown in Supplementary Tables S1–S3,
along with the full protein sequences. Our ongoing exploration of additional CASS antigens
will eventually further enrich the pool of potential new gonococcal vaccine candidates for
future testing in vivo.
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