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Abstract: Sudden sensorineural hearing loss (SSNHL), a rare audiological condition that accounts
for 1% of all cases of sensorineural hearing loss, can cause permanent hearing damage. Soon after
the launch of global COVID-19 vaccination campaigns, the World Health Organization released a
signal detection about SSNHL cases following administration of various COVID-19 vaccines. Post-
marketing studies have been conducted in different countries using either pharmacovigilance or
medico-administrative databases to investigate SSNHL as a potential adverse effect of COVID-19
vaccines. Here, we examine the advantages and limitations of each type of post-marketing study
available. While pharmacoepidemiological studies highlight the potential association between drug
exposure and the event, pharmacovigilance approaches enable causality assessment. The latter
objective can only be achieved if an expert evaluation is provided using internationally validated
diagnostic criteria. For a rare adverse event such as SSNHL, case information and quantification of
hearing loss are mandatory for assessing seriousness, severity, delay onset, differential diagnoses,
corrective treatment, recovery, as well as functional sequelae. Appropriate methodology should be
adopted depending on whether the target objective is to assess a global or individual risk.

Keywords: mRNA COVID-19 vaccine; audiogram; case series study; disproportionality analysis;
pharmacovigilance; positive rechallenge; postmarketing; spontaneous reporting; sudden sensorineural
hearing loss; safety signal

1. Available Epidemiological Data on Sudden Sensorineural Hearing Loss

A rare audiological condition accounting for around 1% of all cases of sensorineural
hearing loss [1], sudden sensorineural hearing loss (SSNHL) requires prompt diagnosis
and treatment [2]. It is defined as the occurrence in less than 72 h of a sensorineural
hearing loss of at least 30 dB over at least three successive audiometric frequencies [3].
According to the most recent epidemiological estimates, the historical incidence of SSNHL
is 27 per 100,000 inhabitants per year in the USA: incidence was reported to increase with
age, ranging from 11 per 100,000 in patients under 18 to 77 per 100,000 in patients aged
65 and over [4]. Most often unilateral, sudden onset deafness may be bilateral in the
presence of a genetic or autoimmune context, in which case bilateral involvement may
not be simultaneous [5]. All degrees of hearing loss can be observed in SSNHL as well
as various patterns of audiometric loss, with different functional prognoses [6]. These
may include audiometric loss in the low frequencies (possibly associated with vestibular
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disorders responsible for vertigo and balance disorders), in the mid- or in the high frequen-
cies, plateau or notch audiometric loss, or even total deafness (cophosis) with the worst
functional prognosis. In the event of sudden onset of hearing loss, the first step is to rule
out retrocochlear pathology in the cerebellopontine angle, the most common of which is
vestibular schwannoma [7,8]. An etiology can be identified in only one-third of cases (in
decreasing order of frequency: infectious, otologic, traumatic, hematologic, neoplastic),
and most SSNHL cases are idiopathic [9]. The pathophysiological mechanisms underly-
ing the onset of idiopathic SSNHL have been described as viral [10,11], vascular [12,13],
pressure-related [14,15], autoimmune [16,17], and genetic [18,19]. It has been reported that
examining vestibular organ functions in subjects suffering from SSNHL could help identify
its etiopathogenesis [20].

Among the otorhinolaryngological manifestations of SARS-CoV-2 infection, hearing
loss is much less frequently reported than anosmia [21,22]. Nevertheless, several case
studies have established a link between documented cases of SSNHL and the COVID-
19 pandemic [23–35]. Virology research has shown a strong tropism of the SARS-CoV-2
spike glycoprotein for angiotensin-converting enzyme 2 receptors, notably in the vascular
endothelium [36]. Post-COVID-19 SSNHL could therefore be due to vascular endotheliitis
affecting the inner ear, cochlear nerve, or even central auditory pathway [37]. While a recent
study pointed to differences in the occurrence of hearing disorders following COVID-19
infection, depending on the variant involved [38], this difference may not reach statistical
significance [39]. Subjects with longer initial COVID-19 symptoms, however, may be more
likely to suffer hearing loss after COVID-19 infection [39]. The World Health Organization
(WHO) issued a safety signal in early 2022 concerning cases of SSNHL possibly linked to
COVID-19 vaccination, triggering pharmacovigilance actions [40]. Sporadic cases of SSNHL
were described following either adenoviral vector or mRNA-based vaccine administration
after the first or second vaccine dose. Clinical presentations may correspond either to
isolated deafness or to deafness combined with other otoneurological disorders, such
as tinnitus or vertigo. In some cases, a history of otoneurological, cardiovascular or
autoimmune disorders was documented [41–44].

Here, we sought to explain why, depending on the methodology used, contradic-
tory results could be observed with regard to the incidence of SSNHL after COVID-19
vaccination. As a matter of fact, the frequency of an adverse event (AE) determines the
methodological approaches to generating a safety signal. For very rare adverse events,
pharmaco-epidemiological data could be less appropriate. Conversely, data from sponta-
neous notification and exhaustive pharmacovigilance monitoring may be more effective,
particularly in the context of the COVID-19 vaccination campaign.

2. What Do We Currently Know about SSNHL Observed after mRNA
COVID-19 Vaccination?

As shown in a systematic review by Liew et al. based on a 30 July 2023 search,
post-marketing studies have been conducted to assess the incidence of SSNHL following
COVID-19 vaccination in the following countries: United States, Finland, Israel, and
France [45]. Using the Preferred Reporting Items for Systematic Review and Meta-Analysis
guidelines, the authors identified nine studies dealing with COVID-19 vaccination and
SSNHL, enabling them to estimate the range of incidence between 0.6 and 28 cases per
100,000 person-years. Of these nine studies, two, in fact, did not address SSNHL as a
primary adverse event (AE) of COVID-19 vaccination, two were not conducted on a large
scale, and only five were nationwide studies. Chronologically, the first national study to
be published was performed in the United States from December 2020 to July 2021 [46],
confirming preliminary results [47]. Using the Vaccine Adverse Events Reporting System
(VAERS) system, the authors concluded that there was no difference between the historical
incidence of SSNHL in the USA [4] and that observed after COVID-19 vaccination with
tozinameran (Pfizer-BioNTech BNT162b2, Comirnaty™), elasomeran (Moderna mRNA-
1273, Spikevax™), or ChAdOx1-S [recombinant] (AstraZeneca AZD1222 Vaxzevria™).
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The same conclusions were drawn by a Finnish retrospective cohort study using data
from the national healthcare register published a year later [48]. In the same timeframe,
in 2022, another retrospective cohort study conducted by Clalit Health Services, Israel’s
largest state-mandated health services organization, provided contrasting results [49]. The
Israeli study highlighted the possibility of a higher risk of SSNHL following tozinameran
administration. It should be noted that this risk, although documented, proved to be
low (<1 per 100,000 vaccinated individuals). By the end of 2022, Chen et al. published
an analysis of the VAERS-registered hearing disorders and identified an increased risk
of hearing impairment after administration of both mRNA and virus vector COVID-19
vaccines compared to influenza vaccination in a real-life context [50]. Following the Finnish
publication, in July 2023, Thai-Van et al. published data on all cases of SSNHL collected as
part of the enhanced pharmacovigilance surveillance system set up in France [51]. The main
difference with the aforementioned studies is that the French cases were all assessed and
re-analysed by two otorhinolaryngologists specialized in otology and audiology, allowing
for a clinical evaluation. The authors concluded that severe SSNHL may occur after mRNA
COVID-19 vaccination, but only in rare situations. Subsequent to the systematic review by
Liew et al. [45], a recent nationwide study conducted in Denmark by Damkier et al. found
no significant difference between vaccinated and unvaccinated subjects with regard to the
hospital diagnosis code of SSNHL [52]. However, in the Danish cohort, the prescription
of corticosteroids by an otorhinolaryngologist, used as a proxy for out-of-hospital SSNHL
diagnosis, was higher in the 21 days following mRNA COVID-19 vaccination.

In their systematic review, Liew et al. [45] commented on the lack of clinical data
to support the reported incidence rates and highlighted, in particular, the absence of
prognostic and functional recovery data in most studies. Regardless of the country in
which the observational studies have been carried out, all authors emphasized both the low
historical incidence of SSNHL and the low incidence of SSNHL after COVID-19 vaccination,
as well as the need for relevant clinical data to fully explore a potential link between SSNHL
and the COVID-19 vaccines. In addition to national studies conducted in the USA, Finland,
Israel, France, and Denmark, we identified several case studies of SSNHL after COVID-
19 vaccination [42,44,53–57]. Figure 1 shows the chronology of all relevant publications
dealing with SSNHL after COVID-19 vaccination.
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Figure 1. Timeline of the leading publications dealing with SSNHL post-COVID-19 vaccination.
A comprehensive search of PubMed (pubmed.ncbi.nlm.nih.gov, accessed on 1 February 2024) and
Embase (embase.com, accessed on 1 February 2024) was conducted using the keywords “COVID-19
vaccination” and “hearing loss”. CR: Case Report.

3. Quantification of Sudden Sensorineural Hearing Loss after COVID-19 Vaccination

The clinical features and functional recovery of SSNHL depend to a large extent
on the degree of hearing loss and the frequency bands involved [58]. Its prognosis
varies according to whether the hearing loss is associated with other otoneurological
disorders [59–61]. Therefore, the follow-up of any SSNHL requires the initial degree of
hearing loss to be measured according to international standards and its clinical pre-
sentation to be documented as accurately as possible. According to the most common
definition of pure-tone average found in epidemiological or population-based studies, the
level of hearing impairment is calculated by averaging hearing thresholds at 500, 1000,
2000, and 4000 Hz (https://www.nidcd.nih.gov/health/statistics/what-numbers-mean-
epidemiological-perspective-hearing (accessed on 29 December 2023)). In the absence of
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reference audiometry, the diagnosis of SSNHL can be made by comparing the hearing
thresholds of the affected ear with those of the contralateral ear. The fact that the post-
marketing observational studies conducted in the USA [46], Finland [48], Israel [49], and
Denmark [52] may have been based on diagnosis codes and not on audiological measure-
ments as such is a first factor explaining the lack of homogeneity of their conclusions.
Nieminen et al. [48] stressed that more conclusive studies should meet the international
diagnosis criteria for SSNHL, rather than just rely on diagnosis codes from the care register
for healthcare.

In line with recent research on SSNHL [62,63], affected subjects must be classified
according to a classification system derived from Siegel’s criteria [64]. This classification
enables precise assessment of hearing impairment, intending to quantify SSNHL and then
potential hearing recovery based on standardized objective criteria (see Table 1). Such
quantification comprises five grades covering all possible degrees of hearing loss: namely,
slight (grade 1), mild (grade 2), moderate to moderately severe (grade 3), severe (grade 4),
and profound (grade 5).

Table 1. Modified Siegel’s criteria for grades of hearing impairment.

Siegel’s Grade of Hearing Loss Hearing Loss Degree (dB HL)

Grade 1 ≤25

Grade 2 26–40

Grade 3 41–70

Grade 4 71–90

Grade 5 >90

4. Evaluation of Hearing Recovery in SSNHL Post-COVID-19 Vaccination: Benefits of
Active Audiogram-Based Surveillance

Following the publication of the large-scale observational studies carried out in the
USA [46] and Israel [49] with contradictory results, it was pointed out that neither study had
attempted to characterize the duration of post-vaccination SSNHL, nor the concomitant
presence of potential risk factors [65]. Along the same lines, the reliability of passive
reporting and retrospective comparisons of administrative data for both diagnosis and
surveillance of SSNHL has been described as subject to several biases [66]. Given that
VAERS is, first and foremost, a national system for early detection of vaccines’ AEs, it
is to be feared that the reports were written incompletely or imprecisely or were simply
the result of a coincidence. Such an alert system allows anyone in the USA to report a
potential AE after receiving a vaccine. In any case, these reports are difficult to verify and
may underestimate the actual incidence of AEs or, on the contrary, be redundant. In the
study by Formeister et al. [46], cases of self-reported hearing loss were not audiologically
documented, nor was their time of onset in relation to the vaccine injection. There were, in
addition, no data available on hearing recovery outcomes.

As with any SSNHL, recovery following COVID-19 vaccine administration may be
complete, partial, slight, or absent, or it may result in a non-serviceable ear. The levels of
hearing recovery can be rated using a classification derived from Siegel’s criteria [62–64].
In this classification, the distinction between the “no improvement status“ and the “non-
serviceable ear status“ allows for the fact that only patients with serviceable hearing levels
can benefit from conventional hearing amplification (i.e., hearing aids), while patients with
non-serviceable ears are generally referred for surgical cochlear implantation.

The French nationwide PV study carried out under the aegis of the public health
authorities estimated the rate of SSNHL reporting after COVID-19 mRNA vaccination
per one million doses, using a cut-off value of 21 days post-exposure [51]. This 21-day
post-vaccination limit has been approved by the Safety Platform for Emergency vACcines
(SPEAC) and the Brighton Collaboration’s guidelines for Sensorineural Hearing Loss [67].
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For each case of SSNHL reported, a request was sent to the regional PV centre involved to
access the patient’s medical file, audiogram, and neuroradiological examinations. The au-
thors retained only cases of SSNHL medically documented by audiological measurements
in the absence of any concomitant etiology of hearing loss, such as retrocochlear disorder
(assessed by systematic MRI examination), endolymphatic hydrops or head injury and
concussion. They also investigated the potential facilitative role of risk factors, whether
autoimmune, cardiovascular or otoneurological. In one-third to one-half of identified
SSNHL cases, other audio-vestibular symptoms such as tinnitus or balance disorders were
also present. Autoimmune, cardiovascular or otoneurological risk factors were present in
approximately 30% of identified cases. Steroids were administered orally in half of SSNHL
cases. For every case identified, a minimum follow-up of 3 months made it possible to
assess the level of hearing recovery, if any. Hearing recovery outcomes in the French study
were in line with those observed in historic SSNHL outside the vaccination context [61] as
shown in Table 2. Of note, cases of positive rechallenge have been documented for both toz-
inameran and elasomeran. The cases of SSNHL were found to represent, respectively, 0.63%
and 0.76% of the total serious adverse reactions recorded for tozinameran and elasomeran
in France.

Table 2. Hearing recovery outcomes by grade of hearing impairment in the French study (adapted
from Thai-Van et al. 2023 [51]).

Number of SSNHL Cases after mRNA COVID-19 Vaccination = 171
(From January 2021 to February 2022, in France)

Hearing Outcome
Hearing loss N (%)

Complete
Recovery

Partial
Recovery

Slight
Improvement

No
Improvement

Non-Serviceable
Ear

Total Number of
Cases/Hearing

Loss Grade

Grade 1 16 (10) 0 0 15 (9) 0 31 (18)

Grade 2 11 (6.5) 6 (3) 0 25 (15) 0 42 (24.5)

Grade 3 11 (6.5) 8 (5) 1 (0.5) 33 (19.5) 0 53 (31)

Grade 4 1 (0.5) 4 (2) 3 (1.5) 14 (8) 0 22 (13)

Grade 5 0 2 (1) 4 (2) 0 17 (10) 23 (13.5)

Total number of
cases/outcome 39 (23) 20 (12) 8 (4) 87 (51) 17 (10)

5. When an Adverse Event Becomes an Adverse Effect and Then a Signal

The Causality assessment (CA) in PV is a process well described and based on different
methodologies [68–70]. For vaccines, in the 2019 update of the CA of an adverse event
following immunization (AEFI), WHO provided a user manual for persons implicated
in immunization programmes [71]. With this user guide, WHO developed an AEFI CA
support tool available online to help people implicated in vaccine PV systems. Thus,
several definitions regarding vaccination are available. An AEFI is any untoward medical
occurrence which follows immunization and which does not necessarily have a causal
relationship with the usage of the vaccine. The AE may be any unfavourable or unintended
sign, abnormal laboratory finding, symptom or disease. A causal association is defined
as “a cause-and-effect relationship between a causative factor and a disease with no other
factors intervening in the process”. Among the different given definitions, WHO made
a difference between five cause-specific definitions, i.e., vaccine product-related reaction,
vaccine quality defect-related reaction, immunization error-related reaction, immunization
anxiety-related reaction/immunization stress-related response, and coincidental event.
Hence, the regulators introduced the notion of causality, and the term event became a
reaction or effect [72].

The CA, from the WHO point of view, is “the systematic review of data about an AEFI
case; it aims to determine the likelihood of a causal association between the event and the
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vaccine received” and “the quality of the CA depends upon (1) the performance of the
AEFI reporting system in terms of responsiveness, effectiveness and quality of investigation
and reports, (2) the availability of adequate medical and laboratory services and access to
background information; and (3) the quality of the causality review process”.

Based on Bradford Hill criteria [73], several criteria are relevant to establishing
causality at the population level: temporal relationship, the strength of the association,
dose-response relationship, consistency of evidence, specificity, and biological plausibil-
ity and coherence. The question to answer is ”Can the given vaccine cause a particular
adverse event?”

At the individual level, the question to answer is more likely to be “Did the vaccine
given to a particular individual cause the particular event reported?” In this situation,
the scientific basis for the criteria which are assessed in the process includes temporal
relationship, the definitive proof that the vaccine caused the event, biological plausibility,
consideration of alternative explanations, and prior evidence that the vaccine in question
could cause a similar event in the vaccine, notably with the concept of rechallenge.

Only once the event is considered as a reaction can a signal evaluation be opened with
the objective of drawing conclusions on the presence or absence of a causal association
between an AE and a vaccine and identifying a need for additional data collection or
considering risk minimisation measures.

It is essential to recognise that the CA of an AEFI in an individual patient is an
exercise in medical differential diagnosis as it could be performed to diagnose diabetes or
multiple sclerosis.

With the beginning of the COVID-19 vaccination campaign as soon as January 2021,
The French National Agency for the Safety of Medicines and Health Products (ANSM)
ordered national active surveillance for each new COVID-19 vaccine. Several regional
centres of PV were implicated as experts, and the network of the 30 regional PV centres
were deeply invested in the analysis and the medical documentation of spontaneous
cases with a priority on the serious cases. The French PV network is organised around
30 regional PV centres, all located in a university hospital centre to be near patients and
health professionals. This specific organisation allows short information circuits and rapid
communications, as shown in Figure 2 [74–76].
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The first goal of PV is the identification of new adverse drug reactions (ADR) from all
spontaneous notifications received by the regional PV centre. Through pharmacological
expertise, health professionals from PV could routinely identify safety signals, i.e., situa-
tions that could lead to a public health problem and for which the authorities must take
measures to reduce the risk for patients. As stated by Jonville-Bera et al., “the role of the
pharmacovigilant is rather to detect unexpected or rare ADR, which escaped the scrutiny
of a large randomized clinical trial” [74]. To reach this ultimate goal, pharmacovigilants, as
experts in drug adverse reactions and iatrogenic disease, are always working closely with
specialists and clinicians to obtain all the details of a patient’s medical history.

For example, from the COVID-19 vaccination campaign, myocarditis, defined as an
adverse event, was rapidly validated as a safety signal and recognised as an adverse
effect of the mRNA COVID-19 vaccine. In France, as soon as April 2021, and in a parallel
way to the safety signal from Israel, we received five unexpected myocarditis events
in young patients [77,78]. Thus, ANSM validated a safety signal at the national level,
and concomitantly, the European Medicine Agency (EMA) and the PV Risk Assessment
Committee (PRAC) opened a signal procedure for evaluating the mRNA vaccine role in
this event.

During the following months, regional PV centres received other myocarditis cases
in the context of vaccination campaigns implemented in the young population. To quan-
tify the potential risk and qualify myocarditis as an adverse effect, pharmacovigilants
conducted a rigorous analysis based on clinical symptoms and the course of the disease
and collected all diagnostic criteria according to the Brighton recommendation [66,79],
allowing the classification of cases as suspected, probable, or confirmed. A reporting rate
was calculated between the mRNA vaccine among people under 30 years old and the
number of injected doses. The difference found was presented to ANSM and confirmed
with a case-control analysis using administrative data [80]. This safety signal was further
assessed and confirmed through several pharmacoepidemiology studies. Data about my-
ocarditis are still under publication, whereas the signal is validated by health authorities
and validated as an adverse effect [77,81]. Contrary to SSNHL, myocarditis epidemiology
is better described, also in the context of COVID-19 infection.

In the context of the COVID-19 vaccination campaign in Europe, the reinforced surveil-
lance system in place relies on the complementary approaches of PV and pharmacoepi-
demiology [82].

The process of safety signal validation could be more or less rapid according to col-
lected data, the frequency of the suspected effect, and the consequences. Dhodapakar et al.
assessed the role and impact of safety signals from the US Food and Drug Administration’s
Adverse Event Reporting System (FAERS) database on subsequent regulatory actions by
the administration [83]. Spontaneous reporting systems and analyses of aggregated cases
in databases such as FAERS are a cornerstone in generating post-marketing safety sig-
nals. For a subset of 82 potential safety signals, a literature search identified 1712 relevant
publications corresponding to case reports or case series for 70% of them [84].

6. Two Different but Complementary Approaches to Safety Signal Evaluation

Due to their design, objectives, and number of subjects included, clinical trials are
insufficient to assess the safety of new drugs, particularly for rare events. Post-marketing
pharmacovigilance datas, however used, are essential for monitoring the safety of marketed
medicines, and the global landscape of pharmacovigilance research is expanding [85]. How-
ever, few data are available on methods leading to drug withdrawal decisions. Lasser et al.
have shown that 10.2% of the 548 new drugs approved in the USA between 1975 and
1999 were the subject of a new black box warning or were withdrawn. Half of these with-
drawals took place within two years post-marketing [86]. In France, a total of 21 drugs
were withdrawn from the market for safety reasons between 1998 and 2004. For 12 of them,
the scientific evidence leading to withdrawal came from spontaneous case reports or case
series [87]. In Spain, 22 drugs were withdrawn between 1990 and 1999. In 82% of cases, the
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evidence supporting the drug withdrawal came from individual case reports, case series or
a combination of data from randomized clinical trials and case reports [88]. In addition to
pharmacovigilance data from daily practice, pharmacoepidemiological studies complete
the approach to signal detection, such as disproportionality analyses [89–92].

In the French study, all SSNHL cases after mRNA COVID-19 vaccination were analysed
by both pharmacovigilant and otolaryngologist, enabling the selection of only cases docu-
mented based on an audiogram or medical report, chronological data, and any additional
data [50]. The authors were thus able to estimate the minimum rate of this adverse reaction
based on “robust” cases, and we identified a few cases with a new positive rechallenge,
suggesting a high probability of a causal relationship [93]. Under-reporting remains one of
the main limitations of the spontaneous reporting method. The authors cannot exclude this
limitation, which may have biased the estimated rate of SSNHL. However, following the
introduction of mRNA COVID-19 vaccines in France, the strengthened pharmacovigilance
system made considerable efforts to publicize the mandatory reporting of any suspected
adverse reactions following the administration of these vaccines. In this proactive post-
marketing surveillance context, the under-reporting rate should, therefore, be lower than in
a routine pharmacovigilance process [94]. In France, for example, more than 190,000 cases of
adverse reactions were reported to the pharmacovigilance system. Of these, cases of SSNHL
accounted for 0.63% and 0.76%, respectively, of the total serious adverse reactions recorded
for tozinameran and elasomeran (https://ansm.sante.fr/actualites/point-de-situation-sur-
la-surveillance-des-vaccins-contre-le-covid-19-periode-du-14-04-2023-au-8-06-2023 (ac-
cessed on 29 December 2023)). Another limitation of the French study is the absence
of a control group. However, as mentioned above, the role of PV is to identify specific
unexpected adverse effects that were not identified before marketing, to validate the cause-
and-effect relationship and to generate a signal. Comparison with a control group could
confirm the signal generated and quantify the risk ratio, and/or identify the risk in a
particular population. Following their first results, the authors performed a disproportion-
ality analysis using the French pharmacovigilance database and found that the reporting
odds ratio for hearing loss was 1.94, CI 95% [1.40–2.77] for mRNA COVID-19 vaccines
versus other vaccines (submitted). This signal has been, in addition, significant since April
2021 [95].

The prospect of a world without pharmacovigilance or pharmacoepidemiology has
been imagined here only to underline the importance of either approach to monitoring drug
safety. However, it is essential to highlight the risks of either situation. Currently, no signal
detection activity from pharmacoepidemiological studies can rival the results obtained by
PV methods such as spontaneous notifications [96]. PV remains unrivalled in detecting
the risk of adverse events whose frequency is extremely low in the population outside
drug use, as it is precisely the case for SSNHL. In such situations, medico-administrative
databases, however large, may be insufficient to reveal the risk of rare adverse reactions.
Using all cumulative data, signal detection in spontaneous reporting systems achieved
higher specificity and sensitivity than administrative data [97]. The rarity of SSNHL cases
after mRNA CVOID-19 vaccines supports the relevance of spontaneous reporting, which is
useful for identifying rare and idiosyncratic safety issues, thus enabling signal generation.
This signal was also supported by pathophysiological, pharmacological, meta-analytical,
and/or pharmacoepidemiological data with disproportionality analysis [36,98,99].

7. Rare Vaccine Adverse Events: Challenges and Perspectives

Post-marketing surveillance of drugs is regulated and based on a methodology well
described at the expert level. Based on the reporting of real-life data and depending on a
voluntary process, any PV system has the same limitations, such as under-reporting and
lack of data quality. Every actor in the PV process should be involved in collecting the most
exhaustive data. Pharmacoepidemiological studies using PV databases or administrative
data face the same completeness and data quality limitations. The foundations of an
efficient PV system lie in collaboration between pharmacologists and clinicians to validate

https://ansm.sante.fr/actualites/point-de-situation-sur-la-surveillance-des-vaccins-contre-le-covid-19-periode-du-14-04-2023-au-8-06-2023
https://ansm.sante.fr/actualites/point-de-situation-sur-la-surveillance-des-vaccins-contre-le-covid-19-periode-du-14-04-2023-au-8-06-2023
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spontaneous reports using relevant criteria. Patient participation in the PV system is also
essential to reduce under-reporting. In this analysis of all available data published, we
discussed the benefits and limitations of currently available studies on SSNHL occurring
after COVID-19 mRNA vaccination and the difficulty of establishing a causal relationship
between vaccination and SSNHL. We believe the added value of PV studies to explore such
a rare event cannot be questioned. To this end, a comprehensive approach would require
both high-quality data and a precise medical assessment of each notified case to carry out
disproportionality analyses in relation to PV best practice. Close collaboration between
a strengthened national PV network and clinical experts would also help avoid, as far as
possible, under- or over-estimating the true incidence of post-vaccination SSNHL.
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