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Figure S1. Element scan image of element distribution of (a) MSLS/NRL and (b) NRL latex particles.
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Figure S2. Density functional theory (DFT) calculation evaluating interaction energy between the
MLSL and natural rubber.

To further study the core-shell formation mechanism between MLSL and rubber the
interaction energy (AFEinteraction) was investigated by molecular dynamics simulation. DFT
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calculation was conducted at wB97X-D/6-31g** using G09 Software [1, 2]. Consequently,
the interaction energy was calculated from the following equation [3]:

A Epnteraction = (Eap=(Ey +Ep)) 1)

Where Eas and Ea (and Es) are the total potential energies of final system and initial

system, respectively.
Note: Structure-A and B were used to represent MLSL and natural rubber segment,

respectively.
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Figure S3. (a) Zeta potential and (b) particle size distribution of NRL, MSLS/NRL and MSLS-
PAE/NRL.
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Figure S4. (a) During the oxidation, a picture of MSLS small brown particles, (b) a picture of MSLS
suspension appear and the (c) particle size distribution of MSLS suspension.
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Figure S5. Water contact angle of (a) SLS and (g) MSLS.
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Figure S6. Tensile strength and tear strength of the composites with different MSLS content in nat-
ural rubber latex.
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Figure S7. (a—e) the energy dissipation curves of rubber composites with different PAE contents.

Table S1. Zeta potential and particle size of NRL, MSLS/NRL and MSLS-PAE/NRL.

sample Zeta Potential (mV) Size (d. nm)
NRL -46.37 + 0.84 425.37 £8.70
MSLS/NRL -52.90 + 0.56 435.20 +17.49
MSLS-PAE/NRL -48.57 + 0.07 44493 +5.34

Table S2. Estimated bond strength from reported references.

Bond type Bond Energy(k]J/mol) Ref.
c-C 370.8 [4]
c-O 3445 [4]
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338.9
267.1
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Table S3. Statistics of mechanical properties of different materials.

. Elongation at Stress . Tear strength
Materials bregak %) (MPa) Elastic Modulus (kN-m-)
NRL 771.50 25.37 3.29 41.39
MSLS-1.6PAE/NRL 761.50 32.57 4.28 48.48
MSLS-3.2PAE/NRL 809.13 34.69 4.29 55.23
MSLS-4.8PAE/NRL 884.38 37.27 421 61.08
MSLS-6.4PAE/NRL 789.13 33.45 4.24 57.12
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