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Abstract: Herpesvirus of turkeys (HVT), used originally as a vaccine against Marek’s disease (MD),
has recently been shown to be a highly effective viral vector for generation of recombinant vaccines
that deliver protective antigens of other avian pathogens. Until the recent launch of commercial
HVT-vectored dual insert vaccines, most of the HVT-vectored vaccines in the market carry a single
foreign gene and are usually developed with slow and less efficient conventional recombination
methods. There is immense value in developing multivalent HVT-vectored vaccines capable of
inducing simultaneous protection against multiple avian pathogens, particularly to overcome the
interference between individual recombinant HVT vaccines. Here we demonstrate the use of a
previously developed CRISPR/Cas9 gene editing protocol for the insertion of ILTV gD-gI and the H9N2
AIV hemagglutinin expression cassettes into the distinct locations of the recombinant HVT-IBDV VP2
viral genome, to generate the triple insert HVT-VP2-gDgI-HA recombinant vaccine. The insertion,
protein expression, and stability of each insert were then evaluated by PCR, immunostaining and
Western blot analyses. The successful generation of the first triple insert recombinant HVT vaccine
with the potential for the simultaneous protection against three major avian viral diseases in addition
to MD is a major innovation in vaccination-based control of major poultry diseases.
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1. Introduction

Poultry is one of the fastest growing sectors of livestock farming contributing hugely to the Global
Food Security and alleviation of poverty. Poultry production is expected to grow by 24% in the next
decade and it is estimated that poultry will account for the largest proportion of livestock output. This
growth will only be feasible if losses from infectious diseases are successfully controlled, mainly through
the use of effective vaccines. Conventional modified live and killed vaccines have been successful
in preventing losses from most poultry diseases, however, they have many limitations including
their inability to prevent horizontal and vertical transmission, increasing virulence and diversity of
avian pathogens. Since the development of recombinant DNA technology, in the early 1980s, it was
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clear that recombinant vaccines could become an important new tool in protecting poultry against
infectious diseases with increased efficiency [1]. The three live replicating viral vectors commonly used
in poultry vaccination are HVT (herpesvirus of turkeys), FPV (fowlpox virus), and NDV (Newcastle
disease virus), and the vectored vaccines are used to protect against diseases such as ND (Newcastle
disease), IBD (infectious bursal disease), ILT (infectious laryngotracheitis), AI (avian influenza), and
Mycoplasma gallisepticum infections. Among these, HVT is the most widely used vector due to its
suitability and safety for both in ovo and subcutaneous hatchery administration, and it is effective
in the presence of maternal antibodies and capable of providing life-long immunity. Recombinant
HVT vaccines are generated either by conventional homologous recombination in virus-infected cells
or through recombineering techniques using overlapping cosmid clones or on full-length genomes
cloned as bacterial artificial chromosome (BAC) clones [2,3] which are often time-consuming and
inefficient. Most of the recombinant HVT vaccines currently in use express single or double inserts
of the foreign gene(s) [4], thus inducing protection against one or two pathogens in addition to the
protection against Marek’s disease (MD) induced by the HVT vector. While HVT vector-based vaccines
are efficient and are increasingly used by industry, the interference between the HVT vector backbones
seriously limits the simultaneous use of sets of HVT vectored vaccine expressing antigens against
multiple diseases [5]. Hence, there is a need for innovative and more efficient technologies for the rapid
generation of multivalent vaccines to protect against a multitude of pathogens and diverse strains
prevalent in different geographical regions of the world.

Recent advances in gene editing technologies using CRISPR/Cas9 tools have expanded the
possibilities of editing the DNA viral genomes. CRISPR/Cas9 has been used to manipulate genomes
of several large DNA viruses including herpes simplex virus type I, adenovirus, pseudorabies
virus, vaccinia virus, Epstein-Barr virus, guinea pig cytomegalovirus, Marek’s disease virus, Kaposi’s
sarcoma-associated herpesvirus, duck enteritis virus and Infectious laryngotracheitis virus (ILTV) [6–22].
Recently, we have developed a rapid and efficient CRISPR/Cas9-mediated genome editing strategy for
generating recombinant HVT [23–25]. Here we extend the application to generate triple gene insertion
HVT vectored virus. We inserted glycoprotein D-glycoprotein I (gDgI) of ILTV and H9HA of H9N2
avian influenza virus, two protective antigens of important poultry pathogens being successfully
inserted into HVT as vectored vaccines previously [4,26,27], sequentially into the previously constructed
recombinant HVT-VP2, generating recombinant HVT-VP2-gDgI-HA with triple inserts. The expression
and stability of the three inserts in the triple recombinant virus were evaluated by PCR, immunostaining
and Western blot. This is the first report of the successful generation of a triple gene insert HVT
recombinant and it offers the prospect of the rapid development of multivalent recombinant vaccines
for the simultaneous protection of poultry against multiple avian viral pathogens.

2. Materials and Methods

2.1. Viruses and Cell Culture

HVT Fc126 strain was obtained from the Avian Disease and Oncology Laboratory (ADOL) East
Lansing, MI, USA. The recombinant virus HVT-VP2 was constructed previously [23]. Primary chick
embryo fibroblasts (CEF) were prepared from 10-day old embryos and maintained in M199 medium
(Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 5% fetal bovine serum (FBS,
Sigma-Aldrich, Darmstadt, Germany), 100 units/ mL of penicillin and streptomycin (Thermo Fisher
Scientific), 0.25 µg/mL Fungizone (Sigma), and 10% tryptose phosphate broth (Sigma).

2.2. Construction of sgRNAs and Donor Plasmids

The gRNA targeting UL45/46 region, sg-A and donor plasmid pGEM-sgA-LoxP-RFP-VP2 were
described previously [23]. The gRNA targeting the HVT65/66 and US2 regions of the HVT genome
was designed using CRISPR guide RNA designing software (http://crispr.mit.edu/) and cloned into the
CRISPR/Cas9 vector pX459-v2 by introducing synthesized oligo-DNA primers corresponding to the
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target sequence into BbsI restriction sites [28]. The scramble sequences sg-B and sg-C which have no
homology to human, chicken, pig genome, prokaryotic DNA sequence and viruses were cloned into
px459-v2 in the same way.

The donor plasmid pGEM-sgB-LoxN-GFP-HA containing green fluorescent reporter gene and
AIV hemagglutinin gene expression cassettes was constructed in several steps. First, the oligo pairs
sgB-LoxN-F and sgB-LoxN-R (containing the element of sgB+LoxN+PacI+LoxN+SfiI+spacer+SfiI+sgB)
were annealed and cloned into pGEM-T-easy vector generating pGEM-sgB-LoxN vector. Then,
the GFP expression cassette, released from pEF-GFP with restriction enzyme PacI, was cloned
into pGEM-sgB-LoxN via the PacI site to generate pGEM-sgB-LoxN-GFP. An intermediate HA
expression cassette was then constructed with the same promoter and poly A signal sequence
for VP2 expression [23]. We first cloned two SfiI sites into pcDNA3.1(+) via NdeI and PmeI
by annealing the oligo pairs SfiIx2-F and SfiIx2-R generating pcDNA3.1(+)-SfiIx2. The VP2
expression cassette was released from pGEM-sgA-LoxP-RFP-VP2 and cloned into pcDNA3.1(+)-SfiIx2
generating pcDNA3.1(+)-VP2. The VP2 coding sequence was then replaced with HA (from
H9N2) coding sequence amplified with primer pairs HA-F and HA-R (Table 2) via NotI
site generating pcDNA3.1-HA. Finally, the HA expression cassette was then transferred into
pGEM-sgB-LoxN-GFP via SfiI generating pGEM-sgB-LoxN-GFP-HA. The procedure described
above was followed for construction of the donor plasmid pGEM-sgC-Lox2272-GFP-gDgI
containing GFP and ILTV gDgI expression cassettes. pGEM-sgC-Lox2272 was first constructed
by cloning annealed oligo pairs sgC-Lox2272-F and sgC-Lox2272-R (containing the element of
sgC+Lox2272+PacI+Lox2272+SfiI+spacer+SfiI+sgC). The GFP expression cassette was then cloned
via the PacI site generating pGEM-sgC-Lox2272-GFP. Finally, synthesized gDgI expression cassette
with SfiI sites were cloned generating pGEM-sgC-Lox2272-GFP-gDgI. The primer sequences used for
guide RNA cloning and donor plasmid construction are listed in Tables 1 and 2.

Table 1. sgRNA targeting sequences in HVT * genome and donor constructs.

sgRNA Target Sequences PAM Gene Locus

UL45/46 GAGATCGAGTGCCGCATCAC CGG Between UL45 & UL46
HVT65/66 GGGAAACTAAATGTTCATAG AGG Between HVT65 and HVT66

US2 ACACAAATTGCGTTTAGGTG GGG US2
sg-A GAGATCGAGTGCCGCATCAC CGG sgA
sg-B GAGATCGAGTTCGGCTAGAC CGG sgB
sg-C GAGAGAGTGTGGCGACTCTG CGG sgC

* Genebank accession number: NC_002641.

Table 2. Primer sequences used for donor construction.

Primer Sequences

SfiIx2-F CTAGCAAGGCCGCCTAGGCCGGCGCGCCGTTAAACGGCCATTATGGCCGTTT
SfiIx2-R AAACGGCCATAATGGCCGTTTAACGGCGCGCCGGCCTAGGCGGCCTTG

sgB-LoxN-F CATGGGAAGTCGAGTTCGGCTAGACCGGATAACTTCGTATAAGGTATACTATACGAA
GTTATTTAATTAAATAACTTCGTATAAGGTATACTATACGAAGTTATGGCCGCCTAGGC
CGGCGCGCCGTTTAAACGGCCATTATGGCCGAAGTCGAGTTCGGCTAGACCGGCA

sgB-LoxN-R TATGCCGGTCTAGCCGAACTCGACTTCGGCCATAATGGCCGTTTAAACGGCGCGCCG
GCCTAGGCGGCCATAACTTCGTATAGTATACCTTATACGAAGTTATTTAATTAAATAAC

TTCGTATAGTATACCTTATACGAAGTTATCCGGTCTAGCCGAACTCGACTTCC
sgC-Lox2272-F CATGGGAGAGAGTGTGGCGACTCTGCGGATAACTTCGTATAAAGTATCCTATACGAA

GTTATTTAATTAAATAACTTCGTATAAAGTATCCTATACGAAGTTATGGCCGCCTAGGC
CGGCGCGCCGTTTAAACGGCCATTATGGCCGAGAGAGTGTGGCGACTCTGCGGCA

sgC-Lox2272-R TATGCCGCAGAGTCGCCACACTCTCTCGGCCATAATGGCCGTTTAAACGGCGCGCCG
GCCTAGGCGGCCATAACTTCGTATAGGATACTTTATACGAAGTTATTTAATTAAATAAC

TTCGTATAGGATACTTTATACGAAGTTATCCGCAGAGTCGCCACACTCTCTCC
HA-F * CGAGCGGCCGCATGGAAGCACTATCACTGATAACTATAC
HA-R GCGGCGGCCGCTTATATACAAATGTTGCATCTGCAAGA

* HA sequence with GenBank accession number MT039488.1 is from Shandong isolate A/chicken/China/DZL018/
2016(H9N2).
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2.3. Generation of Recombinant HVT-VP2-gDgI-HA

The detailed procedures for generation of recombinant HVT are described previously [23]. For
the generation of HVT-VP2-gDgI, donor plasmid pGEM-sgC-Lox2272-GFP-gDgI and Cas9/gRNA
expression plasmids targeting both HVT65/66 region of HVT-VP2 and the donor plasmid [23] were
co-transfected into CEF followed by HVT-VP2 virus infection. GFP fluorescent single cells were
isolated by fluorescence activated cell sorting, as described previously [25]. After excision of the GFP
expression cassette by Cre treatment, the purified virus was identified by PCR using primers shown in
Figure 1b. The resulting recombinant HVT-VP2-gDgI was then used for insertion of HA expression
cassette following the same procedure generating HVT-VP2-gDgI–HA.
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Figure 1. Construction of triple insert recombinant HVT-VP2-gDgI-HA. (a) A schematic representation
of the cloning strategy for construction of three donor plasmids. The key elements include Cas9 target
sites (sgA, sgB, or sgC) for releasing the insert, Lox sequences flanking the RFP/GFP cassette (LoxP,
LoxN, or Lox2272) for the excision of the reporter, and the foreign gene expression cassette (VP2, HA, or
gDgI) for insertion. (b) Herpesvirus of turkeys (HVT) genome regions spanning the three insertion sites
used in this study with numbered HVT genes in grey/dark grey arrows and foreign gene expression
cassettes VP2 (light purple, GenBank accession number: D00869), HA (purple, GenBank accession
number MT039488.1) and gDgI (dark purple, GenBank accession number of ILTV: MN335811.1). The
scissor icon represents the gRNA targeting sites in the HVT genome for foreign gene insertion. The
name and position of the primers used for each PCR are shown in arrows at the bottom. (c) 5′ and 3′

junction PCR to confirm the correct insertion of genes in the recombinant HVT virus, using primers
shown in Figure 1b. The specific bands indicate that insertions were present in the recombinant viruses.
The sizes of the fragments are indicated on the left. (d) PCR analysis of the inserted foreign gene
cassettes using primers at the flanking regions of the insertion sites. While lower bands indicate the
PCR product without foreign gene insertion, the upper bands (approx. 3000 bp) show the presence of
foreign gene cassettes in recombinant viruses. The sizes of the fragments are indicated on the left.

2.4. Western Blot Analysis

1.5 × 105 primary CEF were seeded into 24-well plates the day before infection. The following
day, the titrated virus was recovered from the liquid nitrogen and thawed quickly in 37 ◦C water
bath. After mixing the content of the vial, the virus was diluted to 1.5 × 104 pfu/mL. One hundred
microliters making final dose of 0.01 pfu/cell was added to each well of 24-well plates with growth
medium and the cells were then incubated at 38.5 ◦C and 5% CO2. 48 h post infection, the infected CEF
cells were collected and boiled with TruPAGE LDS sample buffer (Sigma) for 10 min. The samples
were separated on a 4% to 12% TruPAGE precast gel, and the resolved proteins were transferred onto
polyvinylidene difluoride (PVDF) membranes. Expression of VP2, gDgI, HA and vNr-13 were detected
using anti-VP2 monoclonal antibody (MAb) (Clone ID: EU0205 CAEU Company, Beijing, China,
which specifically recognizes amino acids 394-410 of VP2), anti-ILTV chicken serum (Charles River
Laboratories, 10100470), anti HVT-encoded Bcl-2 homologue vNr-13 (MAb) (clone EG2 generated at
Pirbright Institute) and anti-H9N2 chicken serum (generated at Binzhou Animal Science and Veterinary
Medicine Academy), respectively. After probing with primary antibodies, the blots were incubated
with secondary antibody IRDye®680RD (LI-COR Biosciences, Lincoln, NE, USA) goat anti-mouse IgG
(Li-Cor) (for detection of VP2 and vNr-13), IRDye®800CW Donkey anti-Chicken IgG (Li-Cor) (for
detection of gDgI and HA), and the results were visualized using Odyssey Clx (Li-Cor).

2.5. Indirect Immunofluorescence Analysis (IFA)

The same dose and infection procedure described above was followed. Forty-eight hours post
infection, CEF cells in 24 well plates (and on coverslips—Figure 2 only) were fixed with 4% chilled
paraformaldehyde and permeabilized with 0.1% Triton X-100 in phosphate buffer. In Figure 2a, the
cells were labelled with: MAb HH7 (generated at Pirbright Institute) followed by goat anti-mouse
IgG labelled with Alexa Fluor 633 (Invitrogen) to detect VP2 expression, Anti-ILTV chicken serum
followed by goat anti-chicken IgG labelled with Alexa Fluor 568 to detect gDgI expression, and
Anti-H9N2 chicken serum (generated at Binzhou Animal Science and Veterinary Medicine Academy)
followed by goat anti-chicken IgG labelled with Alexa Fluor 488 (Invitrogen) were to detect HA
expression. Cell nuclei were then stained with 4′, 6-diamidino-2-phenylindole (DAPI), coverslips were
mounted in Vectashield onto microscope slides and imaged in a Leica TCS SP5 confocal laser scanning
microscope (Leica Microsystems, Milton Keynes, UK). In Figure 3a, the cells were labelled with: MAb
L78 (generated at Pirbright Institute) followed by goat anti-mouse IgG labelled with Alexa Fluor 568
to detect HVT-gB expression, HH7 followed by goat anti-mouse IgG labelled with Alexa Fluor 488
(Invitrogen) to detect VP2 expression, anti-ILTV chicken serum followed by goat anti-chicken IgG
labelled with Alexa Fluor 488 to detect gDgI expression, and anti-H9N2 chicken serum followed by
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goat anti-chicken IgG labelled with Alexa Fluor 488 to detect HA expression. An IncuCyte was used to
image 36 separate regions per well and 4 wells per sample.Vaccines 2020, 8, x 9 of 14 

 

 

Figure 2. Characterization of the recombinant HVT viruses. (a) Detection of VP2, glycoprotein D-

glycoprotein I (gDgI), and HA expression from the recombinant viruses in CEFs with IFA. VP2 

expression was detected with MAb HH7 followed by goat anti-mouse IgG labelled with Alexa Fluor 

633 (Far red). gDgI expression was detected with anti-ILTV chicken serum followed by goat anti-

chicken IgG labelled with Alexa Fluor 568 (red). HA expression was detected with anti-H9N2 chicken 

serum followed by goat anti-chicken IgG labelled with Alexa Fluor 488 (green). The nuclei were 

stained with DAPI (blue). (b) Detection of VP2, gDgI and HA expression in recombinant virus 

infected CEF by Western blotting with the same primary antibodies described in (A). HVT-encoded 

Bcl-2 homolog vNr-13 was used to confirm HVT infection. (c) The growth kinetics of recombinant 

HVT viruses. In vitro growth rates of HVT-WT, HVT-VP2, HVT-VP2-gDgI and HVT-VP2-gDgI-HA 

measured from the viral genome copy numbers determined using TaqMan real-time qPCR on DNA 

extracted from chick embryo fibroblasts (CEF) harvested at various time points after inoculation. Viral 

genome copy numbers per 10,000 cells (shown with 95% confidence intervals) are shown on the y 

axis.  

3.3. Stability of Recombinant HVT-VP2-gDgI-HA 

Figure 2. Characterization of the recombinant HVT viruses. (a) Detection of VP2, glycoprotein
D-glycoprotein I (gDgI), and HA expression from the recombinant viruses in CEFs with IFA. VP2
expression was detected with MAb HH7 followed by goat anti-mouse IgG labelled with Alexa Fluor 633
(Far red). gDgI expression was detected with anti-ILTV chicken serum followed by goat anti-chicken
IgG labelled with Alexa Fluor 568 (red). HA expression was detected with anti-H9N2 chicken serum
followed by goat anti-chicken IgG labelled with Alexa Fluor 488 (green). The nuclei were stained with
DAPI (blue). (b) Detection of VP2, gDgI and HA expression in recombinant virus infected CEF by
Western blotting with the same primary antibodies described in (A). HVT-encoded Bcl-2 homolog
vNr-13 was used to confirm HVT infection. (c) The growth kinetics of recombinant HVT viruses.
In vitro growth rates of HVT-WT, HVT-VP2, HVT-VP2-gDgI and HVT-VP2-gDgI-HA measured from
the viral genome copy numbers determined using TaqMan real-time qPCR on DNA extracted from
chick embryo fibroblasts (CEF) harvested at various time points after inoculation. Viral genome copy
numbers per 10,000 cells (shown with 95% confidence intervals) are shown on the y axis.
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Figure 3. Stability of triple insert recombinant HVT-VP2-gDgI-HA. (a) Merged images of double
stained HVT-VP2-gDgI-HA infected CEF with anti-HVT-gB MAb antibody L78 (red) and anti-H9N2
chicken serum (green) (left panel), anti-ILTV chicken serum (green) (middle panel) or anti-VP2 MAb
HH7 (green) (right panel). Images were taken from 36 separate regions per well and 4 wells per sample
in 24-well plates using the IncuCyte. (b) The marked region of the merged images of gDgI and HVT-gB
staining in (a) is shown enlarged with gDgI staining (green, top left), HVT-gB staining (top-right), the
merged image under UV light (bottom left) and phase contrast (bottom right). (c) PCR to confirm
the presence/absence of the VP2 expression cassette at UL45/46 with primers UL45F/UL46R, gDgI at
HVT65/66 with primers HVT65F/HVT66R and HA at US2 region with primers US2F/US2R from the
recombinant virus HVT-VP2-gDgI-HA at passage 1, 5, 10, and 15 in CEFs (primer sequence shown in
Figure 2b). HVT infected and noninfected CEF were included as controls. The absence of a lower band,
during amplification, in the recombinant virus during passage indicates that the recombinant virus is
stable. The sizes of the fragments are indicated on the left.

2.6. Stability of the Inserted Genes in the Recombinant Viruses

The recombinant viruses HVT-VP2, HVT-VP2-gDgI and HVT-VP2-gDgI-HA were passaged
through CEF cells 15 times. The stability of each inserted cassette was monitored by PCR with primer
pairs located at the flanking region of the insertion site (UL45F and UL46R for VP2 expression, HVT65F
and HVT66R for gDgI expression cassette, US2F and US2R for HA expression cassette) using DNA
extracted from every 5th passage. The primer sequences used for PCR described above are listed in
Table 3.
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Table 3. Primers used for junction PCR and knock-in detection.

Primer Sequence

UL45F TACCGTTATATGTCAGCGACCCA
UL46R CTCCGACAACCAAATACTTTCATGA

HVT65 F TCGCTATGCAAAGAGATGCGTG
HVT66 R CGTCTGCGATAACTACGCCT

US2F CTGTGATACACTTGGGAGCC
US2R GACGTTTCCGATCTTCCACA

VP2 5R GTGCATGACCGTGCTGATTC
VP2 3F CGTCTTGGCATCAAGACCGT
gDI 5R ACGACAGGCACATTAGCTGGACC
gDI 3F TAGTTACTGTGCCTTCTAGTTGCCAG
HA 5R GCTCTGTGTGGAGCAGTTCT
HA 3F TGAAGAGAGCGTTGGGTTCC

2.7. In Vitro Growth Kinetics

To investigate the growth properties of the recombinant HVT, CEF cultured in 6-well plates were
infected with 100 pfu of each virus per well and harvested at 0, 12, 24, 48, 72, 96, and 120 h post
infection. DNA was extracted using the DNeasy 96 Blood & Tissue kit (Qiagen, Germantown, IL, USA)
and used for real-time q-PCR to determine the in vitro growth kinetics of the viruses using methods
described previously [2]. Duplex real-time q-PCR to detect both the HVT SORF1 gene and chicken
ovotransferrin gene enabled calculation of HVT genome copies per 10,000 cells using a dilution series
of pHVT BAC3 DNA [2] and p-GEM-T-ovo [29] to produce standard curves. The HVT genome copies
per 10,000 cells were plotted against hours post-infection for each of the viruses.

3. Results

3.1. Generation of Triple Insert HVT Recombinant HVT-VP2-gDgI-HA

To generate triple insert HVT recombinant, we inserted ILTV gDgI and AIV H9HA expression
cassettes sequentially into the HVT-VP2 virus, reported previously [23], to generate HVT-VP2-gDgI-HA.
In order to distinguish between the different donor templates and to ensure that the reporter cassette was
correctly excised at each stage, different bait sequences (sgB target sites for HA and sgC target sites for
gDgI) were introduced at the ends of the donor templates for releasing the donor sequences. Different
variant Lox sequences (LoxN for HA and Lox2272 for gDgI) facilitated marker gene excision by Cre
recombinase (Figure 1a). Insertion of the gDgI and HA expression cassettes into the HVT-VP2 genome
at HVT65/66 and US2 loci respectively were carried out sequentially using the strategy described
previously [23]. After each insertion and reporter excision, we examined the correct location and
orientation of the insert by junction PCR (5′ and 3′) and the purity of the purified plaque was determined
by PCR using primers outside of the insertion sites (Figure 1b). Wild type HVT-infected cells were used
as negative control. As expected, junction PCR of both 5′ and 3′ for VP2 insertion between UL45/46
was amplified for all three recombinants HVT-VP2, HVT-VP2-gDgI, and HVT-VP2-gDgI-HA; junction
PCR of both 5′ and 3′ for gDgI insertion between HVT-65/66 was amplified for two recombinants
HVT-VP2-gDgI and HVT-VP2-gDgI-HA; junction PCR of both 5′ and 3′ for HA insertion at US2 region
was amplified only for recombinant HVT-VP2-gDgI-HA when HA was inserted (Figure 1c). In contrast,
no PCR product was amplified for wild type HVT at any insertion site. Similarly, when the outside
primers were used, the full-length inserts with the flanking sequences of VP2 were present in all three
HVT recombinant viruses. Insert of gDgI was present in the two recombinants HVT-VP2-gDgI and
HVT-VP2-gDgI-HA. HA was only present in HVT-VP2- gDgI-HA virus. The smaller band without
insert was present only in wild type HVT and the recombinants before the corresponding donor were
inserted, indicating the purified virus only contained the recombinant HVT with correct insert/inserts
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(Figure 1d). All of the data above confirmed that gDgI and HA were correctly inserted in the purified
recombinant virus stocks.

3.2. Characterization of Recombinant HVT-VP2-gDgI and HVT-VP2-gDgI-HA

We next investigated the expression of IBDV VP2, ILTV gDgI, and AIV HA by immunofluorescence
labelling of different recombinant virus infected CEF cells with monoclonal antibody HH7 (VP2 specific),
ILTV-specific chicken serum (for gD and gI detection) and H9N2-infected chicken serum (for HA
detection). HVT-infected cells were used as a negative control. As shown in Figure 2a, VP2 expression
(Far-red) was observed in all three recombinant virus-infected CEFs but not HVT-infected cells.
Expression of gDgI (red) was detected in HVT-VP2-gDgI and HVT-VP2-gDgI-HA infected cells,
whereas HA (green) was only expressed in CEF infected with HVT-VP2-gDgI-HA. Results indicate
that the three inserts were expressed correctly from each of the constructs.

For further assessment of the expression of each protein, cell lysates from CEF infected with
each recombinant virus were analyzed by Western blotting (Figure 2b). The HVT-vNr-13-specific
MAb EG2 was used as an infection/loading control. Again, IBDV VP2-positive band was observed in
all three recombinant virus infections, while bands representing gD and gI expression were present
in both HVT-VP2-gDgI and HVT-VP2-gDgI-HA infected cells although the non-specific bands are
present in HVT-VP2 and HVT infected cells. HA expression was only observed in HVT-VP2-gDgI-HA
infected CEF, further confirming the correct expression of each insert by the recombinant viruses in the
infected CEF.

Having confirmed the presence and expression of all three inserts, we examined whether the
insertion of these additional expression cassettes influenced the growth of the recombinant viruses.
Primary CEFs, grown in 6-well plates, were infected with 100 pfu of either HVT or HVT recombinants
with one, two or three inserts. The viral genome copy numbers per 10,000 cells at various days
post-infection were examined by qPCR to determine the virus replication rates. As shown in Figure 2c,
the growth curves were similar between the wild type and all the recombinant HVTs.

3.3. Stability of Recombinant HVT-VP2-gDgI-HA

Previously we have shown that the VP2 expression cassette was stably integrated into the HVT
genome during repeated cell passages [23]. To determine the stability of the newly inserted two
expression cassettes during continuous passage of triple insert recombinant virus, HVT-VP2-gDgI-HA
was sequentially passaged on primary CEFs and infected cells at the 15th passage were examined by
fluorescence imaging. The expression of each insert was examined, together with MAb anti-HVT-gB
L78 for HVT infection control, to identify the double stained cells demonstrating the stable integration
of the foreign gene. The loss of the insert from any of the recombinant viruses during the passage
would be apparent, as these cells would only show positive labelling with the anti-HVT-gB antibody.
As shown in Figure 3a,b, the presence of dual labelling in all of the infected cells demonstrated that all
of the three inserts were stably integrated into the HVT genome.

To further confirm that the three inserts were indeed stably integrated during the repeated
sequential passages, viral DNA was extracted and analyzed after every 5 passages by PCR using
outside primers, as described above. As shown in Figure 3c, the small bands amplified from HVT
infection are the predicated size for the sequence spanning the gRNA target site before insertion, the
large band in the recombinant virus-infected cells are the predicted size for the sequence containing the
insert. Although some of the non-specific bands are present, the correct sized small and large specific
bands are clearly distinguishable. The absence of the smaller bands in recombinant virus-infected
cells after repeated cell culture passages indicated that both gDgI and HA expression cassettes were
stably integrated into the HVT-VP2 genome. The stability of previously inserted VP2 was not affected
following the insertion of the two additional foreign genes.
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4. Discussion

With the requirement of up to 15 different vaccines to protect against multiple avian diseases,
there is great demand for developing multivalent recombinant vaccines that can induce simultaneous
protection against multiple avian pathogens. Among the recombinant viral vectors, HVT is the most
successful and widely used commercially for the delivery of various immunogenic proteins to protect
against poultry diseases such as NDV, IBDV, and AIV. With the additional value of their use as a
hatchery vaccine, recombinant HVT vaccines are effective against the specific antigens expressed.
However, when different recombinant vaccines are combined to obtain protection against multiple avian
pathogens, the protection levels are less than optimal to each of the components, due to the interference
between recombinant HVTs expressing different antigens. Although the precise mechanisms of such
interference are not fully clear, this limitation restricts the combined use of the different recombinant
HVT vectors. The recent successful use of CRISPR/Cas9 gene editing for rapid integration of a foreign
gene into the HVT genome [23] has promoted us to insert more foreign genes for multivalent HVT
vaccine development using the same strategy.

A previous report showed that the insertion site has a major influence in the successful expression
of foreign gene [30]. Several genomic loci in the HVT genome, including US2, US10, intergenic
regions of UL45/UL46 and HVT065/HVT066, have been shown to be suitable for foreign gene insertion.
Following the successful insertion of the VP2 expression cassette into HVT at UL45/UL46 region, we
chose to insert the gDgI expression cassette into the HVT065/HVT066 intergenic region and the H9
expression cassette into the US2 gene using the same strategy. Indeed, both expression cassettes were
successfully integrated into the desired location and remained stable after 15 passages, as confirmed
by both immunostaining and PCR. Furthermore, the fact that the recombinant viruses with one, two
and three foreign gene insertions had similar growth to the wide type virus has further confirmed the
suitability of these sites for foreign gene insertion.

Apart from the features of an excisable fluorescence selection marker for easy visualization of
recombinant virus and the unique SfiI sites for swapping the foreign gene expression cassette of interest,
new features including two new universal gRNA target sequences for releasing the donor template
and two more Lox variant sequences to avoid repeated usage of the LoxP sequence for marker excision
of the first insert have been introduced for donor vector construction. This has made different donor
templates easily distinguishable. The only limitation for the whole procedure is the complexity of the
identification of GFP/RFP-positive clones by junction PCR as the inserted sequence could be in either
orientation. The primers for junction PCR described here is only for identification of the recombinant
inserted in the sense orientation. The two primers located at each end of the inserted sequence could be
swapped to identify the insert in antisense orientation. In the current study, the foreign gene expression
cassettes were inserted sequentially, however, the insertion of different donor templates could be done
simultaneously with the approach of using donor templates with different colored fluorescence marker
genes. Similarly, subsequent marker gene excision can also be done simultaneously with different Lox
variant sequences, making the whole process more rapid and efficient. The same approach can also be
used for the development of new multivalent vectored vaccines on backbone of serotype 1 and 2 of
MDV vaccine strains such as CVI988 and SB-1, other herpesvirus such as ILTV and DEV as well as
other avian DNA viruses including adenoviruses and pox viruses. With prevention being the most
effective means of controlling virus infection, protecting against multiple diseases with fewer injections
of a multivalent vectored vaccine improves poultry welfare by reducing the stress associated with
multiple needle sticks, speeds the vaccination processes, reduces the cost to produce and holds great
promise for poultry industry.

Author Contributions: Y.Y., V.N., Z.S. and N.T. conceived and designed the experiments; N.T., Y.Z., Y.S. and K.M.
performed the experiments; N.T. and Y.Y. analyzed the data; N.T., V.N. and Y.Y. wrote the paper. All authors have
read and agreed to the published version of the manuscript.



Vaccines 2020, 8, 97 11 of 12

Funding: This project was supported by the Biotechnology and Biological Sciences Research Council (BBSRC)
grants BB/P016472/1, BB/L014262/1, BBS/E/I/00007032 and BB/R007896/1, PhD placement program of UK-China
Joint Research and Innovation Partnership Fund 201603780111, BBSRC Newton Fund Joint Centre Awards on
“UK-China Centre of Excellence for Research on Avian Diseases”.

Conflicts of Interest: The authors report no conflict of interest.

References

1. Espeseth, D.A.; Lasher, H. History of regulatory requirements for poultry biologics in the united states, 1970s
to 1990s. Avian Dis. 2013, 57, 167–171. [CrossRef]

2. Baigent, S.J.; Petherbridge, L.J.; Smith, L.P.; Zhao, Y.; Chesters, P.M.; Nair, V.K. Herpesvirus of turkey
reconstituted from bacterial artificial chromosome clones induces protection against marek’s disease. J. Gen.
Virol. 2006, 87, 769–776. [CrossRef]

3. Li, Y.; Reddy, K.; Reid, S.M.; Cox, W.J.; Brown, I.H.; Britton, P.; Nair, V.; Iqbal, M. Recombinant herpesvirus
of turkeys as a vector-based vaccine against highly pathogenic h7n1 avian influenza and marek’s disease.
Vaccine 2011, 29, 8257–8266. [CrossRef]

4. Gergen, L.; Cook, S.; Ledesma, B.; Cress, W.; Higuchi, D.; Counts, D.; Cruz-Coy, J.; Crouch, C.; Davis, P.;
Tarpey, I.; et al. A double recombinant herpes virus of turkeys for the protection of chickens against newcastle,
infectious laryngotracheitis and marek’s diseases. Avian Pathol. 2019, 48, 45–56. [CrossRef] [PubMed]

5. Dunn, J.R.; Dimitrov, K.M.; Miller, P.J.; Garcia, M.; Turner-Alston, K.; Brown, A.; Hartman, A. Evaluation
of protective efficacy when combining turkey herpesvirus-vector vaccines. Avian Dis. 2019, 63, 75–83.
[CrossRef] [PubMed]

6. Bi, Y.; Sun, L.; Gao, D.; Ding, C.; Li, Z.; Li, Y.; Cun, W.; Li, Q. High-efficiency targeted editing of large viral
genomes by rna-guided nucleases. PLoS Pathog. 2014, 10, e1004090. [CrossRef] [PubMed]

7. Bierle, C.J.; Anderholm, K.M.; Wang, J.B.; McVoy, M.A.; Schleiss, M.R. Targeted mutagenesis of guinea pig
cytomegalovirus using crispr/cas9-mediated gene editing. J. Virol. 2016, 90, 6989–6998. [CrossRef]

8. Suenaga, T.; Kohyama, M.; Hirayasu, K.; Arase, H. Engineering large viral DNA genomes using the crispr-cas9
system. Microbiol. Immunol. 2014, 58, 513–522. [CrossRef]

9. Xu, A.; Qin, C.; Lang, Y.; Wang, M.; Lin, M.; Li, C.; Zhang, R.; Tang, J. A simple and rapid approach
to manipulate pseudorabies virus genome by crispr/cas9 system. Biotechnol. Lett. 2015, 37, 1265–1272.
[CrossRef]

10. Yuan, M.; Zhang, W.; Wang, J.; Al Yaghchi, C.; Ahmed, J.; Chard, L.; Lemoine, N.R.; Wang, Y. Efficiently
editing the vaccinia virus genome by using the crispr-cas9 system. J. Virol. 2015, 89, 5176–5179. [CrossRef]

11. Yuen, K.S.; Chan, C.P.; Wong, N.H.; Ho, C.H.; Ho, T.H.; Lei, T.; Deng, W.; Tsao, S.W.; Chen, H.; Kok, K.H.; et al.
Crispr/cas9-mediated genome editing of epstein-barr virus in human cells. J. Gen. Virol. 2015, 96, 626–636.
[CrossRef] [PubMed]

12. Liang, X.; Sun, L.; Yu, T.; Pan, Y.; Wang, D.; Hu, X.; Fu, Z.; He, Q.; Cao, G. A crispr/cas9 and cre/lox
system-based express vaccine development strategy against re-emerging pseudorabies virus. Sci. Rep. 2016,
6, 19176. [CrossRef] [PubMed]

13. Zou, Z.; Huang, K.; Wei, Y.; Chen, H.; Liu, Z.; Jin, M. Construction of a highly efficient crispr/cas9-mediated
duck enteritis virus-based vaccine against h5n1 avian influenza virus and duck tembusu virus infection.
Sci. Rep. 2017, 7, 1478. [CrossRef] [PubMed]

14. Peng, Z.; Ouyang, T.; Pang, D.; Ma, T.; Chen, X.; Guo, N.; Chen, F.; Yuan, L.; Ouyang, H.; Ren, L. Pseudorabies
virus can escape from crispr-cas9-mediated inhibition. Virus Res. 2016, 223, 197–205. [CrossRef] [PubMed]

15. Tang, Y.D.; Liu, J.T.; Wang, T.Y.; An, T.Q.; Sun, M.X.; Wang, S.J.; Fang, Q.Q.; Hou, L.L.; Tian, Z.J.; Cai, X.H.
Live attenuated pseudorabies virus developed using the crispr/cas9 system. Virus Res. 2016, 225, 33–39.
[CrossRef]

16. Atasoy, M.O.; Rohaim, M.A.; Munir, M. Simultaneous deletion of virulence factors and insertion of antigens
into the infectious laryngotracheitis virus using nhej-crispr/cas9 and cre-lox system for construction of a
stable vaccine vector. Vaccines 2019, 7, 207. [CrossRef]

17. Chang, P.; Ameen, F.; Sealy, J.E.; Sadeyen, J.R.; Bhat, S.; Li, Y.; Iqbal, M. Application of hdr-crispr/cas9 and
erythrocyte binding for rapid generation of recombinant turkey herpesvirus-vectored avian influenza virus
vaccines. Vaccines 2019, 7, 192. [CrossRef]

http://dx.doi.org/10.1637/10372-091312-Hist.1
http://dx.doi.org/10.1099/vir.0.81498-0
http://dx.doi.org/10.1016/j.vaccine.2011.08.115
http://dx.doi.org/10.1080/03079457.2018.1546376
http://www.ncbi.nlm.nih.gov/pubmed/30404540
http://dx.doi.org/10.1637/11979-092818-Reg.1
http://www.ncbi.nlm.nih.gov/pubmed/31251522
http://dx.doi.org/10.1371/journal.ppat.1004090
http://www.ncbi.nlm.nih.gov/pubmed/24788700
http://dx.doi.org/10.1128/JVI.00139-16
http://dx.doi.org/10.1111/1348-0421.12180
http://dx.doi.org/10.1007/s10529-015-1796-2
http://dx.doi.org/10.1128/JVI.00339-15
http://dx.doi.org/10.1099/jgv.0.000012
http://www.ncbi.nlm.nih.gov/pubmed/25502645
http://dx.doi.org/10.1038/srep19176
http://www.ncbi.nlm.nih.gov/pubmed/26777545
http://dx.doi.org/10.1038/s41598-017-01554-1
http://www.ncbi.nlm.nih.gov/pubmed/28469192
http://dx.doi.org/10.1016/j.virusres.2016.08.001
http://www.ncbi.nlm.nih.gov/pubmed/27507009
http://dx.doi.org/10.1016/j.virusres.2016.09.004
http://dx.doi.org/10.3390/vaccines7040207
http://dx.doi.org/10.3390/vaccines7040192


Vaccines 2020, 8, 97 12 of 12

18. Hubner, A.; Keil, G.M.; Kabuuka, T.; Mettenleiter, T.C.; Fuchs, W. Efficient transgene insertion in a
pseudorabies virus vector by crispr/cas9 and marker rescue-enforced recombination. J. Virol. Methods 2018,
262, 38–47. [CrossRef]

19. Zhang, Y.; Luo, J.; Tang, N.; Teng, M.; Reddy, V.; Moffat, K.; Shen, Z.; Nair, V.; Yao, Y. Targeted editing of the
pp38 gene in marek’s disease virus-transformed cell lines using crispr/cas9 system. Viruses 2019, 11, 391.
[CrossRef]

20. Zhang, Y.; Tang, N.; Luo, J.; Teng, M.; Moffat, K.; Shen, Z.; Watson, M.; Nair, V.; Yao, Y. Marek’s disease
virus-encoded microrna 155 ortholog critical for the induction of lymphomas is not essential for the
proliferation of transformed cell lines. J. Virol. 2019, 93, e00713-19. [CrossRef]

21. Zhang, Y.; Tang, N.; Sadigh, Y.; Baigent, S.; Shen, Z.; Nair, V.; Yao, Y. Application of crispr/cas9 gene editing
system on mdv-1 genome for the study of gene function. Viruses 2018, 10, 279. [CrossRef] [PubMed]

22. BeltCappellino, A.; Majerciak, V.; Lobanov, A.; Lack, J.; Cam, M.; Zheng, Z.M. Crispr/cas9-mediated knockout
and in situ inversion of the orf57 gene from all copies of the kaposi’s sarcoma-associated herpesvirus genome
in bcbl-1 cells. J. Virol. 2019, 93, e00628-19. [CrossRef] [PubMed]

23. Tang, N.; Zhang, Y.; Pedrera, M.; Chang, P.; Baigent, S.; Moffat, K.; Shen, Z.; Nair, V.; Yao, Y. A simple
and rapid approach to develop recombinant avian herpesvirus vectored vaccines using crispr/cas9 system.
Vaccine 2018, 36, 716–722. [CrossRef] [PubMed]

24. Yao, Y.; Bassett, A.; Nair, V. Targeted editing of avian herpesvirus vaccine vector using crispr/cas9 nucleases.
Intl. J. Vaccine Technol. 2016, 1, 1–7.

25. Tang, N.; Zhang, Y.; Pedrera, M.; Chang, P.; Baigent, S.; Moffat, K.; Shen, Z.; Nair, V.; Yao, Y. Generating
recombinant avian herpesvirus vectors with crispr/cas9 gene editing. J. Vis. Exp. 2019. [CrossRef] [PubMed]

26. Liu, L.; Wang, T.; Wang, M.; Tong, Q.; Sun, Y.; Pu, J.; Sun, H.; Liu, J. Recombinant turkey herpesvirus
expressing h9 hemagglutinin providing protection against h9n2 avian influenza. Virology 2019, 529, 7–15.
[CrossRef]

27. Vagnozzi, A.; Zavala, G.; Riblet, S.M.; Mundt, A.; Garcia, M. Protection induced by commercially available
live-attenuated and recombinant viral vector vaccines against infectious laryngotracheitis virus in broiler
chickens. Avian Pathol. 2012, 41, 21–31. [CrossRef]

28. Ran, F.A.; Hsu, P.D.; Wright, J.; Agarwala, V.; Scott, D.A.; Zhang, F. Genome engineering using the crispr-cas9
system. Nat. Protoc. 2013, 8, 2281–2308. [CrossRef]

29. Baigent, S.J.; Petherbridge, L.J.; Howes, K.; Smith, L.P.; Currie, R.J.; Nair, V.K. Absolute quantitation of
marek’s disease virus genome copy number in chicken feather and lymphocyte samples using real-time pcr.
J. Virol. Methods 2005, 123, 53–64. [CrossRef]

30. Zhang, F.; Chen, W.; Ma, C.; Zhang, Z.; Zhao, P.; Du, Y.; Zhang, Y.; Duan, L.; Fang, J.; Li, S.; et al. Transcriptional
activity comparison of different sites in recombinant marek’s disease virus for the expression of the h9n2
avian influenza virus hemagglutinin gene. J. Virol. Methods 2014, 207, 138–145. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jviromet.2018.09.009
http://dx.doi.org/10.3390/v11050391
http://dx.doi.org/10.1128/JVI.00713-19
http://dx.doi.org/10.3390/v10060279
http://www.ncbi.nlm.nih.gov/pubmed/29794970
http://dx.doi.org/10.1128/JVI.00628-19
http://www.ncbi.nlm.nih.gov/pubmed/31413125
http://dx.doi.org/10.1016/j.vaccine.2017.12.025
http://www.ncbi.nlm.nih.gov/pubmed/29269155
http://dx.doi.org/10.3791/58193
http://www.ncbi.nlm.nih.gov/pubmed/30663658
http://dx.doi.org/10.1016/j.virol.2019.01.004
http://dx.doi.org/10.1080/03079457.2011.631983
http://dx.doi.org/10.1038/nprot.2013.143
http://dx.doi.org/10.1016/j.jviromet.2004.08.019
http://dx.doi.org/10.1016/j.jviromet.2014.07.011
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Viruses and Cell Culture 
	Construction of sgRNAs and Donor Plasmids 
	Generation of Recombinant HVT-VP2-gDgI-HA 
	Western Blot Analysis 
	Indirect Immunofluorescence Analysis (IFA) 
	Stability of the Inserted Genes in the Recombinant Viruses 
	In Vitro Growth Kinetics 

	Results 
	Generation of Triple Insert HVT Recombinant HVT-VP2-gDgI-HA 
	Characterization of Recombinant HVT-VP2-gDgI and HVT-VP2-gDgI-HA 
	Stability of Recombinant HVT-VP2-gDgI-HA 

	Discussion 
	References

