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Abstract: Chronic kidney disease (CKD) patients have an increased risk of morbidity and mortality
following SARS-CoV-2 infection. Vaccination in these patients is prioritized, and monitoring of
the immune response is paramount to define further vaccination strategies. This prospective study
included a cohort of 100 adult CKD patients: 48 with kidney transplant (KT) and 52 on hemodialysis
without prior COVID-19. The patients were assessed for humoral and cellular immune responses after
four months of an anti-SARS-CoV-2 primary two-dose vaccination scheme (CoronaVac or BNT162b2)
and one month after a booster third dose of BNT162b2 vaccine. We identified poor cellular and
humoral immune responses in the CKD patients after a primary vaccination scheme, and these
responses were improved by a booster. Robust polyfunctional CD4+ T cell responses were observed
in the KT patients after a booster, and this could be attributed to a higher proportion of the patients
having been vaccinated with homologous BNT162b2 schemes. However, even after the booster, the
KT patients exhibited lower neutralizing antibodies, attributable to specific immunosuppressive
treatments. Four patients suffered severe COVID-19 despite three-dose vaccination, and all had
low polyfunctional T-cell responses, underscoring the importance of this functional subset in viral
protection. In conclusion, a booster dose of SARS-CoV-2 mRNA vaccine in CKD patients improves
the impaired humoral and cellular immune responses observed after a primary vaccination scheme.

Keywords: SARS-CoV-2; COVID-19; immune responses; vaccination; hemodialysis; kidney transplant;
chronic kidney disease

1. Introduction

In the absence of vaccination, patients with chronic kidney disease (CKD) are at
high risk of morbidity and mortality due to SARS-CoV-2 infection [1]. This higher risk
is explained by the impaired immunity associated with their primary disease and to the
immunosuppressive drugs they receive [2]. Before vaccination in Chile, kidney transplan-
tation (KT) patients had a 1.2- and 5.1-fold increased risk of SARS-CoV-2 infection and
mortality, respectively, compared to the general population [3]. Overall, COVID-19 mortal-
ity was 15.4% in KT patients, 30% in hospitalized patients, and 50% in patients requiring
invasive mechanical ventilation [4]. According to international guidelines, COVID-19 vacci-
nation is recommended for this high-risk population. Since the beginning of the pandemic,
several vaccines have been approved for this use. In Chile, after their urgent approval, a
massive, risk-stratified vaccination began with two doses of CoronaVac or BNT162b2 as
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the primary scheme of vaccination in February 2021 [5]. The primary two-dose scheme
showed an efficacy of 18% in preventing COVID-19 and 66% of its associated deaths in
a Chilean hemodialysis cohort in contrast to an efficacy of 66% and death prevention of
86% in the general population [5,6]. Moreover, recent studies suggest a decay in antibody
response in CKD patients [7], which prompted a recommendation from the Chilean Society
of Nephrology, the Transplant Society, and the Ministry of Health to administer a third
booster dose of BNT162b2 to CKD patients beginning in August 2021 [3].

Recently, several studies have explored the immune response after two-dose vacci-
nation schemes in CKD patients. In general, low humoral responses were found in this
vulnerable population compared to healthy individuals, especially in KT patients [8–16].
Cellular immune response after vaccination in this population is relevant given that anti-
body response tends to be deficient; however, only a few studies have assessed cellular im-
mune response in this population, showing overall weak cellular immune responses in KT
but not in hemodialysis (HD) patients after a primary two-dose mRNA vaccination [17–22].
Importantly, a third dose of mRNA or adenoviral vector vaccine improves the immune
response in CKD patients [23,24].

Anti-SARS-CoV-2 immune response induced by vaccination has not been compared
in both transplanted and hemodialysis patients receiving a primary scheme of inactivated
virus vaccine and an mRNA booster as it occurred in Chile. Evaluating this response
is relevant for making public health decisions in terms of vaccination strategies in this
immunocompromised population. We determined cellular and humoral immune responses
after vaccination schemes that consisted of a primary vaccination of mRNA (BNT162b2)
or inactivated virus (CoronaVac) vaccine and a homologous or heterologous boost with
mRNA vaccine in 100 CKD patients, including HD and KT patients.

2. Materials and Methods
2.1. Study Protocol and Participants

This was a multicenter, prospective study of 100 adult patients with chronic kidney
disease (CKD) who were undergoing hemodialysis or had a kidney transplant. All the
patients enrolled had already received two doses of SARS-CoV-2 vaccine (CoronaVac or
BNT162b2). All the participants received a BNT162b2 booster dose five months after the
primary scheme. The exclusion criteria were the following: patients who had prior COVID-
19, patients with a kidney transplant of less than 1 month or with active glomerular disease
undergoing immunosuppressive treatment, and patients younger than 18 years of age. A
group of 15 healthy individuals vaccinated with two doses of CoronaVac were included
as controls, and all the participants received a BNT162b2 booster dose. Blood samples
were taken at the first visit (120 days after the two-dose primary schedule (BNT162b2 or
CoronaVac)) and second visit (30 days after the third, booster dose of BNT162b2). The
patients were followed for five months after the last sample to report SARS-CoV-2 infection.
The study was conducted in accordance with the Declaration of Helsinki. It was approved
by the Clínica Alemana Universidad del Desarrollo Research Ethics committee, number
1049. All the patients signed informed consent except for the anonymized healthy controls,
for whom the Clínica Alemana Universidad del Desarrollo Research Ethics committee
granted a written exemption of this requirement.

2.2. Cellular Immune Response

Peripheral blood mononuclear cells (PBMCs) were isolated from peripheral blood
using Histopaque-1077 (Sigma, St. Louis, MO, USA) density gradient as previously de-
scribed [25], and stored frozen in liquid nitrogen in fetal bovine serum 10% dimethyl
sulfoxide until use. The PBMCs from the HD and KT patients and the controls were thawed
and counted. The assays could not be performed for samples with a low cell count. The
PBMCs were stimulated for 24 h with a pool of native SARS-CoV-2 peptides (Peptivator
Miltenyibiotec) at 37 ◦C with 5% CO2, and ELISpot and intracellular flow cytometry assays
were performed. Phorbol 12-myristate 13-acetate (PMA)/ionomycin (Sigma, St. Louis,
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MO, USA) and cytomegalovirus peptides (Peptivator®, Miltenyi Biotec, Auburn, CA, USA)
were added as positive controls and unstimulated as a negative control as previously
described [26]. For Enzyme-linked Immunospot (ELISpot), human IFN-γ single-color
ELISpot (CTL, Immunospot®, Shaker Heights, OH, USA) was performed according to the
manufacturer’s procedures. Counting of spots was performed using ImageJ software. Flow
cytometry staining was performed in individuals where an appropriate quantity of PBMCs
was available. For intracellular flow cytometry staining, stimulated PBMCs were treated
with Brefeldin A (Biolegend, San Diego, CA, USA) and GolgiStop (BD Biosciences, San
Jose, CA, USA) and incubated for five hours at 37 ◦C with 5% CO2. After incubation, the
cells were stained with viability-staining Near-IR (ThermoFisher, Waltham, MA, USA),
permeabilized, and stained with surface and intracellular cytokine markers: CD3-V500
Clone UCHT1 (BD Biosciences, San Jose, CA, USA), CD4-FITC Clone A16141 (BD Bio-
sciences, San Jose, CA, USA), CD8a-BV785 Clone RPA-T8 (Biolegend, San Diego, CA, USA),
IFN-γ-AF700 Clone B27 (Biolegend, San Diego, CA, USA), IL-2-APC MQ1-17H12 (BD
Biosciences, San Jose, CA, USA), CD25-PE-Cy5 BC96 (BD Biosciences, San Jose, CA, USA),
TNF-α-PE-eFluor Clone MAb11 (ThermoFisher, Waltham, MA, USA), CD45RA-PE-Cy7
Clone HI100 (BD Biosciences, San Jose, CA, USA), and CCR7-PB Clone GO43H7 (Biole-
gend, San Diego, CA, USA). The cells were fixed and acquired in a Cytoflex LX cytometer
(Beckman Coulter, Brea, CA, USA) and then analyzed using FlowJo software v.9.1. The
proportions of cytokine-producing T cells in stimulated conditions were normalized to
unstimulated cells. Positive cellular immune response was defined as more than 20 spots
forming cells (SFC)/million cells in ELISpot and/or more than 0.01% of IFN-γ+ CD4+ or
CD8+ T cells measured by flow cytometry. To evaluate polyfunctional CD4+ and CD8+ T
cells, the Boolean gates strategy was performed using FlowJo software v.9.1. Visualization
and statistics of proportion of the polyfunctional T cells were performed using SPICE v6.1
software [27]. To evaluate the memory T subsets cells, the effector memory T cells (TEM,
CCR7−CD45RA−), central memory T cells (TCM, CCR7+CD45RA−), effector CD45RA+ T
cells (TEMRA, CCR7−CD45RA+), and naïve T cells (TN, CCR7+CD45RA+) were gated.

2.3. Humoral Response

The enzyme-linked immunosorbent assay (ELISA) against SARS-CoV-2 Spike-IgG
was performed to evaluate humoral response, as previously described [26]. Each sample
was analyzed in duplicate, and the cutoff was set as the mean value of the negative controls
(healthy donor pre-pandemic serum specimens) plus three standard deviations. Positive
humoral response was defined as ELISA-positive samples. Neutralizing antibodies were
measured using vesicular stomatitis virus (VSV)-green fluorescent protein (GFP)-Spike
SARS-CoV-2, as previously described [26].

2.4. Statistical Analysis

GraphPad Prism v.9.1 software was used for comparisons of the immunological stud-
ies. The Fisher’s exact test was used to analyze contingency tables of categorical variables.
The Mann–Whitney U test or the paired Wilcoxon signed-rank test were performed for com-
parison between the two unpaired or paired groups, respectively. The Kruskal-Wallis test
followed by the Dunn’s multiple comparisons test was applied for comparisons between
three or more groups.

3. Results

A total of one hundred CKD patients were recruited; 48 of these were in hemodial-
ysis (HD) and 52 had received a kidney transplant (KT). The average age of our cohort
was 68 and 54 in the HD and KT groups, with a Charlson comorbidity score of 6 ± 2.7
and 4 ± 2.1 points in the HD and KT patients, respectively. Specific renal diseases and
immunosuppression schemes for both groups are described in Table 1. The patients were
recruited after a primary vaccination scheme that included two doses of CoronaVac in
88% of the HD patients, while the other 12% received BNT162b2. In the KT group, 67%
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received a primary schedule with BNT162b2, while the rest received CoronaVac. The third
vaccine dose was in all cases with BNT162b2, before and after which all the individuals
were evaluated (Figure 1A). A group of fifteen healthy subjects was used as controls with
an average age of 36 years and 67% female. They had a CoronaVac primary scheme and a
BNT162b2 booster dose, and samples were taken at the same time points.

Table 1. Cohort demographics.

Variables Hemodialysis (n = 48) Kidney Transplant (n = 52)

Age (mean years ± SD) 68.3 ± 13.9 53.7 ± 12.7

Gender
Female 12 (25.0%) 17 (32.7%)
Male 36 (75.0%) 35 (67.3%)

BMI (mean kg/m2 ± SD) 26.2 ± 3.5 26.8 ± 4.6

Primary vaccination schedule
CoronaVac 42 (87.5%) 35 (67.3%)
BNT162b2 6 (12.5%) 17 (32.7%)

CKD etiology
Mellitus diabetes 15 (31.2%) 7 (13.5%)

Unknown 20 (41.7%) 13 (25.0%)
Glomerular 8 (16.7%) 18 (34.6%)

Congenital/genetic 4 (8.3%) 11 (21.1%)
Others 1 (2.1%) 3 (5.8%)

Time after kidney replacement
therapies:Hemodialysis or transplant

(mean days ± SD)
1915 ± 1786 2125.6 ± 6007.3

Immunosuppression

None of the patients
received

pharmacological
immunosuppression.

FK+MPA+PND 36 (69.2%)
FK+Aza+PND 4 (7.7%)
FK+Eve+PND 7 (13.5%)

FK+Rapa+PND 1 (1.9%)
CSA+Aza+PND 2 (3.8%)

Belatacept 2 (3.8%)

Charlson Score (mean ± SD) 6 ± 2.7 4 ± 2.1

Death 2 (4.2%) 1 (1.9%)
SD = standard deviation; BMI = body mass index; CKD = chronic kidney disease; FK = tacrolimus;
MPA = mycophenolic acid or sodium mycophenolate; PND = prednisone; Aza = azathioprine, Eve = everolimus,
Rapa = rapamycin; CSA = cyclosporine.

3.1. Humoral and Cellular Immune Response Increases Significantly after a Third Dose in
CKD Patients

Humoral and cellular immune response after vaccination is crucial to provide long-
term protection for SARS-CoV-2 infection [28]. As immunocompromised patients may
have a decreased capacity to mount such responses, it is crucial to determine both humoral
and cellular immune responses with the various vaccine schemes available. The patients
were first evaluated 4 months after a primary two-dose vaccine schedule and subsequently
one month after a booster dose of BNT162b2 (Figure 1A). Humoral immune response
was evaluated using ELISA to determine specific IgG against SARS-CoV-2 Spike protein
and neutralizing antibodies, and flow cytometry and IFN-γ ELISpot assay were used to
determine T cell–specific SARS-CoV-2 responses (Figure 1B). Humoral immune response
was significantly lower in chronic kidney disease patients (61%) as compared to the controls
(86%) after a two-dose primary vaccination scheme (Figure 2A). Comparison between the
CKD groups showed that only 49% of the KT patients had a positive humoral immune
response 4 months after the primary vaccine schedule, which was significantly lower
compared to 73% of the HD group (Figure 2A). Importantly, 88% of the KT patients who
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had a positive humoral response after a two-dose primary schedule were vaccinated with
BNT162b2 (Supplementary Figure S1), in line with the greater capacity of mRNA vaccines
to induce stronger antibody responses, as previously reported [29].
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The proportion of patients with a positive humoral immune response significantly
increased in the CKD patients after a booster dose, similar to the healthy controls. Analyzing
the CKD groups, the KT patients showed a larger increase (45%) compared to the HD
(24%) after a booster dose (Figure 2A). Importantly, the levels of neutralizing antibodies
significantly increased after the booster dose in all the groups. In contrast, significantly
lower levels of neutralizing antibodies were found in the KT patients even after a third
dose compared to the HD and control groups (Figure 2B).

We next sought to compare cellular immune responses using ELISpot and Flow
cytometry. Positive IFN-γ T-cell responses after a primary scheme were also lower in
the CKD patients compared to the controls (72% and 100%, respectively). After a third
dose, cellular responses improved 16% in the CKD patients, reaching 88% of positivity
(Figure 2C). Notably, 75% of the KT patients had positive cellular immune responses after
a primary vaccination, despite only half of them having had positive humoral immune
responses (Figure 2C), in line with a previous report [16].
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Figure 2. Increase in immune responders after the third dose in CKD patients. (A) Percentage of
humoral responders after the primary scheme and a booster dose according to IgG-Spike ELISA.
Fisher’s exact test (* p < 0.05; ** p < 0.01). (B) Neutralizing antibodies 1/IC50 comparison between
groups. Paired Wilcoxon signed-rank test (* p < 0.05; ** p < 0.01; *** p < 0.001). (C) Percentage
of cellular responders for each group and time point. Positivity according to IFN-γ ELISpot and
IFN-γ expressing CD4+ or CD8+ T cells measured by flow cytometry. Fisher’s exact test (* p < 0.05).
(D) percentage of non-responders, suboptimal responders, and responders according to IgG-Spike
ELISA and IFN-γ ELISpot and flow cytometry. Categories of non-responders define patients without
humoral and cellular immune response, “suboptimal responders” signifies patients having only
cellular or humoral responses, and “responders” signifies patients who had both immune responses.
CKD: chronic kidney disease patients; HD: hemodialyzed patients; KT: kidney transplanted patients;
Controls: healthy individuals; IC50: half maximal inhibitory concentration.
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In our cohort of CKD patients, we found no differences in the proportion of posi-
tive cellular or humoral responders comparing the CoronaVac and BNT162b2 schemes
(Supplementary Figure S2), but the number of patients in the HD and KT groups with
different schemes was too small to allow a separate analysis.

We defined patients who had neither humoral or cellular immune response as non-
responders and patients who had only humoral or cellular responses as suboptimal respon-
ders. After the primary scheme, non-responders were only identified in the CKD group,
and 1 and 5 patients were identified in the HD and KT groups, respectively. After a booster
dose, all the patients were responders having either humoral, cellular, or both types of
immune responses (Figure 2D). Altogether these results demonstrate that a booster dose is
necessary to achieve a significant improvement in anti-SARS-CoV-2 immune response in
CKD patients.

3.2. Booster Vaccination Elicits Robust Polyfunctional CD4+ T Cell Responses in CKD Patients

T cells mediate a specific SARS-CoV-2 cellular response by producing IL-2, TNF-α,
and IFN-γ upon activation, and differential cytokine production by CD4+ and CD8+ T cells
is important in protective antiviral responses [30]. T cell activation and cytokine production
was evaluated upon exposure to SARS-CoV-2 peptide pools. All the groups showed no
differences in IFN-γ spot-forming T cells after a booster dose measured by an ELISpot
assay (Figure 3A). A similar trend was observed in the proportion of IFN-γ+-producing
CD8+ and CD4+ T cells measured by flow cytometry (Figure 3B,C). Polyfunctional T cells
producing two or more cytokines play a relevant role in viral immune response and pro-
vide long-term protection [31]. We sought to evaluate CD8+ and CD4+ polyfunctional T
cells in vaccinated CKD patients. Even after a booster, the CKD patients had a decreased
proportion of polyfunctional CD8+ T cells (CD8+IFN-γ+IL-2+TNF-α+) compared to the
controls, suggesting persistently deficient immune responses in this group (Figure 3D).
Additionally, the proportion of CD4+IFN-γ+IL-2+TNF-α+ tends to increase after a booster
dose in HD and KT patients (Figure 3E), suggesting that a booster of mRNA vaccine is
important to achieve CD4+ T cell polyfunctional responses in CKD patients. When ana-
lyzing cytokine-producing CD4+ T cells, we observed that after the primary scheme, the
KT patients and the controls showed a higher proportion of triple positive CD4+ polyfunc-
tional T cells (CD4+IFN-γ+IL-2+TNF-α+) than the HD patients (Figure 3F), consistent with
a stronger T cell induction with mRNA vaccines in this group of immunocompromised
patients [21,23]. After a booster dose, the KT patients showed a higher proportion of double
(CD4+IFN-γ+IL-2+) and triple positive CD4+ T cells (CD4+IFN-γ+IL-2+TNF-α+) compared
to both the HD and the controls (Figure 3F). Notably, 67% of the KT patients evaluated
by flow cytometry received a primary scheme with two doses of BNT162b2, while 90% of
the HD and 100% of the controls received two doses of CoronaVac, suggesting a stronger
induction of polyfunctional CD4+ T cells with BNT162b2 vaccine. Moreover, the CKD
patients who received three doses of BNT162b2 showed significantly greater proportions of
polyfunctional CD4+ T cells as well as an overall proportion of IFN-γ-producing T cells
than patients who received heterologous schemes (Figure 3G).
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in chronic kidney disease patients. (A) Quantification of spot-forming cells (SFC) per million of cells
by ELISpot assay after SARS-CoV-2 peptides stimulation. More than 20 SFC/106 was considered
positive response. (B–E) Percentage of CD8+ IFN-γ+, CD4+ IFN-γ+, CD8+ IFN-γ+IL-2+TNF-α+, and
CD4+ IFN-γ+IL-2+TNF-α+-producing T cells after primary scheme or booster dose measured by flow
cytometry. Mann–Whitney test (* p < 0.05). (F) Proportion of monofunctional and polyfunctional
cytokine–expressing CD4+ T cells for each group and time point. (G) Proportion of monofunctional
and polyfunctional cytokine–expressing CD4+ T cells after a booster dose in chronic kidney disease
patients. Patients were grouped according to primary scheme vaccines: CoronaVac and BNT162b2
(heterologous and homologous schemes, respectively). HD: hemodialyzed patients; KT: kidney
transplanted patients; Controls: healthy individuals.
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3.3. CD4+ and CD8+ IFN-γ Memory T Cell Response Increases in CKD Patients after a
BNT162b2 Booster

Virus-specific memory T cells produce IFN-γ upon viral re-exposure and are crucial
for providing long-time protection against SARS-CoV-2 [32]. To investigate this type of
specific response in CKD patients, we evaluated the expression of IFN-γ in memory T cell
subsets, both after the primary scheme and after a booster. Gating strategy to differentiate
memory T cells is shown in Supplementary Figure S3. After a booster dose, we observed
an increase in specific SARS-CoV-2 CD4+ and CD8+ IFN-γ+ responses in memory T cell
subsets for all groups (Figure 4), highlighting the need of three doses to improve cellular
immune responses in this at-risk population.
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Figure 4. Memory T cell responses against SARS-CoV-2 increases after booster dose in chronic kidney
disease patients. Histograms comparing IFN-γ+ responses in CD4+ and CD8+ T cell memory subsets
TCM and TEM after primary scheme and after a booster dose. Unstimulated cells are depicted
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3.4. Immunosuppressive Drugs and Vaccine Response in KT Patients

All the KT patients were under immunosuppressive treatments including tacrolimus
and prednisone as part of tri-therapy, and we hypothesized that this could influence pro-
tective immune responses. After a booster dose, no differences among different immuno-
suppressive therapies were observed in either the overall humoral or the cellular immune
responses (data not shown). However, significantly decreased neutralizing antibody re-
sponses were found in patients who received mycophenolic acid or sodium mycophenolate
(MPA) as part of immunosuppressive treatment (Figure 5). These results agree with previ-
ous reports showing lower humoral responses in mycophenolate-treated patients [33,34]
and support a recommendation for additional booster doses in these individuals.
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Figure 5. Lower neutralizing antibodies in mycophenolate-treated KT patients after a booster dose.
Neutralizing antibodies 1/IC50 of kidney-transplanted patients after a booster dose. Patients were
grouped according the third drug of tri-therapy of immunosuppressors that included tacrolimus,
prednisone, and one of the following drugs: mycophenolic acid or sodium mycophenolate (MPA),
azathioprine (Aza), or everolimus (Eve). Kruskal-Wallis test followed by the Dunn’s multiple
comparisons test (* p < 0.05). HD: hemodialyzed patients; KT: kidney transplanted patients; Controls:
healthy individuals; IC50: half-maximal inhibitory concentration.

3.5. Outcome

After the enrolment phase of this study ended, three patients from our cohort died,
two HD patients had sepsis, and one KT patient died of lung cancer (Table 1). Fifteen
patients from our cohort had COVID-19 (8 KT and 7 HD patients), and four had severe
disease and required hospitalization (2 KT and 2 HD patients). We found that the patients
who had severe COVID-19 had low or absent cellular immune responses of CD4+IL-2+,
CD4+IFN-γ+IL-2+, CD8+IFN-γ+IL-2+, and CD8+IFN-γ+IL-2+TNF-α+ after a booster dose
(Figure 6), in line with the relevance of polyfunctional T cell responses against viruses [35].
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Figure 6. Lower monofunctional and polyfunctional T cell responses against SARS-CoV-2 in chronic
kidney disease patients who had COVID-19 after vaccination. Percentage of CD4+ IL-2+ -, CD4+

IFN-γ+IL-2+ -, CD8+ IFN-γ+IL-2+ -, and CD8+ IFN-γ+IL-2+TNF-α+-producing T cells after a booster
dose in patients who had mild (n = 8) and severe COVID-19 (n = 4) or who remained uninfected
(n = 51) in the follow-up period.



Vaccines 2023, 11, 1012 11 of 16

4. Discussion

Impaired cellular and humoral immune responses after two-dose vaccination schemes
are extensively reported in CKD patients, showing a stronger immune response in HD
patients [9,17,18,21]. Most studies included mRNA vaccinated patients, and only a few
studies evaluated the immune responses of CoronaVac schemes in a cohort that included
KT patients [16,36–40] and/or HD patients [14,41–44]. Here we show that HD and KT
patients have a reduced humoral and cellular immune response after a primary scheme
with either CoronaVac or BNT162b2 that increases after a BNT162b2 booster.

Several studies have demonstrated SARS-CoV-2 vaccine effectiveness in the preven-
tion of infection, severe illness, and COVID-19 hospitalization in immunocompromised
groups [45]. Moreover, a single-center study in the US showed inferior survival of unvacci-
nated compared to vaccinated liver and kidney transplant recipients [46], reinforcing the
importance of vaccination in these immunocompromised groups. Recently, an observa-
tional study in a Chilean cohort of HD patients showed a reduced risk of infection and
longer survival of patients with a booster dose compared to single-dose and unvaccinated
patients [47], consistent with the stronger humoral and cellular responses after a booster
dose observed in our HD cohort.

We observed that the KT patients had an increased proportion of polyfunctional
CD4+ T cells compared with the healthy donors, likely due to the different vaccination
schemes used in these groups, given that most healthy individuals in Chile received
only CoronaVac as a primary scheme. Consistently, we found increased proportions of
polyfunctional CD4+ T cell responses in CKD patients receiving three doses of mRNA
vaccine BNT162b2 compared to a CoronaVac primary schedule with a BNT162b2 booster.
In contrast to our findings, Stumpf et al. showed no differences in the proportions of
SARS-CoV-2-reactive polyfunctional CD4+ T cells between HD, KT, and healthy controls
vaccinated with two doses of BNT162b2 or mRNA-1273 [13]. Another study showed that
KT patients had significantly decreased frequencies of spike-specific IFN-γ+TNF-α+IL-
2+ polyfunctional T cells compared to HD and healthy controls, and all of them had
received two doses of BNT162b2 [17]. Comparison between vaccination schedules in a
Chilean cohort of solid-organ transplant recipients, including KT patients, showed that
homologous BNT162b2 scheme induced higher humoral responses but similar specific
IFN-γ or IL-2 T cell responses compared to heterologous scheme [37]. Comparison of
polyfunctional T cells between these two schemes has not been performed; therefore, our
study is the first to show differences in a CKD cohort. Altogether these results suggest that
differences in polyfunctional CD4+ T cells cannot be attributed only to CKD condition but
also to other factors including immunosuppressive regimens and natural infection, among
others. Nevertheless, heterologous regimens used in Chile reach polyfunctional CD4+ T
cell responses comparable to homologous schemes used in this and previous studies.

Additionally, we found that triple polyfunctional CD8+ T cells remain significantly
lower in CKD patients even after a booster vaccination. It has been shown that polyfunc-
tional CD8+ T cells have enhanced effector function and correlate best with protection in
viral infections such as HIV [48,49], and we hypothesize that they could play an important
role in SARS-CoV-2 protection. Interestingly, we found that the patients in our cohort who
suffered severe COVID-19 after vaccination had low or absent CD4+ and CD8+ mono- and
poly-functional T cell responses after a booster dose, highlighting the importance of cellular
responses to achieve protection against viral infections and supporting this hypothesis [31].
In this context, monitoring polyfunctional T cell responses could help to predict infection
risk or booster requirement in CKD patients. However, due to the small sample size of our
cohort, further studies are needed to confirm this hypothesis.

Similar to other reports with ChAdOx1 and mRNA vaccines [44,50], we observed that
even after a third dose of BNT162b2 a proportion of KT patients do not have neutralizing
antibodies, especially patients under mycophenolic acid or sodium mycophenolate treat-
ments, consistent with previous reports showing decreased humoral responses in patients
receiving mycophenolate [33,34,51]. It has been shown that mycophenolic acid significantly
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inhibits proliferation and differentiation of primary human B cells, impairing immunoglob-
ulin secretion of activated but not terminally differentiated B cells [52]. A temporary
mycophenolate hold occurring during the fourth dose administration showed augmented
virus-neutralizing capacity and B cell responses in KT patients [53]. Comparable results
were observed in the humoral responses of liver transplant recipients receiving a primary
vaccination scheme during temporary suspension of mycophenolate [54]. These studies
suggest that an adjustment of immunosuppressive treatments during booster vaccination
could be a strategy to improve humoral responses in previously unresponsive patients.

Considering our findings, it is necessary to administer additional SARS-CoV-2 immu-
nization in CKD patients to achieve optimal immune responses. Recent reports showed
that a fourth booster dose of mRNA vaccine significantly increased anti-spike antibody
titers and reduced COVID-19 breakthrough infections in HD and KT patients [55,56]. In
Chile, a fourth dose was administered to the general population beginning in January 2022
with immunocompromised groups [57]; however, no efficacy studies are yet available, and
further studies are needed to define vaccination strategies for this high-risk population.

The main strength of our study is the analysis of both humoral and cellular immune
responses after the primary vaccination scheme and after a booster dose in a cohort that
included HD and KT patients. Additionally, having a follow-up period of six months
for COVID-19 breakthrough allowed us to identify immune markers related to outcome.
A limitation of this study is the inclusion of an unequal number of KT and HD patients
vaccinated with CoronaVac and BNT162b2, which restricts comparisons between different
vaccination schemes separately in these groups. Another limitation is that all the healthy
controls had received CoronaVac primary schemes, which prevented comparing results
with BNT162b2 schemes. Finally, our study did not assess immunity against additional
SARS-CoV-2 variants of concern, but other studies have shown that BNT162b2 vaccination
induces CD4+ and CD8+ T cell responses that cross-recognize the Omicron variant in a
healthy population [58].

In conclusion, two doses of vaccine are not enough to mount an effective cellular and
humoral response in CKD patients. A third heterologous or homologous booster improves
neutralizing antibodies titers and polyfunctional T cells in CKD patients as well as in
healthy individuals. Even after three doses, some KT patients under immunosuppressive
drugs show no neutralizing antibodies, suggesting the need of further vaccination in
this population.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/vaccines11051012/s1, Figure S1: ELISA against SARS-CoV-2 spike
protein in KT patients; Figure S2: Positive immune responders with different primary vaccination
schemes; Figure S3: Gating strategy for memory T cell populations; Spreadsheet S1: Data of patients.
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