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Abstract: Bacterial surface display platforms have been developed for applications such as vaccine
delivery and peptide library screening. The type V secretion system is an attractive anchoring motif
for the surface expression of foreign proteins in gram-negative bacteria. SadA belongs to subtype
C of the type V secretion system derived from Salmonella spp. and promotes biofilm formation and
host cell adherence. The inner membrane lipoprotein SadB is important for SadA translocation.
In this study, SadA was used as an anchoring motif to expose heterologous proteins in Salmonella
typhimurium using SadB. The ability of SadA to display heterologous proteins on the S. typhimurium
surface in the presence of SadB was approximately three-fold higher than that in its absence of SadB.
Compared to full-length SadA, truncated SadAs (SadA877 and SadA269) showed similar display
capacities when exposing the B-cell epitopes of urease B from Helicobacter pylori (UreB158–172aa
and UreB349–363aa). We grafted different protein domains, including mScarlet (red fluorescent
protein), the urease B fragment (UreBm) from H. pylori SS1, and/or protective antigen domain 4 from
Bacillus anthracis A16R (PAD4), onto SadA877 or SadA1292. Whole-cell dot blotting, immunofluo-
rescence, and flow cytometric analyses confirmed the localization of Flag×3-mScarlet (~30 kDa)
and Flag×3-UreBm-mScarlet (~58 kDa) to the S. typhimurium surface using truncated SadA877 or
SadA1292 as an anchoring motif. However, Flag×3-UreBm-PAD4-mScarlet (~75 kDa) was displayed
on S. typhimurium using SadA1292. The oral administrated pSadBA1292-FUM/Stm∆ygeA∆murI and
pSadBA877-FUM/Stm∆ygeA∆murI could elicit a significant mucosal and humoral immunity response.
SadA could thus be used as an anchoring motif for the surface expression of large heterologous
proteins as a potential strategy for attenuated bacterial vaccine development.

Keywords: trimeric autotransporter adhesins; SadA; bacterial surface display; Salmonella spp.

1. Introduction

Bacterial cell surface display allows for the production of target biomolecules, such
as peptides or proteins on the bacterial surface. This technology has been investigated
and developed for several applications, including peptide library screening and whole-cell
biocatalysts, especially for vaccine delivery with improvements in immune effectiveness.
Surface display vaccines can increase the immunogenicity of foreign antigens by facilitating
their recognition by the immune system. For example, the surface display of antigens
derived from Mycobacterium tuberculosis on Salmonella typhimurium [1] or Lactiplantibacillus
plantarum [2] evokes a stronger immune response compared to that with cytoplasmic
delivery. Surface display vaccines also have advantages such as their ease of use and low
manufacturing costs.
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A common strategy used in surface display systems is to fuse a protein or peptide
with an anchoring motif that is important for the stability of heterologous protein expres-
sion onto the bacterial surface. Various proteins, including fimbria proteins [3], outer
membrane proteins [4,5] (OmpA, OmpT, OmpC, MipA), ice-nucleation protein (INP) [6],
and monomeric autotransporters (the adhesin involved in diffuse adherence (AIDA-I),
hemoglobulin-binding protease (Hbp), MisL, ShdA) [7–10], have been developed as an-
choring motifs in gram-negative bacterial display systems. However, each anchoring motif
has different drawbacks, such as size limitation, mechanical fragility, and steric hindrance.

Trimeric autotransporter adhesins (TAAs) are type V secretion system subtype C
(T5cSS) proteins, which are involved in several aspects of the infection process in gram-
negative bacteria and developed as candidates for recombinant subunit vaccines [11]. TAAs
are composed of three identical polypeptide chains and share a common N-terminus–head–
neck–stalk–membrane anchor–C-terminus architecture, varying greatly in length, from
23 nm [12] to 240 nm [13]. Nakatani reported the trimeric autotransporter adhesin (AtaA)
from Acinetobacter sp. Tol 5 could be used to display a His-tag in Escherichia coli cells. This on-
fiber display system could change the distance between the cell surface and the displayed
biomolecule [14]. Phan et al. used the truncated mutant of trimeric autotransporter UpaG in
uropathogenic E. coli to display calmodulin and a nanobody binding to a green fluorescent
protein on E. coli cells with the overexpression of the BAM (β-barrel–assembly machinery)
complex [15]. The length, trimeric form, and autodisplay characteristics indicate that TAAs
could serve as display platforms for efficient vaccine development.

Attenuated Salmonella spp. have been developed to deliver heterologous antigens from
viruses, bacteria, protozoans, and fungi to induce immune responses against pathogenic
infections [3,7,16,17]. SadA, the TAA that has been characterized in S. typhimurium, consists
of polypeptides comprising 1461 amino acids and forms a 108 nm long model [18,19],
whereas SadB, a small inner membrane lipoprotein in Salmonella spp., is important for
SadA translocation. Grin et al. reported a significantly higher immunofluorescence signal
level in a PBAD::sadBA Salmonella enterica strain than in a PBAD::sadA S. enterica strain
upon L-arabinose addition, suggesting the direct involvement of SadB in the biogenesis
of SadA [20]. In this study, we first utilized full-length and truncated SadAs to display
epitope peptides on the surface of S. typhimurium with the assistance of SadB. Furthermore,
truncated SadAs were employed to display heterologous proteins of different sizes to test
the passenger protein capacity. We evaluated the immunogenicity of the heterologous
antigen surface displayed on S. typhimurium using SadA as an anchoring motif in a mouse
model. Our work indicates that SadA from S. typhimurium could be developed into a novel
antigen surface expression system for studying attenuated live vector vaccines.

2. Materials and Methods
2.1. Plasmid Construction

The primers and plasmids used in this study are listed in Tables S1 and S2. The
sadA1–168-flag×3-sadA169–990 and sadA1–168-flag×3-a3c10-a1h10-sadA169–990 fragments were
synthesized commercially and subcloned into pUC57 (General Biol, Anhui, China), as
shown in Table S3. The sequence of the sadA331–1462 fragment with restriction enzyme
sites (NheI and HindIII) was amplified via PCR using S. typhimurium 1.1174 genomic
DNA as the template. The sadA991–4386 gene (5′-NheI–3′-HindIII restriction fragment)
and the sadA1–168-flag×3-sadA169–990 fragment (with 5′-NcoI–3′-NheI restriction enzyme
sites) amplified from pUC57-sadA1–168-flag×3-sadA169–990 were subcloned into the pTrc99A
vector, which was named pSadA-Flag×3. The sadB gene with a 5′-EcoRI site and the
sadA1–168-flag×3-sadA169–990 fragment with a 3′-HindIII site were amplified via PCR us-
ing S. typhimurium and pSadA-Flag×3 as the templates, respectively. DNA fragments
of sadB-sadA1–168-flag×3-sadA169–4386 with EcoRI and NheI sites were amplified via over-
lap extension PCR. To construct pSadBA-Flag×3, the sadB-sadA1–168-flag×3-sadA169–4386

(5′-EcoRI–3′-HindIII restriction fragment) was ligated into the pTrc99A vector digested with
EcoRI and HindIII. The genes of sadBA derivatives fused with the genes flag×3, ureB158–
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172aa, and ureB349–363aa from H. pylori SS1 were constructed via overlap extension PCR
using the primers described in Table S2. The genes of sadBA derivatives were ligated into
EcoRI/HindIII-digested pTrc99A. The genes of ureBm, pad4, and mScarlet were amplified
via PCR using H. pylori SS1 genomic DNA, B. anthracis A16R genomic DNA, and the
plasmid pJOE-mScarlet as templates, respectively. sadBA877-FM (flag×3-mScarlet), sadBA877-
FUM (flag×3-ureBm-mScarlet), sadBA877-FUPM (flag×3-ureBm-pad4-mScarlet), sadBA1292-FM,
sadBA1292-FUM, and sadBA1292-FUPM were obtained using overlap extension PCR with
EcoRI/HindIII restriction sites (Table S2). These genes were ligated into the same restriction
sites in the pTrc99A vector. The plasmid for the intracellular production of FM (Flag×3-
mScarlet) was amplified using the primer pairs shown in Table S1. The resulting PCR
product was digested with EcoRI/HindIII and ligated into the same restriction sites of the
pTrc99A vector to yield pFM. All the constructed recombinant plasmids were confirmed
via sequencing (Tianyi Huiyuan, Beijing, China).

2.2. Chromosomal Deletion of sadA, ygeA, and murI Genes from S. typhimurium

The S. typhimurium 1.1174 parental strain was used for the construction of the Stm∆sadA
strain. All genetic manipulations were performed using the CRISPR-Cas9 system [21].
Briefly, at an optical density (OD)600 = 0.6~0.7, bacterial cultures were placed on ice for
30 min and centrifugated at 3500× g for 8 min. After washing with ice-cold ddH2O,
S. typhimurium cells were washed three times with 10% glycerol to make electrocompetent
cells. Then, pCas was transformed into S. typhimurium cells. The N20 sequence was de-
signed using the online design tool (https://sg.idtdna.com/site/order/designtool/index/
CRISPR_CUSTOM, accessed on 9 March 2022), and inserted into pTargetF to obtain re-
combinant plasmid named pTargetF-sadA. Next, 517 bp upstream and 493 bp downstream
sequences of the targeted region were cloned to obtain donor DNA using the primers
shown in Table S2. The pCas/S. typhimurium was made into electrocompetent cells by
adding arabinose at a final concentration of 10 mM for λ-Red induction. Then, 100 ng
of pTargetF-sadA and 1 µg of donor DNA were co-transformed into fleshly grown elec-
trocompetent pCas/S. typhimurium cells. The sadA-deleted clones were verified using
PCR and DNA sequencing after overnight culture on Luria–Bertani (LB) plates containing
kanamycin and spectinomycin (Table S2). The correct edited clone was cultured in LB with
kanamycin and isopropyl-β-D-thiogalactopyranosid (IPTG) overnight at 30 ◦C to remove
pTargetF. Subsequently, pCas was removed by culturing the strains overnight at 42 ◦C in
LB medium without any antibiotics.

ygeA and murI genes were deleted from the chromosomal of the S. typhimurium
1.1174 parental strain according to the method mentioned above.

2.3. Strains and Growth Conditions

Escherichia coli strain DH5α used for cloning, and Stm∆sadA used for expression, were
routinely cultured in LB broth with shaking or on agar supplemented with 100 µg/mL
ampicillin and/or IPTG, where appropriate, at 37 ◦C. S. typhimurium, Stm∆sadA, and
B. anthracis A16R were grown in LB broth at 37 ◦C for DNA isolation. The ∆ygeA and
∆murI double-deleted strain (Stm∆ygeA∆murI) was cultured in LB broth supplemented
with 100 µg/mL ampicillin and 5 mM D-glutamic acid (D-Glu) at 37 ◦C. H. pylori SS1 was
cultured on Campylobacter Ager Base plates (CDRC, Shanghai, China) containing 7% fetal
bovine serum in a microaerophilic atmosphere (80% N2, 5% O2, 15% CO2) for 3 days at
37 ◦C to extract genomic DNA.

2.4. Protein Expression and Analysis

Stm∆sadA and Stm∆ygeA∆murI strains with the recombinant plasmid were grown
aerobically in 5 mL of LB liquid medium (200 µg/mL ampicillin) and LB liquid medium
(200 µg/mL ampicillin and 5 mM D-Glu) overnight at 37 ◦C, respectively. The next
day, the cells were inoculated and induced with the addition of 1 mM IPTG when the
OD600 value reached about 0.6, and then incubated for 15 h at 16 ◦C. 1 OD600 bacterial
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cells were harvested, washed twice with PBS, and resuspended in 200 µL of SDS sample
buffer. A 30 µL sample was subjected to 4~12% SDS-PAGE (GenScript, Nanjing, China).
The transferred PVDF membrane was blocked in PBST containing 5% skim milk at 4 ◦C
overnight. Subsequently, the membrane was incubated with anti-Flag tag rabbit polyclonal
antibody (diluted to 1:3000 with 5% skim milk in PBST; Easybio, Beijing, China), or A1H10
or A3C10 (1:2000 dilution) for 1 h at 37 ◦C. After three washes with PBST, the membrane
was incubated with HRP-conjugated goat anti-rabbit IgG (1:5000 dilution; Easybio, Beijing,
China) or HRP-conjugated goat anti-mouse IgG (1:5000 dilution; Abcam, Cambridge, UK)
for 1 h at 37 ◦C. An ECL-enhanced Western Blot Analysis Kit (Easybio, Beijing, China) was
used to detect the binding reactions.

2.5. Proteinase K Treatment of Bacterial Cells

Proteinase K digestion of the surface-exposed domains was performed as described
by Xu et al. [6]. Briefly, the 1 OD600-induced bacterial cells were incubated with proteinase
K at the final concentration of 400 µg/mL at 37 ◦C, and then we added 2 mM PMSF to stop
the reaction. Aliquots were washed three times with PBS before protein electrophoresis,
and immunofluorescence analyses were performed.

2.6. Immunofluorescence and Flow Cytometric Analyses

Immunofluorescence analysis was performed as described previously. Briefly, 1 OD600
cell was immobilized with 4% paraformaldehyde and blocked in PBS containing 1% bovine
serum albumin (BSA) for 30 min. A rabbit anti-Flag antibody (diluted to 1:50 with 1% BSA
in PBS) and an Alexa Fluor 488 goat anti-rabbit IgG antibody (1:50 dilution; Easybio,
Beijing, China) were used for immunostaining. After washing with PBS, the cells were
resuspended in 1 mL of PBS and transferred to a microplate (Nunc MicroWell 96, Thermo
Fisher Scientific, New York, NY, USA). A SpectraMax i3× microplate reader was used to
measure the fluorescence intensity using wavelengths of Ex: 490 nm and Em: 535 nm. The
amount of recombinant proteins displayed on the cell surface was quantified by dividing
the fluorescence intensity of each sample by its OD600 value. Finally, the cells were mounted
on poly-L-lysine-coated coverslips and dyed with DAPI, and immunofluorescence images
were captured with a Nikon Ti2 inverted fluorescence microscope.

Flow cytometric analysis of the samples was performed. Each sample was labeled
as described previously herein, using a rabbit anti-Flag antibody as the primary antibody
(1:50 dilution) and Alexa Fluor 488 goat anti-rabbit IgG antibody (1:50 dilution) as the
secondary antibody. Surface expression levels were evaluated by measuring fluorescence
using a Northern Lights-CLC flow cytometer (CYTEK, Shanghai, China).

2.7. Whole-Cell Dot Blot

Recombinant S. typhimurium was immobilized in 4% paraformaldehyde and 0.04 OD600
cells were dropped onto the nitrocellulose membrane (NC). After drying for 30 min at 37 ◦C,
the dot blot protocol proceeded as described previously herein using the rabbit anti-Flag-tag
antibody and A3C10 as the primary antibody. As the whole-cell dot blot did not destroy
the cell membrane and the cell membrane remained intact, the results showed whether the
recombinant protein was displayed on the surface of the bacteria.

2.8. Immunization, Sample Collection, and Specific Antibody Detection by ELISA

For cultivation of pSadBA1292-FUM/Stm∆ygeA∆murI and pSadBA877-FUM/Stm∆ygeA
∆murI strains, LB liquid medium was supplemented with 200 µg/mL ampicillin and
5 mM D-Glu. After inducing by 1 mM IPTG overnight at 16 ◦C, the cells were obtained by
centrifugation and washed with PBS twice.

Three groups of 6-to-8-week-old BALB/c female mice (N = 10/group) were purchased
from the Vital River Laboratory (Beijing, China) and immunized three times on days 0,
10, and 25. Group A and group B received oral pSadBA1292-FUM/Stm∆ygeA∆murI and
pSadBA877-FUM/Stm∆ygeA∆murI with 109 CFU for all three immunizations, respectively.
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Group C received oral PBS for all three immunizations as the control group. On day 31,
sera and fecal samples from all mice were collected for the detection of antigen-specific IgG
and secretory IgA (sIgA) levels. The fecal samples were treated according to the method
reported by Zhang et al. [22].

Antigen-specific IgG levels in the serum and sIgA levels in the fecal samples were
determined by ELISA according to the protocol published previously [22].

2.9. Statistical Analysis

All data were analyzed using GraphPad Prism 8.0.2 and are presented as the mean ± stan-
dard deviation. One-way ANOVA was employed to determine significant differences, and a
p-value < 0.05 was considered statistically significant.

3. Results
3.1. Full-Length SadA Can Be Displayed on the Surface of S. typhimurium

To evaluate the suitability of SadA protein for surface display, a sadA-deleted mutant
strain of S. typhimurium was constructed using the CRISPR-Cas9 genome editing system and
selected as the expression host bacterium. The sadA-deleted mutant strain was confirmed
by PCR and sequencing (Figure S1A).

Then, we constructed a Flag×3-tagged full-length SadA to confirm its surface display
on Stm∆sadA cells. The recombinant protein was expressed in Stm∆sadA and the Flag-tag
display on the surface was tested. We confirmed the production of the Flag-tagged SadA in
Stm∆sadA through immunoblotting using the anti-Flag-tag antibody. The expressed protein
was detected as a band of approximately 185 kDa on a PVDF membrane (Figure 1A).
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Figure 1. Displaying of the full-length SadA on the surface of S. typhimurium mutant cells. (A) Western
blot of whole cell lysates to analyze expression of SadA in Stm∆sadA. The Flag tag was inserted at
the N-terminus of SadA passenger. The recombinant protein bands were detected by incubating
the PVDF using anti-Flag-tag antibody. The putative position of monomeric form (*) was indi-
cated on the right side of the panel. Lane1, pTrc99A/Stm∆sadA; lane 2, pSadA-Flag×3/Stm∆sadA.
Dot blot of whole cells showed the surface display of Flag-tagged SadA on Stm∆sadA (B). Lane1,
pTrc99A/Stm∆sadA; lane2, pSadA-Flag×3/Stm∆sadA. (C) Cell surface display of Flag-tagged SadA
by immunofluorescence staining using anti-Flag-tag primary antibody and AlexaFluor 488 conjugated
secondary antibody (Objective, 100×; Magnification, 1000×).

To confirm that the SadA-Flag×3 protein was exposed on the surface of intact bacterial
cells, a whole-cell dot blot assay was performed by incubating bacterial suspensions spotted
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on NCs with an anti-Flag-tag antibody. The anti-Flag-tag antibody reacted strongly with
pSadA-Flag×3/Stm∆sadA, but not with the control group cells (Figure 1B). Since the dot
blot assay did not destroy the cell membrane and the cell membrane remained intact, the
result showed that the recombinant protein was successfully displayed on the surface
of Stm∆sadA cells. At the same time, the immunofluorescence staining also confirmed
that the SadA-Flag×3 protein was located on the cell surface (Figure 1C). In contrast, no
fluorescence of the Flag tag was detected for pTrc99A/Stm∆sadA.

3.2. SadB Enhances the Surface Display of SadA in S. typhimurium

The sadB gene is located upstream of sadA and in an operon containing sadA. We
created inducible overexpression constructs for the entire sadBA operon to improve the
SadA surface display. Western blot analysis showed that the recombinant protein was
successfully expressed in the presence of SadB, and the protein expression level of SadBA
was significantly higher than that of SadA alone (Figure 2A).
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Figure 2. The full-length SadA fiber could display on the surface of S. typhimurium mutant cells with
the assistance of SadB. (A) Western blot of whole cell lysates to analyze their expression in Stm∆sadA.
The 1 mL induced cell suspensions (OD600 = 1) were washed twice by PBS and resuspended in
200 µL SDS sample buffer and boiled for 5 min. Then, 60 µL pSadA-Flag×3/Stm∆sadA, 30 µL
pSadBA-Flag×3/Stm∆sadA, and 30 µL pTrc99A/Stm∆sadA ran on 4~12% SDS-PAGE for Western
blot. The recombinant protein bands were detected by incubating the PVDF with anti-Flag-tag
antibodies. The putative position of monomeric form (*) was indicated on the right side of the panel.
Lane1, pSadA-Flag×3/Stm∆sadA; lane2, pSadBA-Flag×3/Stm∆sadA; lane3, pTrc99A/Stm∆sadA.
(B) Dot blot of whole cells to analyze the surface display of recombinant proteins on Stm∆sadA with
the assistance of SadB or not. Lane1, pTrc99A/Stm∆sadA; lane2, pSadA-Flag×3/Stm∆sadA; lane3,
pSadBA-Flag×3/Stm∆sadA. (C) Surface display capacity as revealed by immunofluorescence staining
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of the Flag-tag inserted N-terminus of SadA passenger in the presence of SadB (Objective, 100×;
Magnification, 1000×). (D) A comparison of fluorescence intensities between the whole cells
treated with protease K or not. (1) pSadA-Flag×3/Stm∆sadA; (2) pSadBA-Flag×3/Stm∆sadA;
(3) pFM/Stm∆sadA; (4) pTrc99A/Stm∆sadA. The data were presented as mean ± SD, and differ-
ences between groups were tested using one-way ANOVA. **** p < 0.0001, ns p > 0.05.

Whole-cell dot blotting and immunofluorescence analyses showed that the recombi-
nant proteins were located on bacterial surfaces (Figure 2B,C). Only proteins displayed
on the bacterial surface can be digested by proteinase K, which cannot enter the cells. A
significant decrease in the fluorescence intensity of pSadA-Flag×3/Stm∆sadA or pSadBA-
Flag×3/Stm∆sadA was observed after treatment with proteinase K compared to that
without treatment. Although SadA could be used for surface display, this occurred at a
low level according to the fluorescence intensity (Figure 2D). The fluorescence intensity of
recombinant cells in the presence of SadB was approximately three-fold higher than that in
the absence of SadB (Figure 2D). These results indicated that the Flag tag was exported to
the cell surface, confirming the feasibility of SadBA as a surface display vector.

3.3. Epitopes Can Be Displayed on the Cell Surface Using SadAs with Different Sizes as
Anchoring Motifs

UreB is the subunit responsible for the enzymatic activity of urease, and is considered
to be an excellent candidate antigen for the development of vaccines against H. pylori
infection. UreB158–172aa and UreB349–363aa have been identified as B-cell epitopes of
UreB [23]. We fused Flag tags and the two previously mentioned epitopes of UreB with six
SadA derivatives, as shown in Figure 3. These constructs were expressed in Stm∆sadA, and
the epitopes displayed on these derivatives were examined. The expression of different
SadA derivatives was detected via Western blotting using an antibody against the Flag-
tag and monoclonal antibodies for UreB158–172aa (A1H10) and UreB349–363aa (A3C10),
resulting in the display of monomer bands at ~40, ~50, ~80, ~115, ~160, and ~185 kDa
(Figure 4A and Figure S2A,B). The bands at higher positions on the PVDF membrane
could represent multimeric forms of the constructs, with the stronger reacting bands
likely representing multiple conformations of dimeric and trimeric forms, which have
been observed for the trimeric autotransporter YadA (Yersinia sp.) [24] and truncated
UpaG [25]. Trimeric autotransporters have been reported to be resistant to denaturation
during SDS-PAGE [26]. Expression of the trimeric form was significantly greater in the
pSadBA877-FU2/Stm∆sadA strain than in the other recombinant cells (Figure 4A). The
disappearance of bands corresponding to the trimeric form in pSadBA1292-FU2/Stm∆sadA,
pSadBA1171-FU2/Stm∆sadA, pSadBA877-FU2/Stm∆sadA, and pSadBA644-FU2/Stm∆sadA
after proteinase K treatment indicated that the recombinant proteins were displayed on the
bacterial surface using SadA derivatives as the membrane anchor (Figure 4A). However,
no trimer protein bands from pSadBA269-FU2/Stm∆sadA and pSadBA-FU2/Stm∆sadA
were observed on PVDF membranes. No dot was detected in the pTrc99A/Stm∆sadA
control group, but the specific response signal was observed with the six SadA derivatives
when using the anti-Flag-tag antibody, A1H10, or A3C10, which confirmed that epitopes
were successfully displayed on the surface of bacteria using the six SadA derivatives as
anchoring motifs (Figure S2C).

Immunofluorescence microscopy showed a green fluorescence signal that appeared
over pSadBA-FU2/Stm∆sadA, pSadBA269-FU2/Stm∆sadA, pSadBA644-FU2/Stm∆sadA,
pSadBA877-FU2/Stm∆sadA, pSadBA1171-FU2/Stm∆sadA, and pSadBA1292-FU2/Stm∆sadA
cells (Figure 4B). The display capacity was further compared by quantifying Alexa Fluor 488
fluorescence using a microplate reader. Figure 4C shows that the fluorescence intensity of
pSadBA877-FU2/Stm∆sadA, pSadBA269-FU2/Stm∆sadA, and pSadBA-FU2/Stm∆sadA was
significantly higher than that of pSadBA1292-FU2/Stm∆sadA, pSadBA1171-FU2/Stm∆sadA,
and pSadBA644-FU2/Stm∆sadA, which was in line with the high rate of positivity observed
in these three cell lines, according to the flow cytometric analysis (Table 1). Further, the in-
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duced recombinant S. typhimurium treated with proteinase K showed a significant decrease
in fluorescence intensity compared to that in the absence of proteinase K (Figure 4C). These
data demonstrated that epitopes were displayed on the surface of the transformed cells
using truncated and full-length SadAs as the anchoring motif.
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Figure 4. Expressing and displaying epitopes on the cell surface using full-length and truncated
SadAs. (A) Western blot showed that fused proteins could be expressed in the Stm∆sadA using
the antibodies against Flag tag. Then, 30 µL pSadBA1292-FU2/Stm∆sadA (lane 1), pSadBA877-
FU2/Stm∆sadA (lane 2), pSadBA1171-FU2/Stm∆sadA (lane 3), pSadBA644-FU2/Stm∆sadA (lane 4),
pSadBA269-FU2/Stm∆sadA (lane 5) and pSadBA-FU2/Stm∆sadA (lane 6) treated with proteinase K
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(+) or not (−) were load on 4~12% SDS-PAGE for Western blot to show the changes of bands. The
putative positions of monomeric (*) and trimeric (***) complexes were indicated under the bands.
(B) Surface display capacity as revealed by immunofluorescence staining of the Flag-tag inserted
N-terminus of SadA derivatives (Objective, 100×; Magnification, 1000×). (C) A comparison of
fluorescence intensities between the whole cells treated with protease K or not. (1) pSadBA1292-
FU2/Stm∆sadA; (2) pSadBA1171-FU2/Stm∆sadA; (3) pSadBA877-FU2/Stm∆sadA; (4) pSadBA644-
FU2/Stm∆sadA; (5) pSadBA269-FU2/Stm∆sadA; (6) pSadBA-FU2/Stm∆sadA; (7) pTrc99A/Stm∆sadA.
The data were presented as mean ± SD, and differences between groups were tested using one-way
ANOVA. ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns p > 0.05.

Table 1. Flow cytometric analysis of different SadA derivatives.

Sample
Positive Rate (%)

Average Value
1 2 3

pTrc99A/Stm∆sadA 0.02% 0.00% 0.00% 0.0067%
pSadBA1292-FU2/Stm∆sadA 71.55% 77.22% 73.85% 74.21%
pSadBA1171-FU2/Stm∆sadA 41.17% 32.41% 41.13% 38.24%
pSadBA877-FU2/Stm∆sadA 78.51% 83.99% 82.55% 81.68%
pSadBA644-FU2/Stm∆sadA 50.39% 52.05% 55.16% 52.53%
pSadBA269-FU2/Stm∆sadA 85.70% 86.50% 87.90% 86.70%

pSadBA-FU2/Stm∆sadA 85.00% 87.37% 89.08% 87.15%
pSadBA1292-FM/Stm∆sadA 85.77% 83.46% 84.43% 84.55%

pSadBA1292-FUM/Stm∆sadA 76.30% 75.26% 74.08% 75.21%
pSadBA1292-FUPM/Stm∆sadA 82.55% 82.75% 85.26% 83.52%

pSadBA877-FM/Stm∆sadA 92.47% 93.36% 93.43% 93.09%
pSadBA877-FUM/Stm∆sadA 32.04% 33.12% 41.23% 35.46%

3.4. Truncated SadAs Can Mediate the Surface Display of Heterologous Proteins on the
S. typhimurium Mutant

The decoration of bacteria with multiple fused antigens can be used as a tool to
increase the efficacy of antigen delivery. Because SadA is composed of 1462 amino acids,
its full-length expression with a heterologous protein imposes a heavy burden on the
cell, resulting in low expression and suboptimal surface display. Therefore, we used the
truncated SadAs (SadA1292 and SadA877) to export the heterologous protein on the surface
of Stm∆sadA cells. We chose the fluorescent protein mScarlet, the UreB fragment (UreB111–
377aa, containing UreB158–172aa and UreB349–363aa), and the PAD4 fragment (139 aa),
which could be used as the vaccine candidate against B. anthracis [27], to analyze the ability
of this system to express foreign proteins. For this, we designed two truncated SadAs
fused with an N-terminally Flag×3-mScarlet (~30 kDa, SadBA877-FM, and SadBA1292-FM)
and Flag×3-UreBm-mScarlet (~58 kDa, SadBA877-FUM, and SadBA1292-FUM) or Flag×3-
UreBm-PAD4-mScarlet (~75 kDa, SadBA877-FUPM, and SadBA1292-FUPM) (Figure 5).
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As expected, the expression of recombinant proteins resulted in a pink color when
Stm∆sadA was induced (Figure S3A). The expression of the fusion proteins was analyzed
via Western blotting using a polyclonal antibody against the Flag tag and the A1H10
monoclonal antibody (Figure 6A and Figure S3B). The monomeric bands formed by
pSadBA1292-FM/Stm∆sadA, pSadBA1292-FUM/Stm∆sadA, pSadBA1292-FUPM/Stm∆sadA,
pSadBA877-FM/Stm∆sadA, pSadBA877-FUM/Stm∆sadA, and pSadBA877-FUPM/Stm∆sadA
were estimated to be approximately 60, 90, 115, 115, 140 and 165 kDa, respectively. And
pSadBA1292-FM/Stm∆sadA, pSadBA1292-FUM/Stm∆sadA, pSadBA1292-FUPM/Stm∆sadA,
and pSadBA877-FM/Stm∆sadA resulted in trimer bands.

Whole-cell dot blot and immunofluorescence analysis indicated that the recombinant pro-
teins were located on the surface of pSadBA1292-FM/Stm∆sadA, pSadBA1292-FUM/Stm∆sadA,
pSadBA1292-FUPM/Stm∆sadA, pSadBA877-FM/Stm∆sadA, and pSadBA877-FUM/Stm∆sadA
(Figures S3C and 6B). However, a small amount of green fluorescence was observed on
pSadBA877-FUPM/Stm∆sadA, indicating that FUPM display on the cell surface was marginal
when using SadBA877 as the anchoring motif. No fluorescence was detected for pFM/Stm∆sadA,
which is a control strain, expressing FM with no membrane anchor.

The fluorescent intensity and rates of positivity of SadBA877-FUM/Stm∆sadA were
significantly lower than those of pSadBA877-FM/Stm∆sadA (Figure 6C, Table 1). Mean-
while, the fluorescence intensity of pSadBA1292-FM/Stm∆sadA was higher than that of
pSadBA1292-FUM/Stm∆sadA and pSadBA1292-FUPM/Stm∆sadA. These results indicated
that the SadA display was decreased as the molecular weight of the foreign protein
was increased.

The fluorescence intensity and rate of positivity of pSadA877-FM/Stm∆sadA were
higher than those of pSadBA1292-FM/Stm∆sadA (Figure 6C, Table 1), which was consistent
with the improved ability of SadBA877 to facilitate epitope surface display compared to
that of SadBA1292.

When the recombinant cells were treated with proteinase K, the fluorescence of
pSadBA1292-FM/Stm∆sadA, pSadBA1292-FUM/Stm∆sadA, pSadBA1292-FUPM/Stm∆sadA,
pSadBA877-FM/Stm∆sadA, and pSadBA877-FUM/Stm∆sadA was decreased significantly
(Figure 6C). These data indicated that the heterologous proteins FM, FUM, and FUPM
could be displayed on the surfaces of transformant cells using SadBA1292 as an anchoring
motif and that SadA877 could help to expose FM and FUM on the surfaces of cells.
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the antibodies against Flag tag (A). The putative positions of monomeric (*), dimeric (**), and trimeric
(***) complexes were indicated under the bands. (1) pSadBA1292-FM/Stm∆sadA; (2) pSadBA1292-
FUM/Stm∆sadA; (3) pSadBA1292-FUPM/Stm∆sadA; (4) pSadBA877-FM/Stm∆sadA; (5) pSadBA877-
FUM/Stm∆sadA; (6) pSadBA877-FUPM/Stm∆sadA; (7) pFM/Stm∆sadA. (B) Cell surface display
of Flag-tagged SadA derivatives by immunofluorescence staining using anti-Flag-tag primary
antibody and Alexa Fluor 488-conjugated secondary antibody (Objective, 100×; Magnification,
1000×). (C) A comparison of fluorescence intensities between the whole cells treated with pro-
tease K or not. (1) pSadBA1292-FU2/Stm∆sadA; (2) pSadBA1292-FM/Stm∆sadA; (3) pSadBA1292-
FUM/Stm∆sadA; (4) pSadBA1292-FUPM/Stm∆sadA; (5) pSadBA877-FU2/Stm∆sadA; (6) pSadBA877-
FM/Stm∆sadA; (7) pSadBA1292-FUM/Stm∆sadA; (8) pTrc99A/Stm∆sadA. The data were presented
as mean ± SD, and differences between groups were tested using one-way ANOVA. * p < 0.05,
**** p < 0.0001, ns p > 0.05.

3.5. Immune Responses Elicited by pSadBA1292-FUM/Stm∆ygeA∆murI and
pSadBA877-FUM/Stm∆ygeA∆murI in Mice Model

We transferred pSadBA1292-FUM and pSadBA877-FUM into competence cells of Stm∆yg
eA∆murI, which had been confirmed by PCR and sequencing (Figure S1B). The heterolo-
gous proteins were expressed and the surface displayed successfully in Stm∆ygeA∆murI
(Figures S4 and S5). In order to determine whether the recombinant protein was able to elicit
antibodies, BALB/c mice were immunized orally with pSadBA1292-FUM/Stm∆ygeA∆murI and
pSadBA877-FUM/Stm∆ygeA∆murI (Figure 7A). Antigen-specific IgGs of groups A and B were
significantly higher than those of group C in the same dilution. Meanwhile, differences in serum
IgG levels for groups A and B were not significant in the same dilution (Figure 7B). Compared
with the control group C, groups A and B both produced the antigen-specific mucosal sIgA, but
there was no difference between groups A and B (Figure 7C).

Vaccines 2024, 12, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 7. Immunization schedule and immune responses induced by immunization. (A) Group A 
and B mice received oral administration of 109 CFU pSadBA1292-FUM/StmΔygeAΔmurI and 
pSadBA877-FUM/StmΔygeAΔmurI on days 0, 10, 25, respectively; Group C mice received oral admin-
istration of PBS. On the sixth day after the final immunization, serum and feces of the mice were 
collected and the UreB-specific IgG (B) and sIgA (C) levels were measured by ELISA. Differences 
between groups were tested using one-way ANOVA. **** p < 0.0001, ns p > 0.05. 

4. Discussion 
SadA was the first reported TAA exposed on the surface of Salmonella spp. cells and 

it is highly conserved among S. enterica strains [18]. SadA is a positional ortholog of UpaG 
and EhaG in E. coli, but with different functions. Specifically, it promotes biofilm for-
mation and host cell adherence but does not bind extracellular matrix molecules or medi-
ate serum resistance. Although the exact mechanism of TAA secretion remains unclear, 
many important proteins involved in TAA biogenesis have been found, such as BAM [28] 
and chaperones [29]. During the biogenesis of SadA, a trimeric protein, SadB, for which 
the encoding gene is located upstream of sadA, facilitates the export of SadA to the cell 
surface. pSadBA-Flag×3/StmΔsadA had an approximately three-fold higher mean fluores-
cence than pSadA-Flag×3/StmΔsadA in this study (Figure 2D), which is in accord with a 
previous report [15]. Western blot results showed that SadA monomer expression in 
pSadBA-Flag×3/StmΔsadA was significantly higher than that in pSadA-Flag×3/StmΔsadA 
in this study, suggesting that SadB might enhance the surface display of SadA by increas-
ing its expression or preventing its degradation when it is not yet at the cell surface, in the 
periplasm. During TAA biogenesis, the N-terminal signal sequence mediates transloca-
tion of the subunit into the periplasm in a Sec-dependent manner. The Sec system also 
transports several proteins, such as lipoproteins, periplasmic proteins, and outer mem-
brane proteins (OMPs), into the periplasm [30]. When heterologous OMPs are over-ex-
pressed, the Sec machinery is prone to saturation. To solve this problem, the most abun-
dant OMPs can be knocked out to alleviate the burden on the Sec system and provide a 
larger membrane area for foreign proteins. Meuskens found that the expression of the 

Figure 7. Immunization schedule and immune responses induced by immunization. (A) Group A and
B mice received oral administration of 109 CFU pSadBA1292-FUM/Stm∆ygeA∆murI and pSadBA877



Vaccines 2024, 12, 399 13 of 17

-FUM/Stm∆ygeA∆murI on days 0, 10, 25, respectively; Group C mice received oral administration of
PBS. On the sixth day after the final immunization, serum and feces of the mice were collected and
the UreB-specific IgG (B) and sIgA (C) levels were measured by ELISA. Differences between groups
were tested using one-way ANOVA. **** p < 0.0001, ns p > 0.05.

4. Discussion

SadA was the first reported TAA exposed on the surface of Salmonella spp. cells and it
is highly conserved among S. enterica strains [18]. SadA is a positional ortholog of UpaG
and EhaG in E. coli, but with different functions. Specifically, it promotes biofilm formation
and host cell adherence but does not bind extracellular matrix molecules or mediate
serum resistance. Although the exact mechanism of TAA secretion remains unclear, many
important proteins involved in TAA biogenesis have been found, such as BAM [28] and
chaperones [29]. During the biogenesis of SadA, a trimeric protein, SadB, for which the
encoding gene is located upstream of sadA, facilitates the export of SadA to the cell surface.
pSadBA-Flag×3/Stm∆sadA had an approximately three-fold higher mean fluorescence than
pSadA-Flag×3/Stm∆sadA in this study (Figure 2D), which is in accord with a previous
report [15]. Western blot results showed that SadA monomer expression in pSadBA-
Flag×3/Stm∆sadA was significantly higher than that in pSadA-Flag×3/Stm∆sadA in this
study, suggesting that SadB might enhance the surface display of SadA by increasing
its expression or preventing its degradation when it is not yet at the cell surface, in the
periplasm. During TAA biogenesis, the N-terminal signal sequence mediates translocation
of the subunit into the periplasm in a Sec-dependent manner. The Sec system also transports
several proteins, such as lipoproteins, periplasmic proteins, and outer membrane proteins
(OMPs), into the periplasm [30]. When heterologous OMPs are over-expressed, the Sec
machinery is prone to saturation. To solve this problem, the most abundant OMPs can
be knocked out to alleviate the burden on the Sec system and provide a larger membrane
area for foreign proteins. Meuskens found that the expression of the membrane anchor
domain of the trimeric autotransporter YadA (YadAM) is higher in ompA-ompC-ompF-lamB
quadruple mutant BL21 Gold (DE3) cells than in BL21 (DE3) cells. This provides ideas for
further improving the SadA display [31].

Nakatani et al. found that in bacteria, a His-tag displayed by full-length AtaA could
bind to Ni-Sepharose beads more rapidly than other truncated AtaAs, confirming that a
certain distance from the bacterial surface could help to overcome steric hindrance and
maintain the function of foreign proteins [14]. Possibly for the same reason, pSadBA1292-
FU2/Stm∆sadA, pSadBA1171-FU2/Stm∆sadA, and pSadBA644-FU2/Stm∆sadA exhibited a
significantly lower fluorescence intensity than pSadBA-FU2/Stm∆sadA and pSadBA269-
FU2/Stm∆sadA in this study (Figure 4C). This indicates that the exogenous peptides
displayed by full-length SadA are more easily recognized by antibodies. However, although
SadA877 is shorter, the expression of its trimer was higher (Figure 4A). Accordingly, the
fluorescence intensity of pSadBA877-FU2/Stm∆sadA was significantly enhanced, which was
similar to that with pSadBA-FU2/Stm∆sadA and pSadBA269-FU2/Stm∆sadA (Figure 4C).

An autotransporter-based display system can display a protein of interest (POI) on the
surface of gram-negative bacteria through the exchange of all or part of the native passenger
domain with the POI. However, one limiting factor for the successful translocation of auto-
transporters is the final dimensions of the fused protein [32]. For example, the maximum
size limit of heterologous proteins using AIDA-I of E. coli, MisL of S. typhimurium, IcsA of
Shigella spp., and Hbp of E. coli is 130 kDa [33], 58 kDa [34], 57 kDa [35], and 50 kDa [36],
respectively. In this study, SadBA1292 could be used to display FUPM (~75 kDa) on the
surface of S. typhimurium. However, with SadBA877, the display of FUPM (~75 kDa), which
is larger than FUM (~58 kDa), on the bacterial surface, failed (Figure 6B). Moreover, the flu-
orescence intensity of pSadBA877-FUM/Stm∆sadA and pSadBA1292-FUM/Stm∆sadA was
significantly lower than that of pSadBA877-FM/Stm∆sadA and pSadBA1292-FM/Stm∆sadA,
respectively. As the molecular weight of the foreign protein increases, it becomes more
difficult to display the recombinant protein on the cell surface. The complex structure of for-
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eign proteins is another limiting factor for the successful exposure of autotransporters [37].
When autotransporter Hbp was used to display calmodulin or a nanobody, secretion was
hindered because the recombinant protein could not pass through the β-barrel due to the
form of a stable fold in the presence of calcium ions or the form of two disulfide bonds [38].
BamA and BamD are required for the secretion and function of SadA [39]. In contrast, SadA
can be displayed on the surfaces of mutant cells in which bamB, bamC, or bamE are deleted,
suggesting that these three lipoproteins are not essential for SadA secretion. Trang et al.
found that overproduction of the BAM complex can increase the surface display of Hbp fu-
sions and the trimeric autotransporter UpaG [15]. This provides a solution for the secretion
of heterologous proteins with complex structures using SadA as a surface display tool.

Autotransporters (type Va secretion systems) have been widely used to display foreign
proteins on cell surfaces, especially for vaccine development. AIDA-I, MisL, ShdA, and
Hbp have been successfully used to display different antigens on the surfaces of Salmonella
spp. as vaccine candidates. Moreover, auto-displayed vaccines can effectively increase
the immunogenicity of antigens [40]. TAA belongs to the T5cSS family and exhibits auto-
display characteristics similar to those of autotransporters. In contrast to autotransporters,
TAAs can display stable trimeric polymers on gram-negative bacterial surfaces owing to
the structure of T5cSS. Trimeric proteins exhibited a stronger immunogenic response than
their monomer forms [41].

Genetically attenuated Salmonella spp. can be engineered by deleting important vir-
ulence genes and the key enzyme genes of metabolic pathways to deliver recombinant
heterologous antigens to elicit the host immune system [42]. D-Glu, the major component
of peptidoglycan, is synthesized by MurI and YgeA in Salmonella spp. A murI-deleted
S. typhimurium displayed a lower level of virulence than the wild-type strain and pre-
served pathogen-associated molecular patterns [43]. Cabral et al. found that the D-Glu
auxotrophic Pseudomonas aeruginosa could evoke an immune response with intranasal
administration and protect the mice infected with two cytotoxic P. aeruginosa strains [44].
In this work, a mutant strain Stm∆ygeA∆murI was constructed and employed to confirm
the immunogenicity of heterologous antigen displayed by SadA. Orally administrated
pSadBA1292-FUM/Stm∆ygeA∆murI or pSadBA877-FUM/Stm∆ygeA∆murI can elicit a mu-
cosal and humoral immune response. Therefore, the surface-displayed antigen using
truncated SadA as an anchoring motif kept its antigenicity and evoked host immunity
reactivity. SadA could be exploited to construct a novel antigen surface expression system
for attenuated bacterial vaccine development.

5. Conclusions

In summary, the SadA display was tested in terms of its length and the heterologous
protein load. Both full-length and truncated SadAs could display exogenous proteins.
In vivo test, the heterologous antigen surface displayed on Stm∆ygeA∆murI using trun-
cated SadA as an anchoring motif could elicit a significant mucosal and humoral immune
response. These findings suggest that SadA anchoring proteins are suitable for developing
an attenuated bacterial vaccine.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/vaccines12040399/s1, Table S1: bacterial strains and plasmids;
Table S2: oligonucleotides used in this study; Table S3: the gene sequences of commercial synthesis
and amino acid sequences of functional proteins; Figure S1: the sadA-deleted S. typhimurium and
ygeA-murI-double-deleted S. typhimurium were confirmed by PCR; Figure S2: Western blot and dot
blot of the displaying epitopes on the cell surface using full-length and truncated SadAs; Figure S3:
confirmation of recombinant proteins displaying on the surface of cells using truncated SadAs as
an anchoring motif; Figure S4: Western blot of heterologous proteins expressed in Stm∆ygeA∆murI
using the antibodies against Flag tag (A) and UreB158-172aa (B); Figure S5: cell surface display of Flag-
tagged SadA derivatives on Stm∆ygeA∆murI by immunofluorescence staining using anti-Flag-tag
primary antibody and Alexa Fluor 488 conjugated secondary antibody.
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