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Abstract: Indoleamine 2, 3-dioxygenase (IDO) is the first and rate limiting catabolic enzyme 
in the degradation pathway of the essential amino acid tryptophan. By cleaving the aromatic 
indole ring of tryptophan, IDO initiates the production of a variety of tryptophan degradation 
products called “kynurenines” that are known to exert important immuno-regulatory functions. 
Because tryptophan must be supplied in the diet, regulation of tryptophan catabolism may 
exert profound effects by activating or inhibiting metabolism and immune responses. 
Important for survival, the regulation of IDO biosynthesis and its activity in cells of the 
immune system can critically alter their responses to immunological insults, such as infection, 
autoimmunity and cancer. In this review, we assess how IDO-mediated catabolism of 
tryptophan can modulate the immune system to arrest inflammation, suppress immunity to 
cancer and inhibit allergy, autoimmunity and the rejection of transplanted tissues. Finally, 
we examine how vaccines may enhance immune suppression of autoimmunity through the 
upregulation of IDO biosynthesis in human dendritic cells. 
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1. Introduction 

Indoleamine 2, 3-dioxygenase (IDO) is a mammalian cytosolic enzyme composed of two alpha-helical 
domains with a heme group located between them responsible for catalyzing the initial step in tryptophan 
catabolism via the kynurenine degradation pathway [1] (Figure 1). The first and rate-limiting step in this 
pathway is the conversion of tryptophan to N-formyl kynurenine, and until recently, this reaction was 
thought to be performed by either tryptophan 2, 3-dioxygenase (TDO) or indoleamine 2, 3-dioxygenase 
(IDO1) [2–4]. While TDO is widely distributed in both eukaryotes and bacteria [5], IDO1 is restricted 
to mammals and yeast [6]. A third tryptophan catabolic enzyme, named indoleamine 2, 3-dioxygenase-2, 
an indoleamine 2, 3-dioxygenase-like protein or “proto-indoleamine 2, 3-dioxygenase” (IDO2, INDOL1 
or proto-IDO), was recently described and was found in mammals and in lower vertebrates [4,7]. Both 
IDO1 and IDO2 genes are conserved in mammals and are present in tandem on chromosome 8 [8,9]. 
Both IDO1 and IDO2 share significant identity at the amino acid level (43% for human and mouse 
proteins), but are structurally unrelated to the TDO enzyme protein. Expression of IDO2 is found in 
human DCs, but is not as ubiquitous as IDO1, although IDO2 mRNA can be detected in the liver, small 
intestine, spleen, placenta, thymus, lung, brain, kidney and colon [7]. The physiological role of IDO2 
remains unclear, and unlike IDO1, its expression is not induced by virus infection or the presence of 
IFN� [4]. Further, IDO2 is sensitive to inhibition by the D-isomer of 1-methyl tryptophan (D-1MT), a 
specific inhibitor of IDO [7]. The relevant sensitivity of IDO to inhibition lies predominantly in the putative 
effect of the D-isomer on suppression of cancer immune evasion. Interestingly, two non-synonymous 
single-nucleotide polymorphisms lie in the coding region of the IDO2 gene, both of which result in a 
loss of enzymatic activity [7]. This observation provides a basis for reducing the effect of IDO2 in cancer 
progression [2]. 

In this review, we will focus on the current knowledge of IDO1 biology and how IDO1 functions to 
inhibit activation of the human immune system. Indoleamine 2, 3-dioxygenase can act on multiple 
tryptophan substrates that include, L-tryptophan, 5-hydroxy-tryptophan, tryptamine and serotonin [10]. 
Through its expression in dendritic cells, monocytes and macrophages, IDO modulates T-cell behavior 
through catabolism of the essential amino acid tryptophan, which is obtained through the diet [11]. 
Through T-cell functions and other mechanisms to be described later, indoleamine 2, 3-dioxygenase is 
thought to play a role in a variety of pathophysiological processes that include antimicrobial and antitumor 
defense, neuropathology, immune-regulation, antioxidant activity and suppression of autoimmunity. 
Throughout this review, we will center our attention on the role of IDO1 in immunosuppression and 
experimental approaches that modulate IDO1 expression for the prevention and treatment of chronic 
inflammatory and autoimmune diseases. 
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Figure 1. Pathways of tryptophan metabolism. Of the dietary tryptophan, 99% is metabolized 
via indoleamine 2, 3-dioxygenase (IDO) and tryptophan 2, 3-dioxygenase (TDO) to form 
kynurenine degradation products (red arrows). Additional enzymes in the pathway, kynurenine 
aminotransferase (KAT), monoamine oxidase (MAO), quinolinic-acid phosphoribosyl transferase 
(QPRT) and 3-hydroxyanthranilic acid oxidase (HAO), promote immune suppression through 
the inhibition of pro-inflammatory T-cells and induction of regulatory T-cell populations that 
stimulate pathologies as a result of insufficient or excessive immune suppression. 

2. The Function of Indoleamine 2, 3-Dioxygenase in Biological Systems 

Indoleamine 2, 3-dioxygenase is a catabolic enzyme protein that functions to inhibit metabolism in a 
variety of biological systems that include mammalian reproduction, viruses, stem cells and the nervous 
system. The discovery of IDO function first occurred in mammals, which owe their continued existence 
to IDO-mediated immunosuppressive processes that prevent fetal rejection in utero [12]. Pioneering 
work by Munn, Mellor and their colleagues demonstrated that cells of the placenta express IDO1, which 
prevented maternal T-cell destruction of the fetus during pregnancy [12–14]. Arrest of tryptophan 
catabolism during pregnancy in mice enabled maternal T-cells to provoke fetal allograft rejection, 
confirming that placental cells synthesizing IDO1 can protect the mammalian fetus from maternal  
T-cell attack [15,16]. 
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2.1. IDO Function in Stem Cells 

Mesenchymal stem cells (MSCs) are multipotent stromal cells found in the bone marrow that 
differentiate into a wide variety of cell types that include osteoblasts (bone cells), chondrocytes (cartilage 
cells), myocytes (muscle cells) and adipocytes (fat cells). Mesenchymal stem cells provide a basis for 
improved tissue regeneration and gene therapy [17,18]. Although MSCs are mostly noted for their 
progenitor abilities, they also possess a broad immunological capacity. Earlier studies indicate that 
MSCs exert an immunosuppressive function in the human body [19]. In his studies, the author suggests 
MSCs do not have the innate ability to express IDO1, but gain this ability following stimulation by the 
pro-inflammatory cytokines interferon-� (IFN�) and tumor necrosis factor-� (TNF�) in combination 
with IL-1� [19]. To elucidate the molecular mechanisms underlying immunosuppression, MSCs from 
humans, monkeys and mice were compared, and considerable species variation in MSC-mediated 
immunosuppression was discovered. Mouse MSCs were shown to utilize nitric oxide (NO) as their 
immunosuppressive molecules, whereas human and monkey MSCs used IDO1 [20,21]. In humans, 
MSCs respond to pro-inflammatory cytokine production by synthesis of IDO1, which suppresses this 
inflammatory response, leading to immunological homeostasis [22]. This immunological tolerization 
response supports data suggesting that MSCs function as sensors of inflammation by adopting a  
pro-inflammatory or anti-inflammatory phenotype that modulates innate and adaptive immune responses  
in vitro and in vivo [23]. 

2.2. The Function of IDO in Cells of the Nervous System 

In addition to establishment and maintenance of the blood-brain barrier, astrocytes in the central nervous 
system (CNS) play an important role as regulators of extracellular electrolyte and neurotransmitter 
balance. Together with microglia, astrocytes play a role as important modulators of CNS immune and 
inflammatory reactions [24]. The nervous system has its own self-contained, specialized form of 
immunity. Endothelial cells that make up the blood brain barrier catabolize L-tryptophan due to IDO1 
stimulation of the kynurenine pathway [25]. T helper cells that express IFN� can induce microglial cells 
to express IDO, which can initiate a negative feedback loop to suppress neural inflammation [26].  
While IFN-� signaling is needed to induce IDO in astrocytes, it was established recently that astrocytes 
express certain members of the toll-like receptor (TLR) family, in particular TLR3, the receptor for 
double-stranded RNA (dsRNA) [27–29]. Indoleamine 2, 3-dioxygenase was implicated in neurotoxicity 
and suppression of the antiviral T-cell response in HIV-generated encephalitis (HIVE) [27]. Hyeon-Sook 
Suh and his colleagues showed that the TLR3 ligand poly (I:C) (PIC) induces the expression of IDO in 
human astrocytes. PIC was found to be less potent than gamma interferon (IFN-�), but more potent than 
IFN-� in inducing IDO1. PIC induction of IDO was shown to be mediated in part by IFN-�, but not  
IFN-�, and both NF-�B and interferon regulatory factor 3 (IRF3) were also shown to be required [27]. 
These experimental results demonstrate that IDO1 can be induced by double-stranded RNA and suggests 
a therapeutic function for PIC in human viral infections. 

Biosynthesis of IDO1 and the kynurenine pathway have been indicated as potential targets for neural 
degenerative disorders, as tryptophan degradation has been linked to the onset of neurological diseases, 
including Alzheimer’s disease, Huntington disease and even psychological depression [26]. In the brain, 
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IDO1 can be induced in microglia by interferon-gamma-producing T helper 1 (Th1) cells, thereby 
initiating a negative feedback loop, which can down-modulate neuro-inflammation in experimental 
autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS). This protective 
effect could be counteracted by the production of neurotoxic metabolites of the kynurenine pathway, 
such as quinolinic acid, which is produced upon IDO induction. Some metabolites of the kynurenine 
pathway can pass the blood-brain barrier and may act as neurotoxins during systemic infection. Two 
tryptophan degradation products, quinolinic acid (QUIN) and 3-hydroxyanthranilic acid (3-HAA), 
exhibit neurotoxic properties [26]. QUIN is an endogen N-methyl-D-aspartate (NMDA) receptor agonist. 
At micromolar concentrations, the cytotoxic effect of QUIN can be mimicked in primary cortical 
neuronal cell cultures [30]. The second neurotoxic Trp metabolite is 3-HAA, which is unstable under 
physiological conditions. Upon spontaneous auto-oxidation, 3-HAA produces reactive radical species, 
which, in turn, induce oxidative stress and apoptosis in neurons [31]. These data suggest IDO1 may act 
as a double-edge-sword in the nervous system. 

3. Mechanisms of IDO1 Induction and Function 

Sustained access to nutrients is a fundamental metabolic requirement for prokaryotic and eukaryotic 
cell maintenance and proliferation. Controlling the supply of available nutrients is an ancient strategy 
for the regulation of cellular responses to stimuli. Aside from its role as one of the limiting essential 
amino acids in protein metabolism, tryptophan (TRP) serves as a precursor for the synthesis of the 
neurotransmitters serotonin and tryptamine, as well as for the synthesis of the anti-pellagra vitamin 
nicotinic acid and the hormone melatonin [32]. By involvement in a variety of metabolic pathways, TRP 
and its metabolites regulate neurobehavioral effects that include appetite, the sleeping-waking-rhythm 
and pain perception. TRP is the only amino acid that binds high levels of serum albumin [32,33]. 
Through IDO degradation of tryptophan, cells that express the enzyme mediate potent effects on 
metabolic events responsible for innate and adaptive immune responses to inflammatory insults. In 
addition, IDO1 was shown to alter immune responses through a variety of mechanisms dependent on 
the regulation of cell metabolism. In the sections that follow, we will identify mechanisms by which 
IDO1 activation was shown to modulate eukaryotic cell functions leading to stimulation or suppression 
of the diseased state. 

3.1. Signaling Pathways Responsible for the Induction of IDO1 Expression 

Indoleamine 2, 3-dioxygenase is not constitutively expressed in cell systems. Rather, various stimuli 
and signaling pathways induce transcription and translation of metabolically-active IDO1 enzyme 
protein. Various transcription factors were shown to regulate the expression of IDO1 [34,35]. The IDO1 
promoter contains nucleotide sequences that allow regulation through interferon sequence response-like 
elements (ISRE), GAS (palindromic gamma-activated sequences) and non-canonical NF-�B (nuclear 
factor kappa-light-chain-enhancer of activated B-cells) consensus sequences [36–38]. Mutation or 
deletion of portions of two ISRE cis-acting (ISRE1 and ISRE2) response elements resulted in decreased 
IDO1 expression levels [39]. Deletion of ISRE1 decreased the ability of IFN-� to induce IDO1 by 50-fold, 
and point mutations at two alanine residues of ISRE2 at �111 decreased the ability of IFN-� to induce 
IDO1 by four-fold [40]. The distance between these response elements does not influence IDO1 
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expression, as the deletion of 748 bps between the elements had no effect on IDO1 synthesis [40]. In 
addition to the ISRE elements, a nucleotide sequence with a partial homology to the IFN-gamma-responsive 
sequence (GAS) was shown to be located in the promoter region of the IDO1 gene [39]. In murine 3B6A 
cells, a cell line with a defect in IDO1 activity, Stat 1� was shown to bind to GAS and to restore IDO1 
induction [36]. The consensus sequence PuGGAGAPyTTPu is required for non-canonical binding of 
NF-�B [41]. The IDO1 promoter contains three partial RelB/p52 binding sites: AGGAGACACA, 
GGGAGACAGA and AGGAGAAAGA around position �2000 [41,42]. Manches et al. demonstrated by 
luciferase assay and ChIP analysis experiments that RelB bound directly to non-canonical NF-�B 
binding sites in the promoter regions of mammalian DNA and drives IDO1 gene expression [43,44].  

There are several receptor/ligand signaling pathways upstream of these transcription factors that can 
regulate IDO expression. Toll-like receptors (TLRs), tumor necrosis factor superfamily members 
(TNFRs), interferon beta receptor (IFNBR), the interferon gamma receptor (IFNGR), transforming 
growth factor beta receptors (TGFBRs) and the aryl hydrocarbon receptor (AhR) all can activate 
signaling mechanisms that either induce or maintain IDO1 expression. Stimulation of TLR3 and TLR4 
was shown to induce IDO1 production in dendritic cells, while TLR7/8 was shown to upregulate IDO1 
in monocytes [42,43]. The mechanism by which TLR4 ligation activates IDO1 expression was shown 
to contribute to autocrine signaling from TNF-� and/or IFN-� [45] (Figure 2). For example, LPS induction 
of IDO1 in a monocyte cell line is decreased when TNF-� is blocked with neutralizing antibodies [46]. 
Ligation of TLR4 activates both MyD88-dependent and MyD88-independent adaptor-driven signaling 
pathways, which leads to the activation of canonical NF-�B and IRF3 transcription factors. Activation 
of NF-�B leads to the expression of the pro-inflammatory cytokine TNF-�, while the transcription factor 
IRF3 operating in conjunction with NF-�B induces the pro-inflammatory cytokine IFN-�. These 
cytokines bind their receptors (TNFR and IFNAR) to activate the non-canonical NF-�B and JAK-STAT 
signaling pathways, which leads to the transcription and translation of IDO protein [47]. 

The ligation of IFNGR by IFN-� is another established pathway known to stimulate production of 
IDO in immune cells. In human monocyte-derived DCs, stimulation with IFN-� induces IDO through 
the JAK/STAT signaling pathway [45,47,48]. Of greater interest is the regulation of IDO by TGF-�. 
Unlike the previous signaling mechanisms, TGF-� was shown to produce delayed expression of IDO in 
plasmacytoid dendritic cells (pDCs) that is long lasting and stable [49]. Upon binding to the TGF-beta 
receptor (TGFBR), both the Smad-dependent and Smad-independent pathways (phosphatidylinositol-3-OH 
kinase (PI(3)K) are activated and signal the induction of non-canonical NF-�B pathway upregulation of 
IDO biosynthesis [50]. Upon stimulation of IDO1 biosynthesis, TGF-� generates a positive feedback 
loop for sustained production of TGF-� and IDO1 through a PI (3) K-dependent mechanism [49]. This 
signaling mechanism relies on the ability of TGF-� to activate the signaling capability of IDO1, which 
is described in detail in the following sections. IDO1 signaling mediated by TGF-� promotes 
transcription and translation of more TGF-�, which, in turn, continues to upregulate IDO1 production 
(Figure 3). 
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Figure 2. Mechanism of IDO1 induction in dendritic cells: transcription and translation. 
Several molecular stimuli and signaling pathways were shown to induce the transcription 
and translation of metabolically-active IDO1 enzyme [35,40,50]. The IDO1 promoter 
contains nucleotide sequences that allow regulation of transcription through interferon 
sequence response-like element (ISRE) upstream consensus sequences, GAS (palindromic 
gamma-activated sequences) and non-canonical nuclear factor kappa-light-chain-enhancer  
of activated B-cells (NF-�B) [42,50]. In addition, the IDO1 promoter region contains three 
partial non-canonical RelB/p52 binding sites: AGGAGACACA, GGGAGACAGA and 
AGGAGAAAGA located near position �2000, which is located downstream of NF-�B-driven 
IDO upregulation following stimulation of the TLR4, INFGR, IFNAR, TNFR and CD40R 
signaling pathways [43].  

In addition to TGF-�, the aryl hydrocarbon receptor (AhR) was also shown to play a role in IDO 
production. In mouse bone marrow-derived DCs, Nguyen et al. demonstrated that AhR�/� DCs do not 
produce IDO following LPS or CpG treatment [51]. This result suggests that AhR may be necessary for 
TLR4 and TLR9 induction of IDO in DCs. Secondly, kynurenines produced in response to IDO’s 
enzymatic activity can bind and activate AhR as an endogenous ligand. (Figure 3). Vogel et al. 
demonstrated that AhR can partner with RelB to associate with DNA by binding the IDO1 promoter at 
putative dendritic cell responses element (DRE) consensus sequences and, thus, promote AhR-dependent 
induction of IDO1 [52,53]. 
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Figure 3. The TGF-�-IDO-SHP axis. The TGF-�-IDO-SHP axis activates the non-canonical 
NF-�B pathway [49]. In splenocytes, SHP-1 inhibits the protein kinase IRAK1 and tips the 
balance of activation of the canonical versus non-canonical NF-�B signaling pathway in 
favor of the latter, resulting in upregulated production of type I interferon [49]. In addition 
to TGF-�, the aryl hydrocarbon receptor (AhR) has also been shown to play a role in IDO 
production [51,53]. Interestingly, kynurenines produced from IDO’s enzymatic activity can 
also bind and activate as an endogenous ligand, AhR [53,54]. Abbreviations: IFN (� �, �,): 
interferon alpha, beta, gamma; TGF-�: transforming growth factor-beta; TNF: tumor 
necrosis factor; TLR4: toll-like receptor 4; TRAF: TNF-receptor associated factors; TRIF: 
TIR-domain-containing adapter-inducing interferon-�; SHP: orphan nuclear receptor small 
heterodimer partner; SMAD: extracellular signal transducers from TGF-� ligands to the 
nucleus; IRF (1, 3): and interferon regulatory factor 1,3. 

Based on the observation that CD40 ligand (CD40L) induces IDO1 biosynthesis through non-canonical 
NF-�B signaling in human DCs [35], NF-�B signaling pathway involvement in cholera toxin B subunit-
proinsulin fusion protein (CTB-INS)-induced IDO1 biosynthesis was assessed in a study conducted in 
our laboratory. In this study, NF-�B activation for vaccine upregulation of IDO1 was identified with the 
help of two specific NF-�B pharmacological inhibitors, 2-Amino-6-[2-(cyclopropylmethoxy)-6-
hydroxyphenyl]-4-(4-piperidinyl)-3-pyridinecarbonitrile (ACHP) and dehydroxymethylepoxyquinomicin 
(DHMEQ) [34].  

Although there are various mechanisms known to promote IDO induction, the function of IDO 
remains consistent, to promote overall immune suppression, as well as control of some infectious 
pathogens. In response to inflammatory stimuli, IDO functions as an immune regulator to keep  
pro-inflammatory signaling in check. Conversely, IDO is important, but not essential for the maintenance 
of immune tolerance, as IDO�/� mice do not die from autoimmunity [14]. The mechanisms by which 
IDO exerts its immunosuppressive effects are discussed in the following sections. 
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3.2. Enzymatic Activity of IDO1 

Indoleamine 2, 3-dioxygenase was shown to inhibit DC maturation through tryptophan starvation via 
a generalized reduction in cellular energetics and through the generation of secreted kynurenines known 
to effectively stimulate pro-inflammatory T-cell apoptosis [34]. Additional experimental findings showed 
in addition to tryptophan depletion, paracrine effects of secreted kynurenine tryptophan degradation 
products may contribute to DC tolerogenesis through increased recruitment of regulatory T-cells [55–57]. 
The immunosuppressive activity of IDO was first speculated to be solely a function of the physical 
depletion of tryptophan from the intracellular environment, thus starving the metabolism of DCs,  
T-cells and other effector cells of the immune system. Tryptophan depletion is sensed in eukaryotic cells 
through activation of the general control non-repressed 2 (GCN2) kinase, which directly binds uncharged  
tRNAs [14,58,59]. Tryptophan depletion was shown to induce the GCN2 pathway, to downregulate the 
CD3 �-chain in CD8+ T-cells and to inhibit Th17 cell differentiation [14,55]. Additionally, in a recent study 
conducted by Chaudhary and colleague, antibody-mediated inflammatory kidney injury and renal 
disease in a mouse nephrotoxic serum nephritis model was inhibited by amino acid metabolism and a 
protective autophagic response. The metabolic signal was driven by IFN-�-mediated induction of 
indoleamine 2, 3-dioxygenase 1 (IDO1) enzyme activity with subsequent activation of a stress response 
dependent on GCN2. These findings outline the IDO-GCN2 pathway in glomerular stromal cells as a 
critical negative feedback mechanism that limits inflammatory renal pathologic changes by inducing 
autophagy [60]. Recent work provided definitive evidence of an important role for kynurenine metabolites 
in IDO-mediated modulation of immune function [11,56,61]. Further, these studies also demonstrated 
IDO-dependent apoptosis of thymocytes and terminally-differentiated antigen-specific CD4+ T-cells [15,62]. 
Previous work showed that transgenic DCs with high levels of IDO expression and tryptophan 
metabolites (i.e., l-kynurenine, 3-hydroxykynurenine and 3-hydroxyanthranilic acid) were able to 
irreversibly suppress allogeneic T-cell proliferation in vitro [15,55,63] (Figure 1). In these studies, 
immuno-suppressive tryptophan catabolites were shown to exert a cytotoxic action on CD3+ cells. This 
action preferentially affected activated T-cells and gradually increased with exposure time. In addition 
to T-cells, B-cells and natural killer (NK) cells were also killed while DCs remained unaffected [63]. 
Similar results were obtained in another study where three tryptophan catabolites (i.e., l-kynurenine, 
picolinic acid and quinolinic acid) were shown to be responsible for IDO-induced inhibition of T- and 
NK-cell proliferation potentiated by tryptophan depletion [15,64]. 

3.3. Indoleamine 2, 3-Dioxygenase 1 Signaling Activity 

The immunosuppressive effect of IDO was recently shown in non-obese diabetic (NOD) mice to 
require both enzymatic and signaling functions [49,65]. Treatment of mouse plasmacytoid DCs with 
transforming growth factor-� (TGF-�) conferred regulatory effects on IDO1 that were shown to be 
mechanistically separable from its enzymatic activity [11,49,66]. The TGF-�-IDO axis was found to 
mediate durable regulatory functions, resulting in the generation and maintenance of regulatory T-cell 
populations [49,61]. In these studies conducted by Pallotta et al., IDO signaling activity was triggered 
in plasmacytoid dendritic cells (pDCs) by transforming growth factor-� (TGF-�) through the  
non-canonical NF-�B pathway, resulting in the induction of long-lasting IDO expression and autocrine 
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TGF-� production in a positive feedback loop [49]. In addition, IDO was found to be involved in 
intracellular signaling events responsible for self-amplification and maintenance of a stable regulatory 
pDC phenotype (Figure 2). Additionally, CpG oligodeoxynucleotides (CpG-ODNs) known to stimulate 
innate and adaptive immunity by binding to TLR9 molecules [67], induced selective IDO1 expression 
by a minor population of splenic CD19+ dendritic cells (DCs) that did not express the plasmacytoid DC 
marker 120G8. Following CpG-ODN treatment, CD19+ DCs acquired potent IDO-dependent T-cell 
suppressive functions. Signaling through IFN type I receptors was essential for IDO upregulation, and 
CpG-ODNs induced selective activation of STAT-1 in CD19+ DCs [68]. In the same line, a discrete 
population of splenocytes with attributes of dendritic cells (DCs) and co-expressing the B-cell marker 
CD19 is uniquely competent to express the T-cell regulatory enzyme indoleamine 2, 3-dioxygenase 
(IDO) in mice treated with TLR9 ligands (CpGs) [69]. Johnson and colleagues have shown that  
IDO-competent cells express the B lineage commitment factor Pax5 and surface immunoglobulins and 
that CD19 ablation abrogated IDO-dependent T-cell suppression by DCs [69]. This study has shown that 
IDO-competent cells constitute a distinctive B-lymphoid cell type with quintessential T-cell regulatory 
attributes and phenotypic features of both B-cells and DCs. 

The aryl hydrocarbon receptor (AhR) was shown to cause immune suppression after binding  
dioxin [70]. The aryl hydrocarbon receptor may be central to naive T-cell differentiation into Foxp3+ 
regulatory T-cells (Tregs) rather than pro-inflammatory Th17 lymphocytes [71]. In this study performed 
by Mezrich and his colleagues, kynurenines were shown to activate AhR, leading to AhR-dependent 
Treg generation. Together, the above studies reinforce the involvement of IDO in the generation of 
Tregs, as well as highlighting the central importance of IDO’s signaling capabilities [72–74]. 

4. The Role of IDO in Immune Suppression 

4.1. The Function of IDO in Organ and Tissue Graft Survival 

Acute and chronic graft rejection during solid organ and tissue transplantation is a demanding 
challenge for surgeons and patients. Current treatments employ a general immunosuppressive regimen, 
which leaves the patient vulnerable to common pathogens, and immuno-suppressive therapy usually 
must be administered lifelong with potentially severe side effects [75,76]. In vivo experiments have 
shown that IDO1 gene knockout mice experience acute rejection of transplanted MHC mismatched 
grafts, while wild-type mice with high tryptophan catabolism experienced long-term graft survival [77]. 
Further experiments have shown that the dendritic cell costimulatory factor CD83 (sCD83) induced 
long-term IDO expression in DCs via upregulation of TGF-� both in vitro and in vivo, resulting in the 
induction of a long-lasting allograft tolerance in combination with a locally-restricted immunosuppressive 
environment [78]. Another study showed that IDO-mediated tryptophan degradation in renal allograft 
recipients is increased both before and during allograft rejection [79]. This result suggests that promotion 
of IDO1 biosynthesis and activity might have significant implications for immune suppression of tissue 
rejection in transplantation biology that extend far beyond the application of IDO as a possible diagnostic 
tool for the detection of acute allograft rejection. Additionally, inhibition of CD8+ T-cell-mediated 
cytotoxic function was found to be an important mechanism behind IDO’s immune-modulating property. 
In a study conducted by Liu et al., in an experimental rat lung allograft, enhanced IDO activity was 
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achieved by using a lung-tissue-targeted non-viral human IDO1 gene transfer approach, which reduced, 
but did not eliminate, infiltrating CD8+ T-cells. The impaired cytotoxic function seen in the IDO-treated 
CD8+ T-cells was accompanied by defects in the production of granule cytotoxic proteins, including 
perforin and granzyme A and B [79,80]. 

4.2. The Function of Indoleamine 2, 3-Dioxygenase in Viral Infection 

Though the role of IDO in many viral infection models is presently unclear, some viruses can create 
an advantage for their replication by stimulating the enzyme’s catabolic activity to suppress unwanted 
immune responses in mammalian cells. Specifically, human immune deficiency virus (HIV) and 
Epstein-Barr virus are two well-known virus examples that increase cellular levels of IDO during 
infection [81–83]. It has been suggested that HIV may induce IDO expression to inactivate the human 
immune system. HIV is a lentivirus (retrovirus subgroup) that infects CD4+ T-cells, macrophages and 
dendritic cells [84,85]. Facilitating the spread of HIV infection, the virus evades the direct killing 
mechanisms of CD8+ cytotoxic lymphocytes that recognize HIV-infected cells by inducing IDO 
synthesis [86]. Earlier studies show that HIV stimulates IDO biosynthesis to block the function of  
pro-inflammatory CD4+ T helper cells and to stimulate immunosuppressive Treg cell responses [83].  
A recent report showed that IDO1 was overexpressed in lymphoid tissues during HIV infection [83]. 
Further, increased tryptophan catabolism, measured as an increase in the kynurenine/Trp ratio, was 
shown to occur in HIV-infected patients [87]. Together, these data suggest that HIV depends on the 
immunosuppressive properties of IDO to facilitate the immune evasion processes. 

The Epstein–Barr virus (EBV), also referred to as human herpesvirus 4 (HHV-4), is one of eight virus 
strains in the herpes virus family and is one of the most common human pathogenic viruses. The 
herpesvirus 4 strain is best known as the cause of infectious mononucleosis (glandular fever) [88]. This 
virus strain was also shown to be associated with specific forms of cancer, including Hodgkin’s 
lymphoma, Burkitt’s lymphoma, nasopharyngeal carcinoma and HIV-associated conditions, including 
hairy leukoplakia and central nervous system lymphomas [88,89]. The EB virus is known to infect 
monocytes/macrophages, intraepithelial macrophages and Langerhans dendritic cells [90,91]. Infection 
of monocytes with EBV was shown to suppress their phagocytic and antiviral activity [92,93]. More 
recently, EBV infection was shown to induce IDO mRNA, protein and enzymatic activity in human 
monocyte-derived macrophages (MDMs) [81]. This important finding suggests that EBV-mediated IDO 
expression in nasopharyngeal carcinoma tumor stroma may provide an immune-suppressed T-cell 
microenvironment that facilitates virus infection. 

4.3. The Role of Indoleamine 2, 3-Dioxygenase in the Promotion of Cancer Cell Survival 

While escape from the immune response is essential for cancer progression, mechanisms underlying 
this process remain unclear. The catabolism of tryptophan in tumor cells mediated by IDO1 has been 
increasingly identified as a critical micro-environmental factor involved in aiding immune escape 
through suppression of anti-tumor immunity [94,95]. Stimulation of the tryptophan catabolic pathway 
was shown to create an immuno-suppressive milieu in tumors and in tumor-draining lymph nodes 
through accumulation and secretion of immunosuppressive tryptophan catabolites that lead to induction 
of T-cell anergy, apoptosis and increased proliferation of immunosuppressive regulatory T-cells (Tregs) [96]. 
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Thus, IDO is capable of biasing the immune system towards tumor support by decreasing the level of 
pathogenic inflammation in the tissue microenvironment surrounding the tumor. Clinically, studies of 
ovarian, endometrial and colorectal cancer have shown that increased expression of IDO1 was associated 
with poor survival outcomes [96]. Based on the enzyme’s immunosuppressive functions, IDO1 is 
becoming established as a target for drug discovery in cancer immunotherapy [95,97]. Human primary 
gastric, colon and renal cell carcinomas were shown to constitutively express both IDO1 and IDO2 
mRNA, whereas cancer cell lines generally required induction of IDO by interferon-gamma (IFN�) [8]. 
In this study, treatment of HeLa cells with IDO1 siRNA resulted in the prevention of tryptophan degradation. 

Exogenous administration of the IDO1 pathway catabolites kynurenine and quinolinic acid led to 
activation of �-catenin and proliferation of human colon cancer cells, resulting in increased tumor growth 
in mice [98]. In a similar study, high IDO expression levels in tumor cells were positively correlated 
with myometrial invasion, nodal metastasis and lymph-vascular space involvement [99]. Further, a 
significant correlation was detected between high levels of IDO1 expression and reduced numbers of 
CD3+, CD8+ and CD57+ cells infiltrating both the tumor epithelium and stroma. 

Glioblastoma multiforme (GBM) is an aggressive adult brain tumor with a poor prognosis. One 
hallmark of GBM is the gradual accumulation of immunosuppressive and tumor-promoting CD4+ 
FoxP3+ regulatory T-cells (Tregs) [100,101]. Wainwright and colleagues investigated the role of IDO1 
in brain tumors and its impact on Treg recruitment and found that IDO1 expression increased recruitment 
of immunosuppressive Tregs that lead to tumor outgrowth [101]. In contrast, IDO1 deficiency was 
shown to decrease Treg recruitment and to enhance T-cell-mediated tumor rejection. These data suggest 
a critical role for IDO1-mediated immunosuppression in glioma and support the continued investigation 
of IDO-Treg interactions in the context of the suppression of brain tumor outgrowth. Alternatively, in a 
study performed by Li et al. [102] uncovering a link between IDO and the complement, pharmacologic 
inhibition of IDO synergized with chemo-radiation therapy to prolong survival in mice bearing 
intracranial glioblastoma tumors. They showed that pharmacologic or genetic inhibition of IDO allowed 
chemo-radiation to trigger widespread complement deposition at sites of tumor growth. Chemotherapy 
treatment alone resulted in collections of perivascular leukocytes within tumors, but no complement 
deposition. Adding IDO blockade led to upregulation of VCAM-1 on vascular endothelium within the tumor 
microenvironment, and further, adding radiation in the presence of IDO blockade led to widespread 
deposition of the complement. Mice genetically deficient in complement component C3 lost all of the 
synergistic effects of IDO blockade on chemo-radiation-induced survival. 

Indoleamine 2, 3-dioxygenase is overexpressed in many different tumor types, including breast  
cancer [103]. Chen and colleagues have reported the expression of IDO1, estrogen receptor (ER), 
progesterone receptor (PR), human epithelial receptor 2, cytokeratin 5/6, epithelial growth factor 
receptor, phosphorylated AKT, neoangiogenesis, nitrogen oxide synthetase 2 (NOS2), cyclooxygenase 
2 (COX2), FoxP3, CD8+ and CD11b molecules on archival breast cancer tissue [104]. The experimental 
results showed that IDO1 expression was higher in ER+ tumors compared to ER� tumors. Further, tumor 
survival was found to be better in ER+ patients. 

A connection between elevated urinary tryptophan catabolites and bladder cancer was first reported 
in the 1950s [105]. Since then, elevated levels of IDO-generated catabolites have been found to be 
associated with a number of malignancies [94]. This phenomenon was initially thought to be a 
consequence of IFN-� treatment, known to stimulate IDO expression in tumor cells [94]. For some time, 
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the significance of IDO promotion of cancer survival was questioned by its observed function in the 
prevention of allogenic rejection and by the evidence that IDO is overexpressed in most tumors and 
tumor draining lymph nodes [106,107]. A major question is how does IDO become deregulated in cancer 
cells? A possible answer is emerging from studies of Bin1, a tumor suppressor gene that is often 
inactivated during cancer, which seems to inhibit cancer development to a significant extent by limiting 
immune escape [108]. Studies aimed at understanding how Bin1 restricts tumor outgrowth identified the 
establishment of immune tolerance through deregulation of IDO1 as a likely explanation [108]. Deletion 
of the Bin1 gene from mammalian cells resulted in an increased IDO1 gene expression stimulated by 
IFN-�. In this study, in vitro transformation of Bin1-null and Bin1-expressing primary mouse embryo 
keratinocytes with c-myc and mutant Ras oncogenes produced cell lines with similar in vitro growth 
properties. However, when these cells were grafted into syngeneic animals, the Bin1-null cells formed 
large tumors, whereas the Bin1-expressing cells formed only indolent nodules. Together, these findings 
suggest that the overexpression of IDO1, which accompanies Bin1 loss, promotes tumorigenicity by 
enabling immune escape. The attenuation of Bin1 together with IDO overexpression observed in human 
cancers warrants further evaluation of the relationship between these two metabolic events. 

Together, the data suggest that tumors exploit the induction of IDO1 as a dependable mechanism for 
survival through enhanced suppression of immunity. Recent studies using ex vivo antigen-loaded DCs 
loaded with tumor antigens were shown to improve the immune response to the cancer [109,110].  
The goal of recent DC-derived tumor vaccines are to elicit the CD8+ T-cell response [111]. However, in 
order to reach this goal, the DC-elicited adaptive immune response must be able to overcome the 
immunomodulatory effects of the tumor [109–111]. 

4.4. The Role of Indoleamine 2, 3-Dioxygenase in Tissue-Specific Autoimmunity 

Organ and tissue-specific autoimmunity requires the initial release of specific autoantigens 
characteristic of a given tissue or organ that can be recognized by DC pattern recognition receptors 
(PRR) [59]. The prototypic tissue-specific autoimmune diseases that are presented here include type 1 
diabetes (T1D) and multiple sclerosis (MS). Type 1 diabetes is an autoimmune disorder in which  
auto-reactive T-cells selectively destroy the pancreatic islet insulin-producing beta cells. The genetically 
diabetes-prone NOD mouse strain is a murine model of human type 1 diabetes. Diabetic NOD mice generally 
die from the effects of hyperglycemia, reflecting T-cell-mediated destruction of the insulin-producing 
pancreatic islet � cells. The predisposition of NOD mouse development of autoimmunity may involve 
defects in the mechanisms of both peripheral and central tolerance [65,112]. Defective in IDO1 
expression, NOD mouse pDCs fail to upregulate IDO1 in response to stimuli, such as the pro-inflammatory 
cytokine IFN�, one of the most potent inducers of IDO expression and catalytic function [65,113]. 
Studies conducted by Pallotta et al. showed that forced IDO1 expression in dendritic cells rescues both 
IDO enzymatic and signaling activities, providing substantial proof that global IDO defects predispose 
NOD mice to autoimmunity [65]. 

In contrast, multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system 
(CNS) associated with an immune reaction against components of the myelin sheath, predominantly 
myelin basic protein [114]. Experimental autoimmune encephalomyelitis (EAE), the animal equivalent 
of MS, is a prominent animal model that researchers studying MS use to assess disease progression. 



Vaccines 2015, 3 716 
 

 

Based on their immunosuppressive properties, human mesenchymal stem cells (hMSC) provide a 
promising tool for cell-based therapies of autoimmune diseases, including MS. Murine MSCs (mMSC) 
were used to characterize and optimize the route of administration, motility, cellular targets and 
immunosuppressive mechanisms in mouse models of autoimmune diseases, such as experimental 
autoimmune encephalomyelitis (EAE) [115]. Tryptophan catabolism by IDO1 is a major endogenous 
metabolic pathway that tightly regulates immune responses throughout the nervous system. The activity 
of IDO1 contributes to the immunosuppressive phenotype of hMSC [115]. In a study conducted by Lanz 
and his colleagues, the authors showed that although IDO1 is inducible in bone marrow-derived mMSC 
by pro-inflammatory stimuli, such as interferon-� (IFN-�) and ligands of toll-like receptors (TLR), 
disease induction does not lead to catabolism of tryptophan in vitro [115]. Thus, IDO1 does not appear 
to be involved in mMSC-mediated immunosuppression in EAE. While mMSC suppressed the activation 
of the antigen-specific myelin oligodendrocyte glycoprotein (MOG)-reactive T-cell receptor (TCR) in 
transgenic Th cells in MSC-T-cell co-cultures, neither pharmacologic inhibition nor genetic ablation of 
IDO1 reversed this suppressive effect [115]. However, in this study, systemic administration of both 
IDO1-proficient and phenotypically identical IDO1-deficient mMSC equally resulted in amelioration of 
EAE. Thus, mMSCs, unlike hMSCs, do not display IDO1-mediated suppression of antigen-specific  
T-cell responses. During experimental autoimmune encephalomyelitis (EAE), IDO1 induction was 
shown to downregulate neuro-inflammation [115]. Inhibition of IDO activity by daily subcutaneous 
administration of the specific IDO inhibitor 1-methyl-DL-tryptophan was shown to significantly 
exacerbate EAE [116]. Further, cytosolic DNA sensing activates the stimulator of IFN genes (STING) 
adaptor to induce IFN type I (IFN-��) production [116]. 

Constitutive DNA sensing to induce sustained STING activation incites tolerance breakdown, leading 
to autoimmunity. In a study conducted by Lemos and colleagues, it was shown that systemic treatments 
with DNA nanoparticles (DNPs) induced potent immune regulatory responses via STING signaling that 
suppressed EAE when administered to mice after immunization with myelin oligodendrocyte glycoprotein 
(MOG), at EAE onset or at peak disease severity. DNP treatments attenuated infiltration of effector  
T-cells into the CNS and suppressed innate and adaptive immune responses to myelin oligodendrocyte 
glycoprotein immunization in spleen. Therapeutic responses to DNPs were shown to be critically 
dependent on IDO enzyme activity in hematopoietic cells. These findings reveal dichotomous roles  
for the STING/IFN-�� pathway in either stimulating or suppressing autoimmunity and identify  
STING-activating reagents as a novel class of immune modulatory drugs [116]. Thus, local expression of 
IDO during inflammation may be a mechanism for self-protection that limits antigen-specific immune 
responses in the CNS. 

5. Immune Suppressive Vaccines: The Case for CTB-Autoantigens and Their Relationship to IDO1 

By the avoidance of environmental factors thought to promote autoimmune diseases in genetically  
at-risk individuals, autoimmune diseases, such as type 1 diabetes, might be eradicated. However, these 
environmental factors have not as yet been clearly identified and may be ubiquitous. Since the early 
1980s, prevention, following disease initiation, has been the focus of attention with many candidate 
therapeutic agents, mainly immunosuppressive drugs [117–120]. Prevention is, however, more applicable 
to early preclinical disease than to recent onset clinical disease, in which pancreatic islet beta cell 
destruction is more advanced [34,121]. 
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Until the present, prevention of infectious disease by exposing the immune system to a weakened, 
non-toxic or dead infectious agent has been the traditional method of vaccination [120–122]. Prominent 
among immunological enhancement or adjuvant strategies are the bacterial and plant AB subunit toxins, 
which include shiga toxin, anthrax toxin, ricin toxin, the heat sensitive enterotoxin from E. coli and the 
cholera toxin CTA and CTB subunits [122]. In contrast to the toxic CTA subunit, the nontoxic CTB 
subunit displays both carrier and mild immune-stimulatory properties [123]. When linked to pathogen 
antigens, CTB was shown to impart immune-stimulatory properties that convey increased levels of 
immune stimulation in response to the linked antigen [124]. However, when CTB is linked to “self” 
proteins, the result is often enhanced immunological suppression of autoimmunity. Demonstrating the 
adjuvant capability of the cholera toxin B subunit, the linkage of CTB to an autoantigen (ovalbumin) 
was shown to provide up to a 10,000-fold reduction in the amount of autoantigen required for generating 
immune tolerance [59,122,125,126]. In type 1 diabetes, self-proteins, like insulin, become more strongly 
immunosuppressive when linked to CTB. Oral administration of the CTB subunit coupled with insulin 
or the GAD35 autoantigen was shown to induce immunological tolerance and suppression of type 1 
diabetes in NOD mice [125,127]. 

Additional forms of tissue-specific autoimmunity were capable of being suppressed by CTB-linked 
autoantigens. Behcet’s disease (BD) is an inflammatory tissue-specific autoimmune disorder 
characterized by uveitis, oral and genital ulcers, as well as cutaneous, vascular, joint and neurological 
inflammation [128,129]. Fusion of an uveitogenic HSP60-derived peptide (aa 336–351) with CTB 
resulted in significant protection against mucosally-induced uveitis and other Behcet’s disease 
symptoms [130]. 

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) characterized 
by localized myelin destruction and axonal degeneration [131]. An autoimmune reaction against myelin 
antigens of the CNS was shown to contribute to the immunopathological mechanisms of MS [132]. 
Myelin oligodendrocyte glycoprotein (MOG) is a key CNS-specific autoantigen for primary demyelination 
in multiple sclerosis. Fusion of CTB with myelin oligodendrocyte glycoprotein (MOG) was shown to 
provide protection against the development of MS symptoms [133]. 

Type 1 diabetes (T1D) is a well-studied prototypic tissue-specific autoimmune disease resulting from 
auto-reactive lymphocyte destruction of the pancreatic islet insulin-producing �-cells [34,134–137]. 
Progressive loss of islet �-cell function leads to insulin deficiency and high blood glucose levels 
(hyperglycemia). Increased cellular oxidative stress and chronic inflammation generated by hyperglycemia 
can result in neural and circulatory complications that lead to amputation, loss of kidney function, 
blindness, heart attack and stroke, resulting in early mortality [34,138,139]. Linkage of CTB to insulin 
(CTB-INS) provided a protective effect against the onset of type 1 diabetes in NOD mice [123,126,140]. 
Initial oral immunization experiments showed that feeding small amounts (2–20 μg) of CTB-INS could 
effectively suppress �-cell destruction and clinical diabetes in pre-diabetic NOD mice [123,124,141]. 
Initial recognition of the mechanism underlying vaccine-mediated immune suppression was based on 
CTB-INS induction of CD4+ regulatory T-cells (Tregs) in NOD mice [142]. Demonstrating the broad 
range of applications of this vaccine strategy for the suppression of autoimmunity, conjugation of CTB 
with islet auto-antigens, including insulin and glutamic acid decarboxylase (GAD), was shown to induce 
immunological tolerance through the suppression of human DC maturation [123,127]. 
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5.1. Immunosuppressive Vaccine Induction of Indoleamine 2, 3-Dioxygenase 

Autoimmune diseases result from misdirected immune attack on one’s organs and tissues and together 
are responsible for the death of more than 700 million people worldwide annually, generating a public 
health crisis comparable to heart disease and cancer [59,143]. Approximately 20% (one in five) 
Americans suffer from terminal autoimmunity because no cure is available [119,143]. About 80% of 
patients are women with a 2–5-times greater risk of autoimmune disease onset among African, Hispanic 
and Native American women than those of European descent [119,137,143–145]. Most autoimmune 
diseases are tissue specific and are initiated by specific self-antigens, suggesting a common underlying 
cause [59]. Dendritic cells (DCs) recognize and process self-antigens and are the first immune cells to 
surround pancreatic islets, indicating a prominent role in type 1 diabetes development [15,58,59,146–148]. 
Disease onset begins when insulin-presenting DCs bind T-cell receptors of cognate naive T helper cells 
and guide their differentiation into pro-inflammatory T helper and cytotoxic T-cells that attack the insulin 
producing islet �-cells [13,149–152]. Among the most promising therapeutics, immuno-suppressive 
vaccines were shown to arrest autoimmunity in animals [123,124,141,153,154]. However, vaccine 
efficacy in patients remains untested, because their mode of action is unknown. Due to the variability of 
patient responses to individual vaccines, combinatorial vaccines may provide the most effective form of 
treatment. Multicomponent vaccines composed of the cholera toxin B subunit (CTB) linked to  
self-antigens were shown to prevent uveitis, multiple sclerosis and type 1 diabetes in animal models of 
autoimmunity [124,131,132,142,153]. Recent experiments showed that a CTB-insulin vaccine that 
induced tolerance to diabetes autoantigens in humans is linked to inhibition of DC maturation [153]. 
While the mechanism responsible for vaccine-induced tolerance remains unknown, analysis of the 
vaccinated DC proteome revealed dramatic upregulation of the tryptophan catabolic enzyme indoleamine 
2, 3-dioxygenase (IDO1)[34]. Emphasizing the enzyme’s role in autoimmunity, increased IDO 
degradation of tryptophan accompanied DC suppression of arthritis, asthma, hemolytic anemia, multiple 
sclerosis, systemic lupus erythematosus and type 1 diabetes [116,117,146,154]. Vaccine-induced IDO1 
biosynthesis and enzyme activity in human DCs suggest that kynurenines may be important for vaccine 
suppression of type 1 diabetes autoimmunity [11,34,56,61,65]. Interestingly, fusion of CTB to insulin 
was found to be essential for the induction of IDO1 biosynthesis, suggesting that vaccine signaling 
functions may be involved in the suppression of DC activation [34].  

6. Conclusions 

Immunological tolerance that occurs in response to IDO1 induction results in the depletion of cellular 
tryptophan levels and the production of kynurenines that kill pro-inflammatory T-cells and induce the 
proliferation of immunosuppressive regulatory T-cells. The pivotal role IDO1 plays in immune 
suppression is dependent on the essential nature of tryptophan and the profound effect tryptophan 
catabolism has on the activation or inhibition of immunity and cellular metabolism. Thus, regulation of 
IDO biosynthesis or activity in antigen-presenting cells of the innate immune system is important in the 
regulation of their responses to immunological insults, such as infection, autoimmunity and cancer. Data 
presented in this review suggest that adjuvant-autoantigen vaccine-induction of IDO1 biosynthesis is a 
likely mechanism for specific and effective immune suppression of DC maturation, leading to the 
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induction of durable peripheral tolerance. Understanding how adjuvant-autoantigen vaccines modulate 
IDO1 activity in human dendritic cells will facilitate improvements in combinatorial vaccine potency 
and safety, moving this effective immunosuppressive strategy closer to clinical applications for the 
prevention of autoimmunity and diseases that possess a strong chronic inflammatory component. 
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