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Abstract: The emergence of tumors associated with defects in immune surveillance often involve
the impairment of key functions of T lymphocytes. Therefore, several anticancer immunotherapies
have focused on the induction/strengthening of the tumor-specific activity of T cells. In particular,
strategies based on immune checkpoint inhibitors, CAR-T cells, and mRNA vaccines share a common
goal of inducing/recovering an effective antitumor cytotoxic activity, often resulting in either ex-
hausted or absent in patients’ lymphocytes. In many instances, these approaches have been met with
success, becoming part of current clinic protocols. However, the most practiced strategies sometimes
also pay significant tolls in terms of adverse events, a lack of target specificity, tumor escape, and
unsustainable costs. Hence, new antitumor immunotherapies facing at least some of these issues
need to be explored. In this perspective article, the characteristics of a novel CD8+ T cell-specific
anticancer vaccine strategy based on in vivo-engineered extracellular vesicles are described. How
this approach can be exploited to overcome at least some of the limitations of current antitumor
immunotherapies is also discussed.

Keywords: anticancer immunotherapy; extracellular vesicles; immune checkpoint inhibitors; CAR-T
cells; anticancer mRNA vaccines

1. Introduction

Anticancer immunotherapy interventions help the immune system recover the ability
to recognize and destroy tumor cells. Cancer cells can express antigens not produced
by healthy cells, i.e., tumor-specific antigens (TSAs) like Human Papilloma Virus-E6 and
-E7 in cervical tumors and alpha-fetoprotein in both germ cell tumors and hepatocellular
carcinoma. Many TSAs can also be coded well by non-canonical mRNAs arising from
epigenetic changes and splicing aberrations. These cancer-specific products, defined as
neo-antigens [1], are the molecular targets of most advanced anticancer vaccine strategies.
Cancer cells can also upregulate antigens expressed by normal cells (i.e., tumor-associated
antigens, TAAs), as in the case of HER2/neu, EGFR, and melanoma-associated antigens.

Both the reactivation and ex novo generation of T cell-driven antitumor activity are the
ultimate goals of several anticancer immunotherapies, including those based on immune
checkpoint inhibitors (ICIs) [2], chimeric antigen receptor (CAR) T cells [3], and mRNA-
based vaccines [4]. At present, ICIs and CAR-T cells are in use in clinics. However, their
success is coupled with some still-unresolved issues that need to be overcome. Among
these, the most relevant are adverse events, a lack of specificity, tumor escape, and huge
costs. These shortcomings call for new solutions able to render anticancer immunotherapy
approaches more safe, effective, and affordable.

In this perspective article, the major limitations of current anticancer immunotherapies
are detailed together with a means of overcoming at least some of them through the
exploitation of a novel, extracellular vesicle (EV)-based, CD8+ T cell-specific antitumor
vaccine platform. The promising results achieved in pre-clinical experiments using such
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an immunotherapeutic approach pave a path to its clinical experimentation, the results of
which might result in relevant advancements in the fight against cancer.

2. Current Immunotherapies Designed to Increase the Anticancer T Cell Activity: ICIs,
CAR-T Cells, and mRNA-Based Vaccines

The notion that a strong correlation exists between the emergence of tumors and
alterations in the functions of the immune system is now universally accepted [5]. In 2011,
results from studies on the mechanisms underlying the modulation of the cell immune
response against non-self-antigens were exploited to develop the first anti-tumor im-
munotherapy based on the administration of antibodies blocking molecules dampening
the cell immune response (immune checkpoints). The basis of the use of ICIs is the idea
that the persistence of the immunogenic stimulus induced by tumor antigens can lead to
a state of exhaustion in T lymphocytes. This exhaustion is marked by the overexpression
of a plethora of immune checkpoints whose engagement leads to the loss of antitumor
immune surveillance. Blocking such inhibitors using ICIs helps T lymphocytes regain their
reactivity against tumor cells (Figure 1).
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Figure 1. Immune checkpoint inhibitors. (A) In the presence of a continuous antigenic stimulus,
tumor-specific T lymphocytes upregulate a series of cell membrane molecules (i.e., immune check-
points), the binding of which with the counter receptors expressed by APCs and tumor cells leads
to lymphocyte exhaustion. (B) Blocking the immune checkpoints and/or their counter receptors on
the cell membrane of APCs and/or tumor cells with monoclonal antibodies (immune checkpoint
inhibitors) allows lymphocytes to regain their ability to target and kill tumor cells.
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The first ICIs introduced in clinical practice were antibodies against the immune
checkpoint CTLA-4 [6], a transmembrane molecule expressed by lymphocytes which
binds both CD80 and CD86 molecules on antigen-presenting cells. It was followed by the
successful use in humans of antibodies blocking PD-1, an additional immune checkpoint
expressed by exhausted lymphocytes, as well as of its ligands PDL-1 and PDL-2, which are
expressed by both antigen-presenting cells (APCs) and tumor cells [7–9].

The concept that enforcing the antitumor functions of immune cells would be instru-
mental in controlling the cancer cell growth was also on the basis of CAR-T cell-based
therapy, which consists of the ex vivo generation of T lymphocytes (and, more recently,
NK cells as well) [10] expressing a synthetic transmembrane receptor able to bind, mostly
through single-chain antibody sequences, protein markers typically expressed on the sur-
face of tumor cells. Upon binding with target cells, the CAR transmits intracellular signals,
ultimately leading to lymphocyte activation and proliferation with the release of cytotoxic
factors killing target tumor cells (Figure 2).
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Figure 2. CAR-T lymphocytes. T lymphocytes are isolated from the cancer patient (or from a
compatible donor) and transduced in vitro to express the chimeric antigen receptor of choice. After
expansion, engineered T lymphocytes are reinfused into the patient, where they can recognize and
destroy the tumor cells.

The first CARs were built as products of the fusion of anti-CD19 single-chain antibodies
with the intracellular domains of either CD28 or the TCR-zeta chain [11]. Since then, new
generations of CARs have been created, with the newest ones including intracellular
signaling sequences from either 4-1BB or CD28 fused with those from the TCR-zeta chain.
Typically, the CAR sequences are introduced into T lymphocytes by means of either retro-
or lentiviral vector-driven in vitro transduction. Cell sources can be either the patient
(autologous cells) or a compatible donor. After expansion, transduced cells are then re-
infused in such a way that they become able to recognize tumor cells, most commonly
from hematologic neoplasms. In 2017, successful clinical trials led the FDA to approve
two CAR-T cell-based immunotherapies for the treatment of B-cell acute lymphoblastic
leukemia (B-ALL) and of the diffuse large B-cell lymphoma (DLBCL). At present, six CAR-T
cell-based therapies have been approved by the FDA [12] in which the molecular targets of
CAR engineered T-cells are CD19 and BCMA (B cell maturation antigen). Afterwards, CD20,
CD33, CD123, and FLT-3 were considered for new CAR-T cell-based clinical protocols.

Cancer cells express, in addition to well-known TSAs and TAAs, a plethora of uniden-
tified proteins defined neo-antigens which bear potentially immunogenic epitopes and
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whose patterns vary among both patients and tumor types. These products are the targets
of mRNA-based antitumor vaccines, which are designed to generate neo-antigen-specific
T lymphocytes. To this end, DNA from both the tumor and normal tissues of a patient
is sequenced to detect genetic changes unique to the patient’s tumor. Then, to identify
neo-antigens, mRNA purified from tumor cells is sequenced to assess which of the ob-
served genetic changes is expressed. Through specific algorithms, candidate neo-antigens,
including genetic changes unique to the tumor and potentially associating with either the
major histocompatibility complex (MHC) Class I or Class II of the patient, are selected, and
the corresponding sequences are included in synthetic mRNA molecules. After association
with synthetic lipidic nanoparticles, the mRNA molecules are then injected either intrader-
mally, intramuscularly, or intravenously. In this way, the vaccine nanovesicles can enter
any kind of cell. In the case of their entry into APCs, multiple neo-epitope peptides can be
processed and presented on MHC complexes soon after translation. Otherwise, multiple
neo-epitope peptides can be internalized and processed by APCs after their secretion from
target cells. Neo-epitopes presented by dendritic cells (DCs) as well as other APCs select
and activate both CD4+ and CD8+ T lymphocytes which, in this manner, acquire the ability
to attack and destroy tumor cells expressing the neo-antigens (Figure 3).
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Figure 3. mRNA-based vaccines. Neo-antigens are identified via DNA/RNA sequencing. Dedicated
algorithms select neo-antigen amino acid sequences most likely associated with the MHC Class I
and Class II molecules of the patient. Sequences coding neo-antigen epitopes are then included
in synthetic mRNA molecules (multiple neo-epitope mRNA) which, upon incorporation into lipid
nanoparticles, are injected either intradermally, intramuscularly, or intravenously. The neo-epitopes
are finally exposed on the MHCs of APCs to induce neo-antigen-specific T lymphocytes.
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The results from a study carried out in 2017 using such a personalized strategy on
melanoma patients produced promising but also unexpected results, considering that
the majority of neo-epitopes selected for the CD8+ T cell response conversely mounted a
CD4+ T cell activation [13]. More recently, in a randomized Phase 2b trial, an antitumor
combination immunotherapy based on the administration of both an anti-PD-1 IBI and
an mRNA-based vaccine demonstrated efficacy against resected III/IV stage melanoma
stronger than what was observed after treatment with the IBI alone (Moderna and Merck,
accessed 23 February 2023, https://bit.ly/3xJZLiS). Furthermore, data from a phase I
clinical trial carried out with an individualized neo-antigen vaccine for pancreatic ductal
adenocarcinoma tumors were recently published [14]. In detail, the neo-antigen vaccine
was administrated after anti-PD-L1 IBI treatment and before a four-drug chemotherapy
regimen. The neo-antigen vaccine was well tolerated and induced de novo neo-antigen-
specific T cells in 8 out of 16 patients, with half targeting more than one vaccine neo-antigen.

3. Limitations of Current T Cell-Specific Antitumor Immunotherapies

ICI-based immunotherapy is now largely in use in clinical practice, but in many
instances, it can induce relevant side effects mostly due to a generalized and poorly con-
trolled activation of the immune cell system. This effect can lead to both acute and chronic
autoimmune diseases which can negatively influence the quality of life of the patient [15].

CAR-T cell-based immunotherapy shows relevant limitations in terms of side effects
as well, in particular regarding cytokine release syndrome (CRS), and immune effector cell—
associated neurotoxicity syndrome (ICANS) [16–18]. CRS consists of an altered/increased
release of inflammatory cytokines inducing fever, myalgia, tachycardia, and organ dys-
function, whereas the mechanisms underlying ICANS have not been clarified yet. It is a
common and typical toxicity which can accompany and correlate with CRS, but it can also
occur independently. Early manifestations of ICANS include expressive aphasia, tremor,
dysgraphia, and lethargy. These symptoms can progress to seizures, obtundation, stupor,
and coma, possibly evolving to fatal intracerebral hemorrhage and malignant cerebral
edema. Both high costs and the selection of null mutant tumor cells (“escape”) represent
additional restraints for the CAR-T cell approach.

The limitations of mRNA-based personalized antitumor vaccines include at least two
aspects, i.e., the extraordinarily high costs of the procedures and the optimization of the
selection of MHC Class I-specific neo-epitopes required to generate an adequate bulk of
antitumor cytotoxic CD8+ T lymphocytes (CTLs).

4. The Extracellular Vesicles

EVs are part of the mechanisms of both short- and long-distance intercellular com-
munication [19]. Different EV subtypes can be distinguished by size and density, sharing,
however, a common structure formed by a lipid bilayer membrane including a specific
cargo of molecules. According to their biogenesis, two types of EVs can be distinguished,
i.e., exosomes and ectosomes/microvesicles. Exosomes are vesicles 30–150 nm in diameter
and accumulate in intraluminal vesicles (ILVs) as the result of the inward budding of the en-
dosomal membrane and the generation of the multivesicular bodies (MVBs). Microvesicles
are 150–1000 nm in diameter and bud directly from the plasma membrane.

MVB generation is driven by at least two distinct pathways and involves the sorting
of various molecules. One pathway involves the endosomal sorting complex required
for transport (ESCRT) which is composed of different subunits, namely ESCRT-0 to -III.
This molecular complex is recruited to the endosomal membrane, where the individual
steps of ILV biogenesis progress. The second pathway of MVB formation involves raft-
based lipid microdomains. These are present on the limiting membranes of endosomal
compartments and contain high amounts of sphingolipids, which are substrates for neutral
sphingomylinase2 [20]. This enzyme modifies sphingolipids into ceramide which, in turn,
induces the coalescence of microdomains into more complex structures, thereby promoting
the domain-induced budding and formation of ILVs. Then, MVBs can be forwarded to
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either degradative or secretory pathways. In the latter case, the release of ILVs occurs upon
MVB fusion with the plasma membrane.

Conversely, the mechanisms leading to the generation of microvesicles occurring at the
plasma membrane are largely unknown. Before shedding, cytoplasmic protrusions undergo
fission events, and microvesicles pinch off the cellular membrane. Microdomain-induced
budding processes are likely involved in secretion events [21].

Body fluids like blood, amniotic fluid, urine, bronchoalveolar lavage fluid, synovial
fluid, breast milk, and saliva contain different types of nanovesicles with distinguished
biophysical features and functions in health and disease, e.g., protein clearance, immune
regulation, and cell signaling. Therefore, EVs are unique diagnostic biomarkers due to
their ability to alter their cargo according to different cell stimuli. In cancer, they can be
useful for monitoring disease progression as well as evaluating therapy responses. For
example, in melanoma patients, the proteomes of circulating exosomes can be correlated
with different clinical tumor stages. In a similar way, a distinctive set of micro-RNA (miRs)
uploaded in exosomes marks the evolution of both ovarian and colorectal cancers [22].

In addition, the ability of EVs to overcome natural barriers and their stability in
circulation make them effective drug delivery vehicles. The earliest studies carried out using
EVs as therapeutics were based on their capacity to modulate immune responses with the
intent to develop cell-free cancer vaccines. For instance, DC exosomes carrying melanoma-
associated antigen (MAGE)-A3 peptides were used for the vaccination of patients bearing
MAGE-A3+ advanced melanomas [23].

The EV membrane can be engineered with heterologous proteins in multiple ways.
Notably, EVs from ovalbumin-pulsed, activated DCs were modified with an anti-CTLA-4
antibody (i.e., an ICI) to generate bifunctional EVs combining immunization and ICI
function [24]. Functionalized EVs could synergize cancer vaccine efficacy and immune
checkpoint inhibition to generate potent antitumor immune responses against a tumor.

EVs can be also engineered to incorporate mRNAs and small interfering RNAs
(siRNAs) and were proven to be active in strategies of RNAi-based therapies as, for instance,
in a mouse model of Parkinson’s disease [25].

In summary, EVs have great potentialities as disease biomarkers as well as delivery
tools for therapeutic/immunogenic molecules.

5. The EV-Based Vaccine Platform

We found that an HIV-1 Nef mutant called Nefmut incorporates into EVs at quite high
levels, meanwhile losing most of the biologic functions of its wild-type counterpart. These
characteristics are conserved when a heterologous protein is fused to its C-terminus [26].
Therefore, this 27 kilodalton protein mutant can be considered a powerful EV-anchoring
protein. On this basis, we developed an original vaccine platform based on the intramuscu-
lar injection of a DNA vector coding for Nefmut (Figure 4). Both N-terminal myristoylation
and palmitoylation fasten Nefmut to the luminal membrane leaflets and are critical for
its abundant upload in EVs. Nanovesicles containing Nefmut-fused antigens released by
muscle cells can freely circulate in the body and be internalized by APCs. EV-associated anti-
gens can then be cross-presented to prime antigen-specific CD8+ T cells. Notably, a Nefmut

isotype with a 21-amino acid C-terminal truncation maintains both EV-anchoring and im-
munogenic properties, thus representing a safer alternative for use in clinical practice [27].

Early in vitro experiments strongly supported the idea that the entry of Nefmut-
engineered EVs into APCs results in the cross-presentation of EV-incorporated antigens and
the activation of antigen-specific CD8+ T lymphocytes [26]. CD8+ T cell immunogenicity
was then confirmed in in vivo experiments, first by injecting in vitro-engineered EVs and
afterward by engineering EVs spontaneously released by muscle cells upon the injection of
DNA vectors expressing Nefmut-based fusion products (Figure 4) [28].
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vector leads to the expression of the antigen of interest fused at the C-terminus of the EV-anchoring
protein Nefmut. EVs emerging from muscle cells incorporate the fusion product at high levels. The
entry of engineered EVs into APCs leads to the cross-presentation of the antigen of interest with the
activation of antigen-specific CD8+ T lymphocytes.

On the basis of both data from the literature and experimental evidence, a model for
the mechanism of the cross-presentation of the antigens uploaded in Nefmut-engineered
EVs can be envisioned. After their release from muscle cells, engineered EVs can enter
APCs via endocytosis. EV cell internalization can be followed by degradation into late
endosomes/lysosomes, ultimately leading to the delivery of peptides to the endoplasmic
reticulum (ER) for complexing with MHC Class I molecules at the completion of the
vacuolar cross-presentation pathway. Alternatively, the internalized EVs can undergo
fusion with the membranes of endosomes, as described for several viruses. In this way,
Nefmut-based fusion products are exposed to cytoplasm, thus becoming vulnerable to
proteasome degradation. The resulting peptides can be then translocated to the ER by the
transporter associated with antigen processing (TAP) for their complexing with MHC Class
I molecules to initiate cross-priming events.

The Nefmut-based strategy was successfully applied against transplantable tumors
expressing TSAs, i.e., HPV-E6 and -E7 [29], as well as against ectopic tumors expressing
HER2/neu [30], i.e., a TAA overproduced in a model of a spontaneous mouse mammary
tumor. Of note, recent investigations we carried out with viral antigens demonstrated that
the Nefmut-based platform can be employed contemporarily against up to four antigens
without any reciprocal negative interference in terms of immunogenicity [31]. In addition,
the intramuscular quadricep injection of Nefmut-based DNA vectors generated a strong cell
immune response in distal districts (i.e., the lungs) which are typically poorly infiltrated
by circulatory immune cells [32]. We assume that this effect was a consequence of the
penetration of immunogenic EVs into distal tissues, as previously described in biodistri-
bution studies carried out with fluorescently labeled EVs injected intravenously [33–39].
Furthermore, the EV-induced immunization generated a long-lasting immune memory in
the form of antigen-specific CD8+ T-resident memory lymphocytes. On this subject, we
demonstrated that that the generation of endogenous EVs engineered for the incorporation
of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 Nucleocapsid (N) pro-
tein induced long-lasting immunity in the lungs of K18-hACE2 transgenic mice which was
associated with control over viral replication. The antiviral effect also remained effective
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when the viral challenge was carried out 3 months after boosting and when coupled with
the persistence of N-specific CD8+ T-resident memory lymphocytes [32].

In what way can these characteristics be exploited to overcome the current limitations
of anticancer immunotherapies?

First, by virtue of the possibility of inducing CD8+ T cell immunity against different
antigens contemporarily, the Nefmut-based antitumor strategy would efficiently counteract
the tumor cell escape phenomenon often occurring in immunotherapies targeting a single
tumor marker. This characteristic would be applied also to target a quite high number of
tumor neo-antigens whose sequences can be included in different expression vectors to be
injected simultaneously.

In addition, different to what is often detected in humans with either ICI- or CAR-T
cell-based treatments, our observations, made on more than one thousand small animals, ex-
cluded the idea that the generation of immunogenic EVs couples with systemic, unspecific
immune activation.

Furthermore, Nefmut-based immunization is also able to generate antigen-specific
resident memory CD8+ T cells (Trm lymphocytes, i.e., a CD8+ T cell sub-population co-
expressing CD49a, CD69, and CD103 markers) in distal tissues [32]. This evidence supports
the idea that repeated immunizations, as, for instance, practiced in the case of mRNA-
based vaccines [40], would not be necessary to maintain antitumor protection over time.
It is worth noting that the presence of tumor-specific CD8+ Trm cells in cancer patients is
now considered a strong predictor of survival [41,42] since these cells play a major role
in patrolling the growth of solid tumors, thus precluding the development of clinically
relevant pathologies [43].

Finally, the quite low cost of both the production and storage of the immunogen, i.e.,
a simple, single-promoted DNA vector, certainly represents an additional advantage.

In summary, this EV-based vaccine platform offers several potential advantages over
current cancer immunotherapies. Therefore, it deserves accurate clinical testing with the
prospective of becoming a new weapon able to complement current antitumor approaches.

6. Still Unresolved Issues: An Option to Counteract Immunosuppression in the Tumor
Microenvironment

The efficacy of cell-based anticancer immunotherapies is often restricted by the oc-
currence of tumor escape. This process can take place by means of MHC downregulation
with the consequent loss of TCR recognition, as well as, concerning CAR-T cell-driven
immunotherapy, through the selection of null mutant tumor cells. In the former case,
however, the NK-induced cytotoxic effect against MHC-defective cells can, at least in part,
control the growth of escaping tumors.

Antitumor cell-based immunotherapies against solid tumors can encounter an addi-
tional and essentially still unresolved issue, i.e., immunosuppression in the tumor microen-
vironment (TME), which often generates conditions hindering the functions of infiltrated
tumor-specific cytotoxic T lymphocytes.

In solid tumors, cancer cells are embedded within a milieu composed of both cellular
and non-cellular components that favors their proliferation. Fibroblasts, endothelial cells,
and immune cells with immunosuppressive functions including neutrophils, myeloid-
derived suppressor cells, and CD4+ Treg lymphocytes, as well as M2-like tumor-associated
macrophages (TAMs), are part of the TME [44]. These latter cells can represent up to 50%
of a tumor’s mass and show a typical anti-inflammatory phenotype. TAMs play a key role
in immune evasion in the TME by secreting proteases, angiogenic factors, and pro-tumoral
products [45] and are characterized by the expression of mannose receptor (MR, CD205) [46].
In this scenario, an attractive strategy to counteract the immunosuppressive TME can
consist of re-programming M2 macrophages toward an M1 inflammatory phenotype,
supporting the functions of antitumor-specific lymphocytes much better.

Interestingly enough, the surfaces of EVs contain high amounts of mannose, allowing
them to bind and enter TAMs in the TME efficiently [47]. On the other hand, the nanovesicle-
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driven entry into APCs of Nefmut (both alone and as part of fusion products) leads to cell
activation with the induction of related markers, as well as the release of inflammatory
factors, which is likely the consequence of the activation of several signal transduction
molecules, including STAT-1, -2, and -3, NF-kB, JNK, ERK1/2, and MAPK. On this basis,
one may envision that the entry of Nefmut-engineered EVs into M2 macrophages in the TME
can lead to a shift towards an M1-like inflammatory phenotype, hence contributing to the
generation of a behavior more favorable for antitumor CTL activity. Ongoing investigations
would offer an experimental confirmation of such an attractive hypothesis.

7. Conclusions

Strengthening the cell immune response against tumor cells is the last frontier of anti-
tumor immunotherapies. A number of immune-stimulating strategies have been already
applied in clinical practice with success, but some issues still need to be addressed. Flexibil-
ity, simplicity, specificity, and low cost distinguish EV-based immunotherapy technology
from the other technologies currently in use in clinical practice. Hence, this antitumor
vaccine platform has the potential to emerge as a novel additional weapon against both
hematologic and solid cancers.
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