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Abstract: Vaccination against the Porcine Reproductive and Respiratory Syndrome virus (PRRSV)
is widely practiced in both sows and piglets. However, it has been shown that multivaccinated
sows sometimes lack a detectable antibody response, testing seronegative in ELISA (non-responders).
Moreover, PRRSV-vaccinated piglets can remain seronegative as well, which is mainly attributed to
the interference of maternally derived antibodies (MDAs). The current study investigated the impact
of the sow’s immune status on the PRRSV vaccine effectiveness in the progeny. The experimental
trial included forty-eight piglets (n = 48) originating from a commercial Belgian breeding herd, with
twenty-four piglets born from PRRSV vaccinated responder sows (E+ piglets) and twenty-four piglets
born from PRRSV vaccinated non-responder sows (E− piglets). Eight piglets in each group were
either non-vaccinated (NoVac piglets; n = 8), intramuscularly vaccinated (IM piglets; n = 8), or
intradermally vaccinated (ID piglets; n = 8), with the same PRRSV-1 vaccine as used in the sow
population. Vaccination was performed at weaning at three weeks of age, and all study piglets were
challenged with a high dose of the PRRSV-1 07V063 strain at 6 weeks of age. A clear interference of
MDAs was observed in the E+ piglets: 66.7% of the vaccinated E+ piglets lacked an antibody response
at 3 weeks post-vaccination (non-responders). Consequently, post-challenge, only the responding E+
piglets had a significantly reduced serum viremia compared to the E+ NoVac piglets. The observed
viremia in the non-responding E+ piglets was similar to the viremia of the E+ NoVac piglets. In the
vaccinated E− piglets, a lack of antibody response at 3 weeks post-vaccination was observed in 18.8%
of the piglets. Interestingly, despite the lack of a vaccine antibody response, the non-responding E−
piglets had a significantly reduced serum viremia compared to the NoVac E− piglets. In contrast,
the viremia of the responding E− piglets was only numerically reduced compared to the NoVac
E− piglets. Finally, some clear differences were observed in both the kinetics of infection and the
immune responses post-challenge between the E+ and E− piglets. The results of this study confirm
the consequences of the MDA interference on the induced partial protection of PRRSV vaccination
in experimentally challenged piglets. More research is warranted to understand the immunological
mechanisms behind MDA interference in PRRSV vaccination and to explain the observed differences
between E+ and E− piglets.
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1. Introduction

Porcine Reproductive and Respiratory Syndrome (PRRS) is one of the most challeng-
ing diseases in pig production worldwide. More than three decades ago, the disease was
almost simultaneously described in the USA and in Europe [1–3]. The infectious pathogen
causing the disease is a small RNA virus belonging to the order Nidovirales, family Ar-
teriviridae: the PRRS-virus (PRRSV). This virus is nowadays classified as two different
species: the Betaarterivirus suid 1 and Betaarterivirus suid 2, sharing nucleotide similarity
of approximately 55% [4–7]. The former is better known as PRRSV-1 and is the dominant
species in Europe, while the latter is known as PRRSV-2 and is mainly present in North
America. Despite mass vaccination being practiced, the disease is still responsible for enor-
mous production and economic losses worldwide [8,9]. The main disease manifestations
include reproductive dysfunction in sows and gilts (abortions, the birth of weak and/or
dead piglets, irregular return to estrus) and respiratory distress in piglets and fattening pigs
(coughing, sneezing, dyspnea, growth retardation). Additionally, PRRSV infection leads
to a reduction in respiratory immunity, making PRRSV-infected pigs more susceptible to
secondary infections [10].

PRRSV vaccination is widely practiced and can have beneficial effects on the clinical
manifestation of the disease and transmission of the virus [11–13]. However, vaccination
does not lead to complete protection against infection, and several factors are responsible
for the suboptimal effectiveness of the currently available PRRSV vaccines [14–16]. First,
PRRSV is known to have a high genetic diversity, which is caused by both random muta-
tions due to the lack of proofreading by the PRRSV RNA polymerase and recombination
events between different PRRSV strains. Consequently, both immune escape mutants and
highly virulent strains are present in the field [17–21]. Second, several studies have shown
that PRRSV modulates the immune response. Both an inhibition of innate immunity and
poor adaptive immune responses have been described. Mainly, the limited production
of neutralizing antibodies and the low induction of PRRSV-specific interferon-γ secreting
cells are responsible for the lack of protective immunity [22–25]. Finally, it has been shown
that a proportion of PRRSV-vaccinated sows and/or piglets lack a PRRSV-specific antibody
response, with vaccinated pigs remaining seronegative in commercial ELISA kits [26–32].
In multivaccinated sows, the origin of this non-responsiveness upon vaccination remains
unknown and warrants further investigation [26]. Recently, our research group has investi-
gated the consequence of this seronegative sow status for their progeny by experimentally
challenging piglets born from both PRRSV seropositive and PRRSV seronegative sows
that were routinely PRRSV vaccinated and originated from a commercial Belgian breed-
ing herd [33]. The lack of maternally-derived antibodies (MDAs) in piglets born from
the non-responding sows resulted in a higher viral load and increased nasal shedding in
the first days following the experimental challenge, compared to piglets born from the
seropositive sows, who had received MDAs from their mother. In vaccinated piglets, the
origin of vaccine non-responsiveness is better understood and related to the presence of
MDAs, which interfere with the vaccine response. In intramuscular vaccinated piglets,
the MDA interference has been described by different research groups [27–29]. However,
the immunological mechanisms behind MDA interference and the consequences of MDA
interference on vaccine effectiveness after infection remain understudied.

The current study aimed to assess the PRRSV vaccine effectiveness against an experi-
mental PRRSV-1 challenge in piglets born from PRRSV-vaccinated seropositive (responding)
sows and piglets born from PRRSV-vaccinated seronegative (non-responding) sows. It
could be hypothesized that piglets born from the non-responding sows show better vaccine
effectiveness because they lack MDAs and are thus not susceptible to MDA interference.
However, since these piglets are born from sows with a disturbed vaccine response (no anti-
body production), it could also be hypothesized that the piglets will react less to the vaccine
themselves. Finally, both groups of piglets were vaccinated either via the intramuscular
route or via the intradermal route to investigate whether there was a difference between
both routes in terms of MDA interference and vaccine effectiveness after the challenge.
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2. Materials and Methods
2.1. Study Design

The Ethical Committee of Sciensano approved the study design, with approval
number20221025-01. A schematic overview of the study design can be found in Figure 1.
Forty-eight piglets (Hypor × German Piétrain), originating from a Belgian, PRRSV-stable,
farrow-to-finish herd, were included in this study. The sows in the selected herd were
routinely PRRSV-1 vaccinated in the following schedule: intramuscular Porcilis MLV (MSD,
Rahway, NJ, USA) vaccination at 60 days of gestation and 6 days post-farrowing. Fifty-six
breeding sows of mixed parity were blood sampled at 90 days of gestation for selection
of three PRRSV-seropositive (responders to vaccination) and three PRRSV-seronegative
(non-responders to vaccination) sows. At two weeks post-farrowing (wpf), the selected
sows and ten piglets of each litter were blood sampled for analysis of PRRSV-specific and
PCV2-specific antibodies. The latter was performed as a control for adequate colostrum
intake, as previously described [27]. One week later, at 3 weeks of age (3 woa), twenty-four
piglets originating from the three PRRSV-seropositive sows (E+ piglets) and twenty-four
piglets originating from the three PRRSV-seronegative sows (E− piglets) were weaned and
transported to the experimental facilities of Sciensano (Machelen, Belgium). The piglets
were distributed in six experimental groups and each experimental group was housed in a
separate compartment (Table 1): E+ NoVac (non-vaccinated E+ piglets; n = 8), E− NoVac
(non-vaccinated E− piglets; n = 8), E+ IM (intramuscular vaccinated E+ piglets; n = 8), E+
ID (intradermal vaccinated E+ piglets; n = 8), E− IM (intramuscular vaccinated E− piglets;
n = 8) and E− ID (intradermal vaccinated E− piglets; n = 8). Siblings were as much as
possible equally distributed over the different experimental groups, ensuring that each
experimental group consisted of eight piglets originating from three different sows. For
example, eight siblings originating from E+ sow one were distributed as follows: three
siblings in E+ NoVac, two siblings in E+ IM, and three siblings in E+ ID. Upon arrival, the
E+ IM and E− IM groups were intramuscularly vaccinated in the right neck with 2 mL
of the Porcilis MLV (MSD, Rahway, NJ, USA), while the E+ ID and E− ID groups were
intradermally vaccinated with a hypodermic syringe in the right neck with the same dose
of vaccine in a volume of 0.2 mL. Additionally, a Thermochip (MSD) was intramuscularly
injected in the left neck of all piglets for measurement of body temperature throughout
the study. A body temperature > 40 ◦C was considered to be fever. All piglets were
sampled at 4 woa, 5 woa, and 6 woa to analyze the vaccine response. At 6 woa (3 weeks
post-vaccination), all piglets were intranasally challenged with 2 mL containing 105.5 tissue
culture infectious dose with 50% end-point/mL (TCID50/mL) of the PRRSV-1 07V063 strain
(1 mL/nostril). Challenge response was analyzed based on sampling at 3, 5, 7, 10, 14, 21,
28, 35, and 41 days post-infection (dpi). All serum samples were stored at −80 ◦C until
analysis. Piglets were monitored daily for clinical signs. Half of the piglets were euthanized
by electrocution and necropsied at 42 dpi, the other half at 43 dpi. Unfortunately, one E+
ID-challenged piglet died during blood sampling at 5 dpi; this piglet was excluded from
the analysis.
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Table 1. Overview of the different experimental groups. E+ piglets were born from three PRRSV-
vaccinated, responding sows. E− piglets were born from three PRRSV-vaccinated, non-responding
sows. All piglets were intranasally challenged at 6 weeks of age (woa) with 2 mL containing 105.5

TCID50/mL of the PRRSV-1 07V063 strain.

Experimental Group (n) Vaccination (Age) Compartment

E+ NoVac (8) No vaccination 1
E+ IM (8) Porcilis IM (3 woa) 2
E+ ID (8) * Porcilis ID (3 woa) 3

E− NoVac (8) No vaccination 4
E− IM (8) Porcilis IM (3 woa) 5
E− ID (8) Porcilis ID (3 woa) 6

* One E+ ID piglet died during blood sampling at 5 dpi and was excluded from analysis.

2.2. Viruses and Viral Titration

The strain used to intranasally challenge the piglets included in this study was a
Belgian field isolate, the PRRSV-1 07V063 strain (GenBank: GU737264). This strain was
isolated from a Belgian-infected herd in 2007 and was kindly provided by Dr. Hans
Nauwynck (Ghent University) [34,35]. The viral strain was propagated in porcine alveolar
macrophages (PAMs) for three passages, as previously described [33]. The challenge strain
was diluted in sterile phosphate-buffered solution (Thermo Fisher Scientific, Waltham,
MA, USA) to reach the viral titer of 105.5 TCID50/mL used for intranasal inoculation. The
PRRSV-1 DV strain was derived from the Porcilis MLV vaccine and cultured on MARC-145
cells as previously described [33]. The viral titer of the used challenge strain, as well as
the viral titers of the serum samples collected at 3, 5, 7, 10, and 14 dpi, were determined
by an in vitro infection assay. In short, a ten-fold dilution series was made of the samples
to test, and these dilutions were used to infect cultivated PAMs. The infected PAMs were
incubated for 72 h at 37 ◦C and 5% CO2. Following incubation, the cytopathogenic effect
was assessed in each dilution, and the Reed-Muench method was used to calculate the final
viral titer in each sample [36].

2.3. Antibody Analysis

Commercially available ELISA assays were used to determine the presence of both
PRRSV-specific antibodies (Abs) and porcine circovirus type 2 (PCV2)-specific Abs. The
former was assessed using the IDEXX PRRS X3 Ab test (IDEXX Laboratories, Westbrook,
ME, USA), which is the most commonly used ELISA assay for PRRSV Ab testing [10].
The latter was assessed using the Biochek PCV2 Antibody Test (Biocheck, Reeuwijk, The
Netherlands). The manufacturers’ guidelines were followed during the performance of
both tests. Samples with a sample-to-positive S/p value ≥ 0.4 or a S/p value ≥ 0.5 were
seropositive for PRRSV and PCV2, respectively. Finally, neutralizing antibodies (NAbs)
against PRRSV were determined using a virus neutralization assay (VN), as previously
described [27]. The NAbs were tested against 100 TCID50 of the PRRSV-1 DV strain (the
used vaccine strain).

2.4. Cytokine Analysis

Commercially available ELISA assays (Invitrogen—Thermo Fisher Scientific, Waltham,
MA, USA) were used to determine the post-challenge induction of cytokines. Firstly, the
serum concentration (pg/mL) of interferon-gamma (IFN-γ) was assessed using the IFN
gamma Porcine ELISA kit. Secondly, the tumor necrosis factor-alpha (TNF-α) concentration
in serum was assessed using the TNF alpha Porcine ELISA kit. The manufacturers’ guide-
lines were followed in the execution of both tests. In each run, a standard dilution series
with known IFN-γ or TNF-α concentration (provided in the kit) was included. GraphPad
Prism 9 Software (GraphPad Software, San Diego, CA, USA) was used to generate the
standard curve based on the concentration of the standard dilution series and the obtained
optical density (OD) values of the standards, using a 4-point parameter algorithm. The OD
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values of the serum samples were then interpolated on the generated standard curve to
obtain the concentration of serum IFN-γ and TNF-α in each sample.

2.5. RT-qPCR

The IndiMag Pathogen kit and IndiMag 48 s instrument (Indical Bioscience, Leipzig,
Germany) were used to extract RNA from the collected serum samples. Prior to the in-
tranasal challenge, the presence of the MLV strain was determined using the VetMAX
PRRSV EU and NA 2.0 kit (Thermo Fisher Scientific, Waltham, MA, USA) on the QuantStu-
dio 5 Real-Time PCR System (Thermo Fisher Scientific, Waltham, MA, USA), to determine
the MLV viremia. After the challenge, an in-house RT-qPCR was used to detect both the
MLV and the challenge strain, using primers and probes specific for the PRRSV-1 DV
strain and primers and probes specific for the PRRSV-1 07V063 strain (Integrated DNA
Technologies, Coralville, IO, USA). During each extraction and RT-qPCR run, a standard
curve was generated based on a four-point serial dilution series consisting of ten-fold
dilutions of the PRRSV-1 07V063 strain. A relative quantification of the samples to test was
performed based on this standard curve, as previously described [33].

2.6. Interferon-Gamma ELISpot

The commercially available ELISpot Plus: Porcine IFN-γ (ALP) kit (Mabtech AB,
Nacka Strand, Sweden) was used to determine the number of IFN-γ secreting cells (IFN-γ
SCs) specific for the PRRSV-1 DV strain. The PBMC isolation, stimulation, and ELISpot
analysis were performed as previously described [33]. The CTL Q6 Ultra-V Analyzer
(ImmunoSpot, Cleveland, OH, USA) was used for ELISpot plate read-out.

2.7. Statistics

The GraphPad Prism 9 software (GraphPad Software, San Diego, CA, USA) was
used to perform statistical analysis and visualization of the results. The gathered data
was first checked for normality using the built-in Sharpo-Wilk test. Statistical differences
between experimental groups were calculated using the one-way ANOVA with Sidaks
multiple comparison test or the Kruskal-Wallis test with Dunn’s multiple comparison
tests for normal and non-normal distributed data, respectively. The area under the curve
(AUC) values for fever and serum viremia were calculated using the built-in function of
the GraphPad Prism 9 Software, with a baseline of Y = 0, ignoring peaks that are less than
0.1 Y units high and only taking into account peaks that go above the baseline. For the
AUC for fever calculation, the measured temperature of each piglet at each time-point was
first reduced by 40, and negative values (no fever) were given a value of zero. Finally, a
comparison of AUC values between experimental groups was performed as described
above. Throughout the article, results are written as mean ± standard deviation of the mean.
Statistical tests with a p-value < 0.05 were considered statistically significant. Statistical
significance is visualized with asterics on the graphs: * p-value < 0.05; ** p-value < 0.01;
*** p-value < 0.005; **** p-value < 0.001.

3. Results
3.1. Sow and Piglet Selection

Based on the sow sampling at 90 days of gestation, three responding sows (seroposi-
tive) and three non-responding sows (seronegative/slightly seropositive) to the routine
PRRSV-vaccination were selected (Supplementary Figure S1A). A resampling of the se-
lected sows was performed at 2 weeks post-farrowing (wpf) (Table 2). There was an absence
of NAbs in all sows, except one E+ sow having a VN titer of 2 Log2 at 90 days of gestation.
A clear presence of PRRSV-specific maternally-derived antibodies (MDAs) was observed in
piglets born from the responding sows (E+ piglets), while these were absent in most of the
piglets born from the non-responding sows (E− piglets) (Figure 2). None of the selected
piglets had the presence of neutralizing MDAs. To ensure that the observed differences
in the presence of PRRSV-specific MDAs were not due to differences in colostrum intake,
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the presence of PCV2-antibodies was analyzed in both the selected sows and piglets. All
selected sows, both the three responding sows and the three non-responding sows, had
a clear presence of PCV2-antibodies (Supplementary Figure S1B). Additionally, both the
selected E+ piglets and the selected E− piglets had the presence of PCV2-specific MDAs,
confirming an adequate colostrum intake in both groups (Figure 2).

Table 2. Overview of the PRRSV serological status of six selected PRRSV-vaccinated sows and the
presence of PRRSV-specific maternally-derived antibodies in their progeny. A commercially available
ELISA kit was used to detect PRRSV-specific Abs, with results shown as sample-to-positive (S/p)
values (cut-off for seropositivity: S/p value ≥ 0.4). A virus neutralization assay (VN) was used to
determine the presence of neutralizing antibodies against the vaccine strain, with results shown
as the Log2 VN titer. Sows were intramuscularly PRRSV-vaccinated at 60 days of gestation and 6
days post-farrowing (dpf); sow sampling was performed at 90 days of gestation and 14 dpf; piglet
sampling was performed at 14 dpf.

Sow Parity
S/p Value
(90 Days

Gestation)

VN Titer
(90 Days

Gestation)
S/p Value (14 dpf)

S/p Value
Selected

Piglets (14 dpf)
(Mean ± SD)

VN Titer
Selected

Piglets (14 dpf)
(Mean ± SD)

1 3 2.08 0 1.76 1.86 ± 0.10 0 ± 0
2 3 2.16 2 1.95 2.04 ± 0.05 0 ± 0
3 8 2.79 0 2.57 2.17 ± 0.10 0 ± 0
4 3 0.25 0 0.18 0.13 ± 0.02 0 ± 0
5 3 0.43 0 0.52 0.37 ± 0.08 0 ± 0
6 7 0.51 0 0.38 0.41 ± 0.05 0 ± 0
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Figure 2. Overview of the presence of antibodies against PRRSV (left) and antibodies against PCV2
(right) in a selection of sixty piglets, originating from either routinely PRRSV vaccinated seropositive
sows (E+ piglets; n = 30) or routinely PRRSV vaccinated seronegative or slightly seropositive sows
(E− piglets; n = 30). In each group, twenty-four piglets were included in the experimental trial,
represented by green (E+ piglets) or red (E− piglets) dots. The cut-off value for seropositivity in each
ELISA test is visualized by a dotted line. The mean S/p values ± standard error of the mean (SEM)
are presented by error bars.
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3.2. Vaccine Responses

At three weeks of age (woa), the intramuscular or intradermal PRRSV MLV vaccination
was performed. Clear differences in the vaccine responses were observed between the E+
vaccinated piglets and the E− vaccinated piglets.

The presence of MDAs interfered with the vaccine antibody response in the E+ vacci-
nated piglets, with a lack of antibody response observed in 5/8 (62.5%) and 5/7 (71.4%)
E+ IM and E+ ID piglets, respectively, by 3 weeks post-vaccination (wpv) (Figure 3). In
contrast, only 1 E− ID piglet (12.5%) and 2/8 (25%) E− IM piglets lacked a vaccine antibody
response by 3 wpv (Figure 3). Additionally, the proportion of vaccinated piglets that tested
PCR positive for the vaccine strain at 3 wpv was higher in the E− vaccinated piglets (E−
IM: 6/8 and E− ID: 7/8) compared to the E+ vaccinated piglets (E+ IM: 5/8 and E+ ID:
2/7). Interestingly, the MLV strain was detected in one E+ IM and one E+ ID until 7 days
post-infection.
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Figure 3. PRRSV antibody responses after intramuscular (IM) or intradermal (ID) MLV vaccination
in 3-week-old piglets originating from either PRRSV vaccinated, seropositive sows (E+ piglets) or
PRRSV vaccinated, seronegative/slightly seropositive sows (E− piglets). Results are shown as S/p
values assessed by a commercial PRRS ELISA kit. The cut-off value of seropositivity (S/p ≥ 0.4) is
indicated with a dotted line. Full connecting lines and green dots at 3 wpv represent piglets that
showed an antibody response after PRRSV vaccination; dotted connecting lines and red dots at
3 wpv represent piglets without an antibody response after PRRSV vaccination.
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Next to the vaccine antibody responses, an analysis of the induction of PRRSV-specific
IFN-γ secreting cells (IFN-γ SCs) at 3 wpv was performed. An induction of PRRSV-specific
IFN-γ SCs was observed in a proportion of the vaccinated piglets but not in the non-
vaccinated piglets (Figure 4). Two of the E+ IM piglets and one E+ ID piglet showed a high
induction of IFN-γ SCs; two of these three piglets also had an antibody response by 3 wpv.
In the other E+ vaccinated piglets (both responders and non-responders), only a limited
induction of IFN-γ SCs was observed. Two of the E+ IM piglets had a relatively high
number of IFN-γ SCs, while the presence of IFN-γ SCs was rather limited in the remaining
six E+ IM piglets. Finally, the E− ID piglets (54.31 ± 59.09) had the highest overall number
of IFN-γ SCs, which was significantly higher (p = 0.016) than the number of IFN-γ SCs in
the non-vaccinated E− piglets (3.38 ± 3.39).
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Figure 4. Overview of interferon-γ secreting cells (IFN-γ SCs) specific for the PRRSV-1 DV strain
in piglets originating from routinely PRRSV vaccinated, seropositive sows (E+ piglets) or piglets
originating from routinely PRRSV vaccinated, seronegative/slightly seropositive sows (E− piglets).
Piglets were either non-vaccinated (NoVac), intramuscularly vaccinated (IM), or intradermally vacci-
nated (ID) at 3 weeks of age with the same PRRSV-1 MLV as used in the sows. The number of IFN-γ
SCs was quantified at 3 weeks post-vaccination. Results are shown as dots for each piglet, with error
bars representing the mean number of IFN-γ SCs ± standard error of the mean.

3.3. Fever Induction

Post-challenge, fever was observed from 2 dpi onwards in all experimental groups,
and the body temperature of most piglets stabilized by 24 dpi (Supplementary Figure S2).
Neither the area under the curve (AUC) value for fever, calculated from challenge day to
24 dpi, nor the number of fever days (until 24 dpi) were significantly different between
experimental groups (Figure 5). However, a non-significantly higher induction of fever
was observed in the E− piglets compared to the E+ piglets. Furthermore, the highest AUC
value for fever and the highest number of fever days were observed in the E− ID piglets.
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Figure 5. Overview of the induction of fever (body temperature > 40 ◦C) in piglets originating from
routinely PRRSV vaccinated, seropositive sows (E+ piglets) or piglets originating from routinely
PRRSV vaccinated, seronegative/slightly seropositive sows (E− piglets)Piglets were either non-
vaccinated (NoVac), intramuscularly vaccinated (IM) or intradermally vaccinated (ID) at 3 weeks of
age with the same PRRSV-1 MLV as used in the sows and all piglets were intranasally challenged
with the PRRSV-1 07V063 strain at 6 weeks of age. Fever induction was determined from the day of
infection to 24 days post-infection and visualized as the area under the curve (AUC) value for fever
(left) or as the number of days with fever (right). The mean values ± standard error of the mean are
shown as error bars for each experimental group.

3.4. Serum Viral Load Quantified by RT-qPCR

The PRRSV-1 vaccination affected the serum viremia post-challenge, both in the E+
and E− piglets (Figure 6). At 3 dpi, there were no observed differences in the serum viral
load between the non-vaccinated E+ piglets and the vaccinated E+ piglets (both IM and
ID vaccinated). However, from 3 dpi until 14 dpi, serum viral load was reduced in both
the E+ IM and E+ ID piglets compared to the E+ NoVac piglets. Furthermore, the viral
load of the E+ IM piglets (3.08 ± 0.88 Log copies/µL) was significantly lower (p = 0.022) in
comparison to the viral load of the E+ NoVac piglets (4.32 ± 0.66) at 5 dpi. Interestingly, a
delayed effect of vaccination was observed in the E− piglets. In these piglets, the serum
viral load remained similar between the E− NoVac piglets and both the E− IM and E− ID
piglets until 7 dpi. Viral load was reduced in the vaccinated E− piglets (both E− IM and
E− ID) compared to the non-vaccinated E− piglets in the period between 7 dpi and 14 dpi.
At 14 dpi, the serum viral load was significantly lower (p = 0.029) in the E− ID piglets
(2.65 ± 0.68 Log copies/µL) compared to the E− NoVac piglets (3.62 ± 0.86 Log copies/µL).

The lower serum viremia, observed in the vaccinated piglets compared to the non-
vaccinated piglets, was confirmed by a comparison of the AUC values calculated from
day 0 to 41 dpi (Figure 7A). A numerically higher AUC-value was observed in the E+
NoVac piglets (76.72 ± 9.77) compared to the E+ IM (67.71 ± 11.10) and E+ ID piglets
(68.95 ± 18.83). Additionally, a numerically higher AUC-value was observed in the E−
NoVac piglets (87.64 ± 17.13) compared to the E− IM (74.76 ± 18.00) and E− ID piglets
(77.37 ± 14.52). The absence of a vaccine antibody response, which was observed in a
large proportion of the E+ vaccinated piglets, influenced the overall serum viremia. A
significantly lower (p = 0.033) and non-significantly lower (p = 0.073) AUC value was
observed in the five E+ responders (57.75 ± 14.24), both IM and ID responders, compared
to the AUC values observed in the eight E+ NoVac piglets (76.72 ± 9.77) and the ten E+
non-responders (73.55 ± 12.26) (Figure 7B). Conversely, the AUC values of the three E−
non-responders (59.41 ± 9.09) were significantly lower (p = 0.035) and non-significantly
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lower (p = 0.13) than the AUC values of the eight E− NoVac piglets (87.64 ± 17.13) and the
AUC values of the thirteen E− responders (79.91 ± 14.67) (Figure 7C).
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Figure 6. Kinetics of PRRSV-1 07V063 serum viral load, quantified by RT-qPCR, in piglets originating
from routinely PRRSV vaccinated, seropositive sows (E+ piglets; left) or piglets originating from
routinely PRRSV vaccinated, seronegative/slightly seropositive sows (E− piglets; right). Piglets were
either non-vaccinated (NoVac), intramuscularly vaccinated (IM,) or intradermally vaccinated (ID) at
3 weeks of age with the same PRRSV-1 MLV as used in the sows, and all piglets were intranasally
challenged with the PRRSV-1 07V063 strain at 6 weeks of age. The mean viral load ± standard error
of the mean viral load is shown for each experimental group at each sampling moment.

3.5. Serum Viral Load Quantified by Viral Titration

The RT-qPCR analysis revealed a difference in the serum viral load between vaccinated
and non-vaccinated piglets in the first two weeks post-challenge. To confirm these results
and to assess the infectivity of the serum viral load until 14 dpi, an in vitro viral titration
was performed.

In the E+ piglets, reduced viral titers were observed in the vaccinated piglets (both E+
IM and E+ ID) compared to the non-vaccinated piglets from 3 dpi until 14 dpi (Figure 8A).
At 5 dpi, a significantly lower (p = 0.012) viral titer was observed in the E+ IM piglets
(2.46 ± 1.10 TCID50/mL) compared to the E+ NoVac piglets (3.83 ± 0.50 TCID50/mL). In
contrast, the viral titers remained similar between the vaccinated and non-vaccinated E−
piglets until 7 dpi. At 10 dpi, a clear vaccine effect was observed in the E− piglets, with a
significantly lower (p = 0.040) viral titer in the E− IM piglets (3.35 ± 0.70 TCID50/mL) and a
non-significantly lower (p = 0.080) viral titer in the E− ID piglets (3.33 ± 0.85 TCID50/mL),
compared to the E− NoVac group (4.46 ± 0.84 TCID50/mL). At 14 dpi, a similar trend
was observed, with a non-significantly (p = 0.064) lower viral titer in the E− IM piglets
(3.07 ± 0.49 TCID50/mL) and a significantly lower (p = 0.021) viral titer in the E− ID piglets
(2.63 ± 1.12 TCID50/mL) compared to the E− NoVac piglets (4.11 ± 0.81 TCID50/mL).

The comparison of the AUC values based on the viral titration (day 0 until 14 dpi)
confirmed the positive effect of the PRRSV-1 vaccination on the viral load post-challenge.
The E+ NoVac piglets (44.65 ± 4.31) had a significantly higher (p = 0.049) AUC-value
compared to the E+ ID piglets (34.16 ± 11.52) and a non-significantly higher (p = 0.068)
AUC-value compared to the E+ IM piglets (34.38 ± 10.20) (Figure 9A). Additionally, a
non-significantly reduced viral load was observed in the E− IM (39.32 ± 8.05) and E− ID
(37.85 ± 6.26) piglets compared to the E− NoVac (44.30 ± 5.32) piglets. The AUC-values
in the five E+ responding piglets (25.92 ± 10.60) were significantly lower (p = 0.0044)
than the AUC-values in the eight E+ NoVac piglets (44.65 ± 4.31) and numerically lower
(p = 0.16) than the AUC values in the ten E+ non-responding piglets (38.45 ± 7.84)
(Figure 9B). Finally, no significant differences were observed between the AUC values
of the E− NoVac piglets (44.30 ± 5.32), E− responder piglets (38.85 ± 7.57), and E−
non-responder piglets (37.45 ± 4.73).
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Figure 7. Serum PRRSV-1 07V063 viral load, quantified by RT-qPCR, in piglets originating from
routinely PRRSV vaccinated, seropositive sows (E+ piglets), or piglets originating from routinely
PRRSV vaccinated, seronegative/slightly seropositive sows (E− piglets). Piglets were either non-
vaccinated (NoVac), intramuscular vaccinated (IM), or intradermal vaccinated (ID) at 3 weeks of age
with the same PRRSV-1 MLV as used in the sows. All piglets were intranasally challenged with the
PRRSV-1 07V063 strain at 6 weeks of age. Dots represent the area under the curve (AUC) value for
serum viral load, which was calculated from the day of infection (day 0) to 41 days post-infection
(dpi) for each piglet. The mean AUC value ± standard error of the mean AUC value are shown as
error bars. (A) AUC values for the E+ NoVac, E+ IM, E+ ID, E− NoVac, E− IM, and E− ID piglets.
(B) AUC values for the E+ subgroups based on the vaccine antibody response. E+ responder
piglets had a vaccine antibody response by 3 weeks post-vaccination, while the E+ non-responder
piglets lacked a vaccine antibody response by 3 weeks post-vaccination. (C) AUC values for the E−
subgroups based on the vaccine antibody response at 3 weeks post-vaccination.
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Figure 8. Serum viral load, quantified by in vitro viral titration, in piglets originating from rou-
tinely PRRSV vaccinated, seropositive sows (E+ piglets; (A)) or piglets originating from routinely
PRRSV vaccinated, seronegative/slightly seropositive sows (E− piglets; (B)). Piglets were either
non-vaccinated (NoVac), intramuscularly vaccinated (IM), or intradermally vaccinated (ID) at
3 weeks of age with the same PRRSV-1 MLV as used in the sows, and all piglets were intranasally
challenged with the PRRSV-1 07V063 strain at 6 weeks of age. The mean viral titer ± standard error
of the mean viral titer is shown as error bars for each experimental group.

3.6. Antibody Kinetics Post-Challenge

The overall kinetics of antibody induction post-challenge were relatively similar
between the vaccinated and non-vaccinated piglets (Supplementary Figure S3). All E+
NoVac piglets seroconverted between 7 dpi and 10 dpi. Additionally, the E+ vaccinated
piglets that initially lacked a vaccine antibody response (seronegative at 3 wpv) did have a
challenging antibody response by 10 dpi. Six out of eight E− NoVac piglets seroconverted
between 7 dpi and 10 dpi; the remaining E− NoVac piglets had a delayed antibody
response and seroconverted from 14 dpi onwards. Furthermore, four of the E− NoVac
piglets had a low antibody titer throughout the study. The three non-responding E− piglets
seroconverted by 10 dpi as well.

The successful PRRSV-1 vaccination, evidenced by a vaccine antibody response at
3 wpv, had a priming effect on the elicited serological response by the end of the study
(41 dpi), both in the E+ and E− piglets (Figure 10). A significantly higher (p = 0.0031)
and numerically higher (p = 0.17) antibody titer was observed in the E+ responders
(2.58 ± 0.067) compared to the E+ NoVac piglets (2.03 ± 0.29) and E+ non-responders
(2.32 ± 0.28), respectively. Additionally, a significantly higher (p = 0.0031) and numerically
higher (0.086) antibody titer was observed in the E− responders (2.43 ± 0.19) compared to
the E− NoVac piglets (1.70 ± 0.62) and E− non-responders (1.81 ± 0.60), respectively.

3.7. Induction of Interferon-γ Secreting Cells

The PRRSV-1 vaccination had a positive effect on the early induction of PRRSV-specific
IFN-γ secreting cells (IFN-γ SCs) post-challenge (Figure 11). At 14 dpi, a significantly higher
(p = 0.028) number of IFN-γ SCs was observed in the E+ IM piglets (92.44 ± 64.10) compared
to the E+ NoVac piglets (25.50 ± 25.25), while the number of IFN-γ SCs was numerically
higher in the E+ ID piglets compared to the E+ NoVac piglets. At the same time point, a
non-significant higher number of IFN-γ SCs was observed in the E− vaccinated piglets
compared to the E− NoVac piglets. At 21 dpi, the number of IFN-γ secreting cells remained
numerically higher in the vaccinated E+ piglets compared to the non-vaccinated E+ piglets.
Moreover, the number of IFN-γ SCs was significantly higher in both the E− IM piglets
(296.1 ± 193.2; p = 0.031) and E− ID piglets (296.8 ± 186.8; p = 0.017) compared to the E−
NoVac piglets (77.75 ± 74.42). Finally, the observed differences in IFN-y-secreting cells
between the non-vaccinated and vaccinated piglets became less pronounced by the end of
the study.
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Figure 9. Serum viral load, quantified by in vitro viral titration, in piglets originating from routinely
PRRSV vaccinated, seropositive sows (E+ piglets) or piglets originating from routinely PRRSV
vaccinated, seronegative/slightly seropositive sows (E− piglets). Piglets were either non-vaccinated
(NoVac), intramuscularly vaccinated (IM), or intradermally vaccinated (ID) at 3 weeks of age with
the same PRRSV-1 MLV as used in the sows, and all piglets were intranasally challenged with the
PRRSV-1 07V063 strain at 6 weeks of age. The mean AUC value ± standard error of the mean AUC
value are shown as error bars. (A) AUC values for the E+ NoVac, E+ IM, E+ ID, E− NoVac, E− IM,
and E− ID piglets. (B) AUC values for the E+ subgroups based on the vaccine antibody response.
E+ responder piglets had a vaccine antibody response by 3 weeks post-vaccination, while the E+
non-responder piglets lacked a vaccine antibody response by 3 weeks post-vaccination. (C) AUC
values for the E− subgroups based on the vaccine antibody response at 3 weeks post-vaccination.
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Figure 10. PRRSV-specific antibodies at 41 days post-infection originating from routinely PRRSV
vaccinated, seropositive sows (E+ piglets; left) or piglets originating from routinely PRRSV vaccinated,
seronegative/slightly seropositive sows (E− piglets; right)). Piglets were either vaccinated or non-
vaccinated (NoVac) at 3 weeks of age with the same PRRSV-1 MLV as used in the sows, and all
piglets were intranasally challenged with the PRRSV-1 07V063 strain at 6 weeks of age. Subgroups
were made in the vaccinated piglets, based on the vaccine antibody response at 3 weeks post-
vaccination, with responders having a vaccine antibody response and non-responders lacking a
vaccine antibody response. The mean S/p value ± standard error of the mean is shown as error bars
for each experimental group. A dotted line represents the cut-off value for seropositivity.
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Figure 11. Overview of interferon-γ secreting cells (IFN-γ SCs) specific for the PRRSV-1 DV strain in
piglets originating from routinely PRRSV vaccinated, seropositive sows (E+ piglets) or piglets origi-
nating from routinely PRRSV vaccinated, seronegative/slightly seropositive sows (E− piglets) Piglets
were either non-vaccinated (NoVac), intramuscularly vaccinated (IM) or intradermally vaccinated
(ID) at 3 weeks of age with the same PRRSV-1 MLV as used in the sows. All piglets were intranasally
challenged with the PRRSV-1 07V063 strain at 6 weeks of age. The number of PRRSV-specific IFN-γ
SCs was quantified at 14, 21, 35, and 41 days post-infection (dpi). The mean number of IFN-γ
SCs ± standard error of the mean are shown as error bars for each experimental group.

3.8. Cytokine Induction in Serum

An overall poor induction of serum IFN-γ was observed in all experimental groups
during the first days post-challenge (Supplementary Figure S4). In contrast, a high TNF-
α induction was observed from 7 dpi until 21 dpi, with a higher early induction in the
vaccinated piglets compared to the non-vaccinated piglets (Figure 12). At 7 dpi, a sig-
nificantly higher TNF-α induction was observed in the serum of both the E− IM piglets
(266.7 ± 84.68 pg/mL; p < 0.0001) and E− ID piglets (218.7 ± 44.91 pg/mL; p = 0.0001) com-
pared to the serum TNF-α concentration of the E− NoVac piglets (40.88 ± 39.50 pg/mL).
At 10 dpi, a significantly higher (p = 0.0026) TNF-α induction was observed in the E+ ID
piglets (197.8 ± 71.30 pg/mL) compared to the E+ NoVac piglets (79.90 ± 30.67 pg/mL). At
14 and 21 dpi, the TNF-α concentrations of all experimental groups were at a similar level.
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Figure 12. Evolution of serum TNF-α in piglets originating from routinely PRRSV vaccinated, seropos-
itive sows (E+ piglets) or piglets originating from routinely PRRSV vaccinated, seronegative/slightly
seropositive sows (E− piglets). Piglets were either non-vaccinated (NoVac), intramuscularly vacci-
nated (IM), or intradermally vaccinated (ID) at 3 weeks of age with the same PRRSV-1 MLV as used
in the sows, and all piglets were intranasally challenged with the PRRSV-1 07V063 strain at 6 weeks
of age. The serum concentration of TNF-α was determined at 7, 10, 14, and 21 days post-infection
(DPI) using a commercial ELISA assay. Results are shown as dots for each piglet, with error bars
representing the mean concentration of serum TNF-α ± standard error of the mean concentration of
serum TNF-α for each experimental group.

4. Discussion

Vaccination against the Porcine Reproductive and Respiratory Syndrome Virus
(PRRSV) is the main tool, together with adequate biosecurity, to limit the potential losses
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caused by this small RNA virus [10]. Unfortunately, the effectiveness of PRRSV vaccination
is suboptimal, mainly due to the large genetic diversity of the virus and its capability to mod-
ulate the immune response [14–16]. Additionally, several studies reported the unsuccessful
PRRSV vaccination of both piglets and sows, resulting in seronegative animals despite
vaccination [26–32]. Our research group aimed to unravel the role of these non-responding
animals by assessing their prevalence, origin, and possible consequences [26,27,33].

4.1. Prevalence and Consequences of Multiple Vaccinated, Seronegative Sows

The presence of sows lacking an adequate PRRSV antibody response despite repeated
immunization with a modified live vaccine (MLV) has been reported as early as 1999 by
Baker et al. but remained understudied [31]. In a recent field study, our research group
assessed the prevalence of these non-responding sows by sampling 1400 sows originating
from seventy PRRSV vaccinating sow herds in Belgium [26]. The overall prevalence of the
multiple vaccinated but seronegative sows was relatively low, ranging from 3.5% to 4.1%.
However, in 40% of the sampled herds, at least one non-responding sow was present on
the twenty sows sampled. In the current study, a screening was performed in 56 PRRSV-
vaccinated sows at 90 days of gestation (one month after the last PRRSV MLV vaccination).
Five out of the 56 sampled sows could be considered as non-responders to the routine
vaccination, testing seronegative or very slightly seropositive (S/p values around the cut-off
for seropositivity).

The true origin of the non-responsiveness remains unknown for now. Interestingly,
the combination strategy of vaccination with both an MLV and an inactivated vaccine (IV)
as a booster had a clear beneficial effect on reducing the likelihood of having seronegative
sows [26]. This suggests that the theory of sows showing energy towards the used MLV
strain, as proposed by Baker et al., is quite likely [31]. Furthermore, other studies showed
that this vaccination strategy (MLV + IV) has a beneficial effect, both on sustaining the
immune response and on the outcomes in endemically infected farms [37,38].

The possible consequences of the non-responding sows can be divided into two large
categories, namely, the consequences for the sow and the consequences for the progeny.
Firstly, the lack of ELISA antibodies and the significantly lower amount of neutralizing
antibodies observed in the non-responding sows suggest that they might be less protected
against a field infection [26]. To confirm this hypothesis, an experimental trial should be
conducted in which both vaccinated seropositive and vaccinated seronegative sows are
challenged. Alternatively, an in-depth investigation into the cell-mediated immunity (CMI)
of both groups of sows could aid in predicting their outcome after the challenge. Secondly,
it was shown in both the current study and in our previous studies that piglets born from
the non-responding sows lack the presence of PRRS-specific maternally-derived antibodies
(MDAs) [27,33]. Given the immature immune system of neonatal pigs, the transfer of
maternal immunity is needed to protect piglets during the immune maturation process [39].
Consequently, it could be hypothesized that piglets born without MDAs are less protected
against a field infection in the early stages of life compared to piglets with MDAs. To
investigate this, our research group conducted a challenging experiment including piglets
born from both PRRSV-vaccinated seropositive sows (E+ piglets, with MDAs) and piglets
born from PRRSV-vaccinated seronegative sows (E− piglets, without MDAs) [33]. After
the experimental challenge at 4 weeks of age (woa), the E− piglets had a higher serum viral
load and nasal shedding in the first days post-infection (dpi) compared to the E+ piglets.
Additionally, higher fever induction was observed in the E− piglets throughout this study.
These results suggest that the subpopulation of piglets without PRRSV-specific MDAs,
which is present in a large proportion of the PRRSV-vaccinating sow herds, might play a
role in the early stages of a PRRSV outbreak or in the enhanced transmission in endemically
infected herds.
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4.2. Interference of MDAs on the PRRSV Piglet Vaccine Response

The presence of vaccinated piglets lacking an adequate PRRSV antibody response is
related to the interference of MDAs, a phenomenon that plays a role in a whole range of
both human and veterinary diseases. Several mechanisms of inhibition of seroconversion
due to the presence of maternal immunity have been described. The best-characterized
form of MDA interference involves the presence of neutralizing MDAs. The interference
of these MDAs is straightforward: neutralization of the administered MLV inhibits the
humoral response. Alternatively, MDAs, both neutralizing and non-neutralizing, can
inhibit the vaccine response by binding to the presented MLV antigens on the cell surface
of infected cells, resulting in the cell-mediated or complement-mediated clearance of the
infected cells. Moreover, MDAs can bind to circulating MLV particles in the blood, leading
to the masking of immunogenic epitopes or to opsonization and subsequent phagocytic
clearance of the MLV particles. Finally, MDAs can cross-link with B-cell receptors, resulting
in suppression of the B cell function, or they can interact with B cells in the germinal center,
influencing the B cell differentiation [40,41]. In pigs, the inhibition of vaccination due to the
presence of MDAs has been described for several diseases, including swine influenza and
classical swine fever [42–44]. In the case of homologous PRRSV vaccination (same MLV
used in piglets as in sows), a clear interference of both neutralizing and non-neutralizing
MDAs on the vaccine response has been described in different studies [27–29]. Conversely,
in the study of Kraft et al., the homologous PRRSV vaccination of piglets at both 2 woa and
3 woa was successful, even in the presence of MDAs [45]. It could be hypothesized that
the lack of MDA interference in this study is related to either the genetic background of
the pigs or to the MLV strain. Additionally, Balasch et al. described the capability of an
MLV to overcome maternal immunity when this MLV is administered to 1-day-old piglets
originating from sows that have been vaccinated once [46]. Finally, in a recent study by
Aguire et al., the use of a heterologous PRRSV vaccine was able to overcome the MDA
interference [47]. Although the use of a heterologous PRRSV vaccine in piglets is beneficial
in overcoming the MDA interference, it is not recommended to use different MLV strains
in the same herd, given the risk for recombination events [19–21].

4.3. Vaccine Effectiveness after Challenge in Piglets Born from Responding and
Non-Responding Sows

In the current study, our research group aimed to further elucidate the consequence
of the multivaccinated seronegative sows for the progeny by comparing the vaccine ef-
fectiveness after experimental challenge in piglets born from both responding sows (E+
piglets) and piglets born from non-responding sows (E− piglets). E+ piglets and E−
piglets were homologous PRRSV vaccinated, either intramuscular (IM) or intradermal
(ID), at 3 woa, followed by an experimental PRRSV-1 challenge at 6 woa. A clear MDA
interference was observed in the E+ piglets, with 10/15 (66.7%) of the vaccinated E+ piglets
lacking a vaccine antibody response by 3 wpv. In contrast, only 3/16 (18.8%) of the E−
vaccinated piglets lacked a vaccine-induced antibody response by 3 wpv. The presence
of MDA interference in the E+ vaccinated piglets corroborates with our previous study
and with the study of Renson et al. (2019), in which 45% (at 8 wpv) and 56% (at 5 wpv) of
the piglets with MDAs lacked an antibody response, respectively [27,29]. In both studies,
the same PRRSV-1 MLV was used as in the current study. More research is warranted
to understand why the MDA interference only occurs in a proportion of the piglets and
which immunological mechanisms are responsible for the MDA interference after PRRSV
vaccination. In the current study, none of the piglets had neutralizing MDAs at the moment
of vaccination, suggesting that non-neutralizing MDAs are capable of interfering with
the PRRSV MLV response as well. However, next to MDAs, the presence of high serum
IFN-α has been shown to inhibit the replication of PRRSV MLVs [48]. In the study of
Renson et al. (2019), PRRSV MLV viremia was only observed in 12.5% of vaccinated piglets
with low neutralizing MDA titers at 1 wpv. This was in sharp contrast with a previous
study conducted by this research group, in which MLV viremia was observed in 60% of
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vaccinated piglets with low neutralizing MDA titers at 2 wpv [28]. A comparison of the
IFN-α levels prior to vaccination revealed that the IFN-α concentration was significantly
higher in their second study [29] compared to their first study [28]. Consequently, the
authors suggested that next to the interference of neutralizing MDAs, a high concentration
of serum IFN-α can contribute to the inhibition of the vaccine response [29]. In the current
study, serum IFN-α was not investigated, and thus, the possible inhibiting effect of serum
IFN-α on the observed lack of vaccine response cannot be confirmed nor ruled out.

The MLV administration route, IM or ID, did not influence the number of piglets
without a vaccine antibody response. Additionally, at 3 wpv, both routes of vaccination
induced a limited number of PRRSV-specific IFN-γ secreting cells. However, the number of
IFN-γ secreting cells was numerically higher in the ID-vaccinated piglets compared to the
IM-vaccinated piglets. Post-challenge, the vaccine effectiveness was similar between IM
and ID routes, with a similar reduction in viremia and similar induction of CMI responses.
These results are in accordance with the recent study of Renson et al. (2024), in which the
systemic and mucosal immune responses and vaccine efficacy were compared between
IM and ID vaccinated piglets using the same PRRSV MLV as used in the current study.
In this study, the ID-vaccinated piglets showed an earlier induction of CMI responses
post-vaccination. However, the immune responses and viremia were similar between IM
and ID-vaccinated piglets post-challenge [49].

Vaccination of both E+ and E− piglets induced a limited reduction in viral load
compared to the non-vaccinated piglets. This limited vaccine effectiveness can partially be
explained by the time of challenge. In this study, the piglets were challenged at an early
time-point, 3 wpv, which is one week earlier than the onset of immunity indicated on the
MLV leaflet. Additionally, a clear influence of vaccine non-responsiveness on the reduction
in viral load was observed in the E+ vaccinated piglets. A significantly lower viremia was
observed in the five responding E+ piglets compared to the eight non-vaccinated piglets,
while a trend towards lower viremia was observed in the responding E+ piglets compared
to the non-responding E+ piglets. Additionally, the ten non-responding piglets had a
similar viremia compared to the eight non-vaccinated E+ piglets. These results suggest
that piglets lacking a vaccine response due to the presence of MDAs are less protected
against infection with a field isolate, which is in accordance with the results of Renson et al.
(2019). This has important implications for field conditions since quite a high proportion of
piglets will not be protected when homologously vaccinated at 3 woa. Alternative vaccine
strategies, such as a double vaccination of piglets (early age + later in the nursery), could
potentially ensure that all piglets have a sufficiently high PRRSV immune status until the
end of the fattening period. In the vaccinated E− piglets, a delayed vaccine effect was
observed, with a reduced viral load from 7 dpi to 14 dpi, compared to the non-vaccinated
E− piglets. This delay in vaccine effectiveness could be explained by the early time-point
of challenge. Surprisingly, the three non-responding E− piglets had a significantly lower
overall viremia compared to the eight non-vaccinated E− piglets, while the reduction in
overall viremia was not significant in the thirteen responding E− piglets compared to the
non-vaccinated E− piglets. It could be hypothesized that a high, sustained serum IFN-α
concentration in these piglets might be responsible for the lack of vaccine response and
the lower viremia post-challenge. Alternatively, a certain resistant phenotype in these
non-responding E− piglets might influence both the vaccine response and the outcome
of infection.

Finally, both the E+ and E− non-responding piglets had a lower antibody titer com-
pared to the responding piglets by the end of the study, suggesting the absence of immune
priming in these non-responders. Moreover, some additional differences were observed
between the challenge outcomes in the E+ piglets and E− piglets. First, a non-significant,
higher fever induction was observed in the E− piglets (both vaccinated and non-vaccinated)
compared to the E+ piglets, which is in line with the findings of our previous experimental
study [33]. Additionally, early and intense induction of both serum TNF-α (at 10 dpi) and
IFN-γ secreting cells (at 21 dpi) was observed in the E− vaccinated piglets compared to
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the E− non-vaccinated piglets, while this difference was less pronounced between the E+
vaccinated and E+ non-vaccinated piglets. By the end of the study, at 41 dpi, a relatively
low antibody titer was observed in four E− non-vaccinated piglets and in one E− IM
non-responding piglet. Finally, a delayed and less pronounced vaccine effect on the serum
viral load was observed in the E− vaccinated piglets in comparison to the vaccine effect in
the E+ vaccinated piglets. Further research is warranted to find an explanation for these
abovementioned differences. Given the fact that the E− piglets originate from sows that
have an inadequate response to the routine MLV vaccination, some genetic factors might
be involved.

5. Conclusions

The current study identified differences in vaccine effectiveness in piglets born from
routinely PRRSV-vaccinated, seropositive (responding), and seronegative (non-responding)
sows. Additionally, the study confirmed the relevance of MDA interference in PRRSV-
vaccinated piglets. Vaccinated piglets lacking an adequate antibody response to the PRRSV
MLV vaccination due to the presence of MDAs were less protected against an experimental
challenge compared to vaccinated piglets that had an adequate antibody response in the
presence of MDAs. This is of importance in field conditions since the MDA interference
can be quite high, with up to 66.7% of the vaccinated piglets lacking an adequate antibody
response at 3 weeks post-vaccination when homologously vaccinated at 3 weeks of age.
Alternative vaccine strategies should be investigated to ensure that all vaccinated piglets
have a sufficient PRRSV immune status until the end of the production cycle. Conversely,
piglets born from non-responding sows lacking a vaccine-induced antibody response seem
to be more resistant to experimental challenge. Given their mother’s irregular immune
response to routine PRRSV vaccination, certain genetic factors might play a role in this
resistant phenotype. Some additional differences in the challenge outcomes between piglets
born from PRRSV-vaccinated, seropositive, and PRRSV-vaccinated, seronegative sows were
observed, which warrants further investigation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/vaccines12030257/s1, Figure S1A: PRRSV-specific antibodies in
fifty-six PRRSV-vaccinated sows sampled at 90 days of gestation (one month after the last PRRSV MLV
vaccination); Figure S1B: PCV2-specific antibodies in the three selected PRRSV seropositive sows and
three selected PRRSV seronegative sows; Figure S2: Evolution of body temperature in piglets born
from PRRSV vaccinated, seropositive sows (E+ piglets) or PRRSV vaccinated, seronegative/slightly
seropositive sows (E− piglets); Figure S3: Evolution of PRRSV-specific antibodies in piglets born
from PRRSV vaccinated, seropositive sows (E+ piglets) or PRRSV vaccinated, seronegative/slightly
seropositive sows (E− piglets); Figure S4: Evolution of serum IFN-γ in piglets born from PRRSV
vaccinated, seropositive sows (E+ piglets) or PRRSV vaccinated, seronegative/slightly seropositive
sows (E− piglets).
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