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Abstract: Produced water (PW) is a by-product of oil and gas extraction, of which it is deemed as
the primary contributor of wastewater stream in oil production. Conventional treatment such as
membrane separation is favoured due to its sustainability and cost effectiveness. On the other hand,
oceanic litters such as abandoned fishing nets endangered the marine life ecosystem, despite of its
potential to be raw material for fabrication of nanofiber membrane (NFM). This study explores the
potential usage of electrospun nylon 6,6 waste NFM for treatment of real PW. In terms of modelling,
it is found that feed concentration is the dominant factor with R2 of 0.94 for permeate concentration
response and 0.91 for average flux response. Moreover, the optimized system with average flux of
216.5 L/m2h with low specific power consumption of ca. 0.09 kWh/m3 is proven to be economically
feasible with less than 5% error from predicted model. As for technoeconomic analysis, it is found that
permeate flux plays the major role in controlling total capital cost (CAPEX) and operating cost (OPEX)
of the system. The lowest total CAPEX and OPEX to achieve 10 ppm of permeate concentration,
also was found to be RM 3.7 M and RM/year 1660, hence proving the economic feasibility of the
proposed system.

Keywords: nanofiber membrane; waste materials; cross-flow microfiltration; modelling; techno-
economic analysis

1. Introduction

Produced water (PW), a by-product from oil and gas production contributes to the
largest wastewater generated from the industry [1,2]. It is reported that PW were produced
around 3–7 bbl per barrel oil in several wells in the US [3,4] and the PW volume can reach
ten times of the oil [5]. Moreover, foaming occurrence dampens the oil and gas industry as
it affects the oil and water separation, subsequently creating more PW waste [6]. Normally,
conventional treatments such as coagulation/flocculation [7–9], adsorption [10–12], hydro-
cyclone [13–15] and floatation [16] are used either as standalone or in combination for PW
treatment. However, they have few drawbacks such as low efficiency, corrosion, high cost
operation, generating secondary pollutants and unable to completely remove microns or
submicron sized oil droplets [17,18].

Henceforth, membrane filtration technique in PW treatment has been favoured due
to several advantages such as low energy usage, chemical and mechanical stability, small
footprint and provides comprehensive and integrable process methods [19–21]. More-
over, it has reliability in handling small droplets emulsion [22,23] as the pore size can
be tuned into sub-micron size to ensure complete removal of oil droplets [24,25]. Apart
from that, in order to meet the discharge requirements, membrane is usually be applied as
the additional step for conventional treatment [17]. One of the most common membrane

Membranes 2023, 13, 224. https://doi.org/10.3390/membranes13020224 https://www.mdpi.com/journal/membranes

https://doi.org/10.3390/membranes13020224
https://doi.org/10.3390/membranes13020224
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/membranes
https://www.mdpi.com
https://orcid.org/0000-0002-0700-5897
https://orcid.org/0000-0002-8658-1955
https://orcid.org/0000-0001-9216-3218
https://doi.org/10.3390/membranes13020224
https://www.mdpi.com/journal/membranes
https://www.mdpi.com/article/10.3390/membranes13020224?type=check_update&version=1


Membranes 2023, 13, 224 2 of 21

filtrations for PW treatment is using thermal desalination technique such as membrane
distillation (MD). MD operates based on the thermal difference between the feed and per-
meate which is separated by hydrophobic membrane layer. MD can be a crucial separation
component for the PW treatment because of its high water recovery [26]. Nevertheless,
the energy requirement particularly sensible heat is considerably high hence reducing its
competitiveness with conventional PW treatment. Another method by Ozgun et al. (2013)
integrates nanofiltration—reverse osmosis (NF-RO) using polyamide membrane for PW
treatment [27]. The research reveals superb flux of up to 100 L/m2 h, although NF and/or
RO are more susceptible for membrane fouling due to the usage of high pressure [28].
Study conducted by Mohd Hizam et al. (2020) suggested forward osmosis (FO) is suitable
to treat PW with air sparging as a means of fouling control [2]. While it was claimed to
have a flux enhancement up to 1.63× (from 9.49 to 15.48 L/m2 h), FO suffers from reverse
salt flux phenomena which can cause a concern.

Nanofiber membrane (NFM) has received major limelight due to its high porosity,
huge specific surface area to volume ratio, small pore size and its ability in handling fouling
problem [19,29–33]. It is usually produced in a form of mat fibres and has fibres with diam-
eters of few hundreds nanometres to a several microns [34,35]. There are several ways to
fabricate NFM such as melt blowing [36,37], phase separation [38,39], self-assembly [40,41]
and electrospinning [42,43]. Electrospinning is highly preferable due to its simplicity and
able to fabricate membrane with very thin fibres [17,44]. Such a study conducted by Abd
Halim et al. (2019) studied on the application of solvent vapor treatment on nylon 6,6 NFM
membrane for PW filtration [45]. It was found that solvent vapor treatment was able to
improve membrane tensile strength while also reducing fouling propensity when treating
PW. Moreover, the NFM used amount to low specific power consumption of 0.45 kWh/m3,
which makes it economically attractive.

However, one of the major disadvantages of using NFM is membrane fouling. Nor-
mally, membrane fouling is affected by the feed composition, major components concen-
tration, water chemistry and membrane properties. Furthermore, due to its non-woven
structure, NFM has a rougher surface, in which foulant are prone to entrapment. Since the
membrane performance is affected by membrane fouling, the permeate flux will be reduced
overtime. Hence, the amount of clean water produced per kilowatt hour (kWh/m3) of
pump will be decreased. Therefore, it is important to analyse the data via analysis of
variance (ANOVA) analysis to optimize the permeate concentration and flux.

By having excellent membrane properties and suitable feed parameters, it can control
fouling rate (time, cross-flow rate and pressure), hence enable the production rate of clean
water (energy usage/kg water) to be optimized. Thus, it is important to optimize the
permeate concentration, flux and power consumption. Furthermore, for real case situation,
some of the operating parameters such as feed concentration is hard to be controlled as it
varies depending on the source collected. Hence, membrane properties such as membrane
surface area plays an important role in controlling membrane performance. In this project, a
process modelling is developed to optimize the aforementioned parameters. Through data
simulation and validation, a solid prediction is obtainable, as well as developing model
sensitivity via principal component analysis (PCA). In business perspective, the optimiza-
tion data and PCA plays an important role for economic evaluation of the system. It is
important to prove and compare the feasibility of the system with the existing membrane
technology system.

Numerous studies on the technoeconomic analysis (TEA) of membrane filtration have
been conducted for wastewater applications including for PW treatment. Osipi et al. (2018)
studied on the TEA of desalination technologies for onshore (Brazilian onshore oilfield)
PW treatment [46]. The aim of the study is to determine the most suitable routes and study
on the new technologies’ limitations of retro-techno-economic analysis. In this study, few
conventional and new technologies were combined such as forward osmosis (FO), reverse
osmosis (RO), assisted RO, microfiltration (MF), mechanical vapor compression (MVC)
and MD. It is found that MF-RO provides the cheapest desalination route for PW up to
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90 g/L salinity. For cases of higher salt content, the most economical choice is by using
MF-RO accompanied by assisted RO. In addition to that, Tavakolli et al. (2017) also reported
on the economic feasibility of MD application for PW treatment focusing on Marcellus
shale gas play located in West Virginia [47]. The model in this study was developed using
combination of experimental data results, ASPEN Plus process model and cost estimation.
It is reported that thermal energy cost gave major impact on total cost of treating PW in the
MD plant.

In this study, a cross-flow microfiltration system using NFM made from fishing net
lines (nylon 6,6) waste will be studied in terms of membrane characterization, system
optimization and economic evaluation to understand the effects of feed concentration (%),
flowrate (mL/min) and membrane area (m2) towards permeate concentration (ppm) and
average flux (L/m2 h) of the proposed system. This study will highlight the novelty in
usage of waste materials specifically nylon 6,6 waste obtained from disposable fishing
net lines. Apart from that, it provides the economical insight of using waste materials for
PW treatment.

2. Experiments Methodology
2.1. Preparation of Nylon 6,6 Waste Solution

The main materials were glacial acetic acid (99.85%, VWR Chemicals, Radnor, PA,
USA), formic acid (98–100%, MERCK, Kenilworth, NJ, USA) and nylon 6,6 waste. The
nylon 6,6 waste was obtained from fishing line waste. A mixture of formic acid and acetic
acid with a ratio of 1:1 was used as solvents to dissolve nylon 6,6 waste (14.0 wt%). The
solution was then stirred overnight until it became homogenous [48].

2.2. Electrospinning of Nylon 6,6 Waste NFM

A 5 mL syringe was filled with nylon 6,6 waste solution and it was attached with a
capillary tip of a 0.7 mm inner diameter. The flowrate was set at 0.4 mL/h. The voltage
used was 20.0 kV and the distance from needle tip to a metal screen collector was 15 cm.
Aluminium foil was placed on the rotator and the speed of collector rotation was set at
500 RPM [45].

2.3. Membrane Characterization

Membrane characterization was based on surface morphology, functional group,
hydrophilicity and porosity. Field Emission Scanning Electron Microscope (FESEM, Model:
VPFESEM, Zeiss Supra55 VP, Feldbach, Switzerland) was used to observe the membrane
surface morphology. The sample was coated with gold after being mounted onto a metal
substrate. Fibre diameter and pore size were measured by using ImageJ Software (ImageJ
1.53e, Bethesda, MD, USA). Additionally, the functional group presence in the membrane
was analysed by using Fourier Transform Infrared Spectroscopy (FTIR, Model: Thermo-
Nicolet, Waltham, MA, USA) and compared with result from our previous reports [49].
Goniometer was used to measure contact angle via Sessile Drop Method (IFT, Model:
OCA 20, Data Physics, Filderstadt, Germany). The contact angles were measured three
times by using the build-in software Interfacial Tension (SCA 20, Filderstadt, Germany).
Furthermore, porosity was measured by using dry-wet method in which the membrane
weight and volume were measured and calculated [50].

3. Modelling and Technoeconomic Analysis Methodology
3.1. Prediction Model

In this study, JMP software (JMP Pro 14.0.0, SAS, Cary, NC, USA) was used to find
a suitable model that best fits two responses which are permeate concentration (ppm)
and average flux (L/m2 h) for cross-flow MF system as illustrated in Figure 1. Perme-
ate concentration was determined using Ultraviolet-Visible (UV-VIS) Spectrophotometry
(Model: Hach DR-6000, Hach Company, Loveland, CO, USA). After obtaining the suitable
model equations, the prediction expression can be developed and later proved through
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sensitivity analysis via PCA and experiment validation. The experiments for cross-flow
MF system consists of experiment parameters such as feed concentration (0–100%), feed
flowrate (200–300 mL/min) and membrane area (9–18 cm2). Moreover, multiple regression
was used to analyse the experimental data. To obtain the highest R2 values, the models
were built based on quadratic and 2-factor variables, combined with backward elimination
method. Later, the suitability of the final model was evaluated based on their adjusted R2

and their p-value.
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Figure 1. Cross-flow Microfiltration (MF) Testing unit.

To further strengthen the validity on the chosen predicted expressions, mass balance
was done using Microsoft Excel. Based on the generated predicted expressions, input of
the concentration of feed in percent (%), feed flowrate (mL/min) and membrane area (m2)
can be varied, and the issuance will be on the concentration of permeate and the resulting
average flux in an hour. Prior to that, the mass balance will also provide information on
the volumetric flowrate (m3/h) in each stream which is crucial for technoeconomic (TEA)
analysis. The mass balance is based on Equations (1)–(6). Figure 2 shows the scale-up setup
of MF system used in this study for techno-economic analysis.

Massin = Massout + Accumulation (1)
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However, accumulation is assumed to be negligible. Therefore,

Massin = Massout (2)

Component balance is derived as follows:

Xin × Massin = Xout × Massout (3)

where:

Xin = mole fraction of X inlet streams;
Xout = mole fraction of X outlet streams.

A + B = D (4)

C = E + D (5)

A + B + E = D (6)

where:

A = Amount of water needed to dilute the produced water feed;
B = Amount of produced water feed;
C = Amount of produced water solution to be filtered;
D = Amount of permeate to be produced;
E = Amount of retentate to be recycled to feed stream.

3.2. Techno-Economic Analysis

After all the models have been analysed and constructed, a comparison is made
between each model to select the best alternative to run a plant with the minimum (lowest)
power consumption. The comparison of the capital expenditure, CAPEX (membrane
module, storage tank for feed and permeate, pump) and operational expenditure, OPEX
(energy consumption and membrane replacement) are then calculated and analysed using
Microsoft Excel (Microsoft 365, Washington, DC, USA).

3.2.1. List of Assumptions

Few assumptions and parameters must be made before performing the economic
analysis. The list of the assumptions and parameters is shown in Table 1. Table 2 tabulated
the factors included for CAPEX calculation as mentioned by Smith (2005) [51].

Table 1. List of assumptions.

Parameters Assumptions

Clean Water Production Rate (m3/day) 100
Plant operating hours per year (hours/year) 7200

Plant Lifetime (years) 20
Interest rate (%) 8
Pump efficiency 0.8

Electricity Tariff (RM/kWh) 0.441
Power Supply High Voltage (Watt) 30

Time Consumption for Membrane Fabrication (hour) 30
Membrane Area Produced from Spinning (cm2) 200

Price of Formic Acid (RM/kg) 21.15
Price of Acetic Acid (RM/kg) 0.000423
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Table 2. Factors included for capital cost calculations [51].

Parameters Assumptions Factor

f1 100 0.4
f2 7200 0.7
f3 20 0.2
f4 8 0.1

Physical Plant Factor 1.4
f5 0.441 0.3
f6 30 0.05
f7 Contingency Cost 0.1

Fixed Capital Factor 0.45

3.2.2. Capital Expenditure (CAPEX)

Capital cost is a fixed cost (one-time expense) for asset purchasing such as pump,
storage tank and membrane module. The equipment cost for pump; Cp can be calculated
by using Equation (7) [52,53]. In addition to that, for the calculation of equipment cost,
Equation (8) was used [51]. For the calculation of the physical plant cost (PPC), the
equipment cost will be multiplied with the typical factors for capital cost estimation as
shown in Equation (9) and Table 2. Lastly, the fixed CAPEX can be determined using
Equation (10).

Cp = I × fm × fp × fl × 81.27 × (Q × P)0.4 (7)

where:

I = cost index ratio for updating the cost to the recent year;
fm = factor for pump construction material;
fp = factor for suction pressure range;
L = factor for labour costs;
Q = pump flow capacity (m3/h);
P = pump outlet pressure (kPa).

The cost index, I can be obtained from United Nations Monthly Bulletin Statistics [52].
In this study, the cost index used is 125.2 based in Malaysia. As for fm, the material used
is carbon steel, hence fm = 1.0, meanwhile for fp, the pressure for microfiltration is below
10 bar, hence fp = 1.0. The factor for labour cost is set at 1.4 since the cost required for labour
to install equipment is 40% of the cost required [53,54].

CE = CB (Q/QB)M fm fp ft. (8)

where:

CE = Equipment cost ($);
CB = Base cost ($);
Q = Design capacity (m3);
QB = Base size;
M = Cost exponent;
fm = Correction factor for material;
fp = Pressure correction factor;
ft = Temperature correction factor.

Physical Plant Cost (PPC) = Cp + CE × (1 + f1 + f2 + f3 + f4) (9)

Fixed Capital Cost = PPC × (1 + f5 + f6 + f7) (10)

3.2.3. Operating Expenditure (OPEX)

Operating cost is a cost required to run a specific operation and maintaining the
business existence. Operating cost is divided into two types: fixed cost and variable
cost. Fixed cost is the compulsory cost needed to run the operation such as raw material
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cost and utilities cost. Meanwhile, the variable cost is the cost which has inconsistent
values depending on the demands and necessity of production such as maintenance. The
operating cost in this study is based on annual utilities, U (Equation (13)) [52,54] and
membrane replacement cost (Equations (14) and (15)). For membrane replacement cost, it
is divided into two parts: membrane fabrication, MF and membrane materials, MM. For the
amortization rate of membrane, it will be based on 18 months of membrane life and 0.08 of
interest rate [54]. The total operating cost (RM/y) is calculated based on the Equation (16).

Scale-up factor, SC
SC = QT/QC (11)

where:

QT = Targeted clean water production rate (m3/h);
QC = Current permeate flow (m3/h).
Scale-up factor membrane area, SCM

SCM = QT/QC × AC (12)

where:

QT = Targeted clean water production rate (m3/h);
QC = Current permeate flow (m3/h);
AC = Current membrane area (m2).

U = ESP × QT × t (13)

where:

ESP = Specific pump energy (kW/m3);
QT = Targeted clean water production (m3/h);
t = Plant operating hours (h/year).

MF = (P × tm × SCM × a)/Am (14)

where:

P = Power supply high voltage (kW);
tm = Time consumption to produce membrane (h);
Am = Size of membrane produced (m2);
SCM = Membrane scale-up factor (m2);
a = amortization rate.

MM = ([(Ss × Ps) + Pm]/Am) × SCM × a (15)

where:

Ss = Amount of solvent used (g);
Ps = Price of solvent (RM/g);
Pm = Price of polymer used (RM).

Operating Cost = U + MF + MM (16)

4. Results and Discussion
4.1. Membrane Characterization

Figure 3 and Table 3 shows the surface morphology and membrane properties of nylon
6,6 waste NFM. Based on the FESEM image, the nanofibers were nonuniformly distributed
and in cylindrical shape. Additionally, the size of the fibres formed were in nanometre
range (50 nm to 1000 nm) which is around 104.65 ± 64.59 nm as shown in Table 3 [55].
Furthermore, the nylon 6,6 waste NFM has pore size approximately at 0.2 µm with high
porosity of 81.34% which correlated with other literature (>80%) [45,56].
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Table 3. Membrane properties of nylon 6,6 waste NFM.

Sample Name Nylon 6,6 Waste

Thickness (mm) 0.29 ± 0.05
Porosity (%) 81.34

Pore Size (µm) 0.20
Fibre Diameter (nm) 104.65 ± 65.49

Figure 4 represents the FTIR spectra of waste and pure nylon 6,6 NFM. It is found
that nylon 6,6 waste NFM has similar functional groups and characteristics peaks as to the
pure nylon 6,6 NFM [49,57]. N–H stretching can be observed at peaks 3297 cm−1 (for nylon
6,6 waste) and 3301 cm−1 (for nylon 6,6). Meanwhile, CH2 stretch was represented by the
peaks 2933 cm−1 and 2861 cm−1. Moreover, for both NFMs, amide–I band is represented at
peak 1636 cm−1. In addition to that, the amide–II band is attributed at peaks 1540.64 cm−1

with, O=C–H and C–C bond attributed at 580 cm−1 and 685 cm−1 for both membranes,
respectively. It can be concluded that the fishing net line used is a pure nylon 6,6 given that
all the important functional groups of nylon 6,6 were present in the nylon 6,6 waste NFM.
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Figure 5 shows the dynamic water contact angle (WCA) of nylon 6,6 waste based NFM.
The WCA started at 69◦ and eventually reached 0◦ after 12 s. This is a common trend for
hydrophilic membrane since intermolecular bonding is formed with water (i.e., hydrogen
bond). Additionally, normally, hydrophilic membrane is more preferable to reduce fouling
in membrane separation [58], given that membrane surface roughness usually lower when
the membrane is hydrophilic (smooth surface) [45].
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4.2. Prediction Model
4.2.1. Permeate Concentration

By using backward elimination method, cubic cross variable equation model was the
most suitable model for permeate concentration due to significant p-value of < 0.05 for all
of the parameters (Table 4). Moreover, this model gives R2 value of 0.94 with root mean
square error (RMSE) of 158.03 as shown in Figure 6 indicating the model significance.

Table 4. The logworth and p-value data for concentration permeate.

Source Logworth p-Value

Feed Concentration (%) × Feed Concentration (%) × Area (m2) (C2A) 8.540 0.00000
Feed Concentration (%) × Feed Concentration (%) (C2) 7.603 0.00000

Feed Concentration (%) × Flow Rate (mL/min) × Flow Rate (mL/min) (CF2) 6.847 0.00000
Feed Concentration (%) × Feed Concentration (%) × Flow Rate (mL/min) (C2F) 4.668 0.00000

Figure 6. The linear-linear plot of actual and predicted permeate concentration.

Moreover, the significance of each parameter can also be observed on the logworth
data value in Table 4. Based on the table, cross variable between feed concentration
squared variable and area (C2A) has the highest log worth value of 8.540 followed by feed
concentration squared variable (C2) with a logworth value of 7.603. The least significance
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parameter is C2F variable with a log worth value of 4.668. From this table, it can be
concluded that concentration of feed plays the highest impact in determine permeate
concentration.

Figure 6 shows the linear-linear plot between actual and predicted permeate concen-
tration together with residual plot showing the random distribution of errors. Based on the
figure, the model is highly reliable to predict the permeate concentration since it has high
R2 value of 0.94 and RMSE of 158.03. Apart from that, the residual points are distributed
evenly and close to the 45◦ normal line indicating the model is fitted well with the data [59].
By having normally and evenly distributed residual points, it implies that the data variation
is sufficient for the model development [60]. Furthermore, the factors relative impact can
be identified using the model equation by comparing the factor coefficients. Equation (17)
shows the simplified predicted expression of the model.

Concentration Permeate

= −37.67321727 + 0.6852856225 C2 − 107.6731136 C2A − 0.002112486 C2F + 0.000224005 CF2 (17)

4.2.2. Average Flux

Cross variable cubic model was identified as the most suitable model for average flux
since most of the parameters has significant p-value of < 0.05 as shown in Table 5. This
model produces R2 value of 0.91 and the least RMSE of 39.085 (Figure 7) of which indicate
the significance of the developed model.

Table 5. The logworth and p-value data for average flux.

Source Logworth p-Value

Feed Concentration (%) × Area (m2) (CA) 6.850 0.00000
Feed Concentration (%) × Feed Concentration (C2) 4.979 0.00001

Feed Concentration (%) × Feed Concentration (%) × Area (m2) (C2A) 3.885 0.00013
Feed Concentration (%) × Feed Concentration (%) × Feed Concentration (%) (C3) 1.972 0.01067

Feed Concentration (%) × Flow Rate (mL/min) (CF) 1.498 0.03179
Flow Rate (mL/min) × Area (m2) (FA) 1.466 0.03423

Feed Concentration (%) × Flow Rate (mL/min) × Flow Rate (mL/min) (CF2) 1.405 0.03938
Flow Rate (mL/min) × Flow Rate (mL/min) × Flow Rate (mL/min) (F3) 0.866 0.13603

Flow Rate (mL/min) × Flow Rate (mL/min) (F2) 0.766 0.17120
Feed Concentration (%) (C) 0.669 0.21440

Flow Rate (mL/min) (F) 0.640 0.22928
Area (m2) (A) 0.044 0.90366

Figure 7. The linear-linear plot of actual and predicted average flux.
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Besides that, based on Table 5, it shows the significance of each parameter based on
the log worth value, which later supported by the PCA (Section 4.4). Cross variable of feed
concentration and area (CA) has the highest log worth value of 6.850 followed by cross
variable between concentration of feed squared (C2: 4.979). Flow rate and area variable
were the bottom two less significant variables with log worth value of 0.640 and 0.044
respectively.

Figure 7 shows the linear-linear plot between actual and predicted average flux to-
gether with residual plot showing the random distribution of errors. Based on the figure,
the equation fits well with an R2 value of 0.91 and RMSE of 39.085. Moreover, most of
the residual points are randomly distributed close to the straight line showing the reliabil-
ity of the developed model. Equation (18) shows the simplified predicted expression of
the model.

Average Flux

= 4528.7126134 + 23.948099025 C − 57.91071999 F − 17535.50124 A − 0.344946772 CF + 9540.1281791 CA −
1220.951209 FA + 0.227584301 C2 + 0.2655657131 F2 − 66.49475173 C2A + 0.0006537298 CF2 − 0.000701717

C3 − 0.000383848 F3
(18)

4.3. Membrane Performance
4.3.1. Permeate Concentration

Figure 8 illustrates the relationship between permeate concentration (ppm) with feed
concentration (%), flowrate (mL/min) and membrane area (m2). Based on the figure, feed
concentration is directly proportional to the permeate concentration. The higher number of
solutes presents in the feed will give higher number of solutes presents in the permeate
given that the feed flowrate and membrane area are kept constant. Meanwhile, greater
membrane area gives more space (surface area) for the feed to fill in, hence gives greater
number of functional membrane pores to filter the solutes from the feed. This will give
lower number of solutes presents in the permeate [61]. However, as for the flowrate, it has
subtle impact as compared to the others. Nonetheless, it was implied that higher flowrate
gives lower permeate concentration. This can be explained by the cake layer formation
when low flowrate is applied. Initially, as lower feed is applied, it allows more time for
the solute to settle on the membrane surface, hence creating cake layer formation. In
other words, higher feed flowrate would decrease the retention time of the foulant, hence
controlling the fouling effect. The permeate concentration values were also tabulated in
Table A1 in Appendix A.
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4.3.2. Average Flux

Figure 9 shows the relationship between the average flux with feed concentration,
flowrate and membrane area. The average flux can be increased by reducing the feed
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concentration [62] and membrane area. This can be explained by lower fouling tendency
when using lower feed concentration [63]. The lower amount of solute present in the feed
reduced the number of membranes pores blockage, which hence allowing more permeate
to pass through the membrane. Apart from that, lower membrane area also increases
the average flux [64]. Given a constant feed concentration and flow rate, membrane with
smaller area has faster flow rate and hence disallowed the solute from the feed to resettle on
the membrane surface. Meanwhile, when using membrane with greater area, the solute has
enough time to resettle on the membrane surface as the water movement is slower, hence
causing cake layer formation. However, as for the flowrate, the effect was not as obvious as
the others, same as in Figure 8. Nevertheless, it was assumed that higher flowrate gives
lower average flux. When using membrane with lower flowrate, it allows transmembrane
pressure to be created (more contact time between feed and membrane surface), hence
more permeate will pass through membrane. The average flux values were also tabulated
in Table A1 in Appendix A.

Membranes 2023, 13, x FOR PEER REVIEW 12 of 22 
 

 

 
Figure 8. Graph of permeate concentration at constant feed concentration of 40.6%, flowrate of 
252.45 mL/min and membrane area of 0.0013 m2. 

4.3.2. Average Flux 
Figure 9 shows the relationship between the average flux with feed concentration, 

flowrate and membrane area. The average flux can be increased by reducing the feed con-
centration [62] and membrane area. This can be explained by lower fouling tendency 
when using lower feed concentration [63]. The lower amount of solute present in the feed 
reduced the number of membranes pores blockage, which hence allowing more permeate 
to pass through the membrane. Apart from that, lower membrane area also increases the 
average flux [64]. Given a constant feed concentration and flow rate, membrane with 
smaller area has faster flow rate and hence disallowed the solute from the feed to resettle 
on the membrane surface. Meanwhile, when using membrane with greater area, the solute 
has enough time to resettle on the membrane surface as the water movement is slower, 
hence causing cake layer formation. However, as for the flowrate, the effect was not as 
obvious as the others, same as in Figure 8. Nevertheless, it was assumed that higher 
flowrate gives lower average flux. When using membrane with lower flowrate, it allows 
transmembrane pressure to be created (more contact time between feed and membrane 
surface), hence more permeate will pass through membrane. The average flux values were 
also tabulated in Table A1 in Appendix A. 

 
Figure 9. Graph of average flux at constant feed concentration of 40.6%, flowrate of 252.45 mL/min 
and membrane area of 0.0013 m2.  

4.4. Principle Component Analysis 
4.4.1. Permeate Concentration 

PCA was performed to assess the correlation and dependency of permeate concen-
tration towards feed concentration, flow rate and area. Figure 10 shows the PCA of the 
permeate concentration. Based on Figure 10, feed concentration (C) has positive correla-
tion and has the highest impact towards the permeate concentration since the angle pa-
rameter between the objective function (concentration permeate—indicated by blue line) 
is below 90°. Theoretically, the component that is located below 90° is directly propor-
tional to the responding variable. In other words, the higher the feed concentration, the 
higher the permeate concentration. This result is correlated with the data of the logworth 

Figure 9. Graph of average flux at constant feed concentration of 40.6%, flowrate of 252.45 mL/min
and membrane area of 0.0013 m2.

4.4. Principle Component Analysis
4.4.1. Permeate Concentration

PCA was performed to assess the correlation and dependency of permeate concen-
tration towards feed concentration, flow rate and area. Figure 10 shows the PCA of the
permeate concentration. Based on Figure 10, feed concentration (C) has positive correlation
and has the highest impact towards the permeate concentration since the angle parameter
between the objective function (concentration permeate—indicated by blue line) is below
90◦. Theoretically, the component that is located below 90◦ is directly proportional to the
responding variable. In other words, the higher the feed concentration, the higher the
permeate concentration. This result is correlated with the data of the logworth value from
Table 4 in which all variable consists of feed concentration (C). Nevertheless, when mem-
brane area (A) was cross with feed concentration (C), the angle parameter is almost inclined
towards more than 90◦. In other words, the higher the membrane area, the lower the
permeate concentration. This can be explained by the larger membrane space area which
provides more available functional membrane pores which can filter a greater number of
solutes presents in the water. In addition to that, Figure 10 also shows that flowrate is
directly proportional towards the permeate concentration since it is located below 90o when
it was cross variable with C. The higher the flowrate, the lower the concentration permeate.
The significant parameter towards permeate concentration is based on this following order:

C2A > C2 > CF2 > C2F
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4.4.2. Average Flux

The PCA of the average flux is shown in Figure 11. Based on the log worth value in
Table 5, it can be concluded that CA has the highest impact towards the model. When
plotting PCA, we can see the relationship between the average flux and the crossed variable
terms. Based on Figure 11, all of the variables have an inverse relationship with the average
flux. For the feed concentration (C), the presence of foulant in the feed controls the fouling
effect in membrane separation and thereof affecting the average flux. It can also be seen
that variable with only Feed Flowrate (F) (i.e., F2 and F3) has negative impact towards
the average flux. It is with the agreement that lower flowrate creates higher retention
time, hence increase the transmembrane pressure which later will increase the average flux.
As for the membrane area (A), larger membrane area has lower transmembrane pressure
since it takes time for the water to fill in the membrane, hence will give membrane with
lower average flux. Moreover, most of the variables have feed concentration (C) in their
terms. This can be concluded that the effect of Feed Concentration (C) is more dominant in
the cross-variable terms. The significant parameter towards average flux is based on this
following order:

CA > C2 > C3 > C2A > CF > FA > CF2 > F3 > F2 > C > F > A
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4.5. Model Validation

Model validation is carried out to confirm that the generated model is performing
closely with respect to the real process. Tables 6 and 7 shows the model validation for
permeate concentration and average flux. Based on Tables 6 and 7, both conditions have
percentage error of ≤5%. This proves that the generated model is 95% accurate and highly
feasible. In order to achieve 10 ppm of permeate concentration, the feed concentration,
flowrate and area were set at 3.5% of feed concentration with flow rate at 248 mL/min
and membrane area of 0.00175 m2. The permeate concentration obtained was 10.27 ppm,
3.30% of percentage error with average flux 66.67 L/m2 h, 4.45% of percentage error.
Meanwhile, another two random numbers were selected, in this case, 69% and 100% of feed
concentration with 258.7 and 200 mL/min of flowrate, respectively, with both experiments
using same size of membrane area (0.0009 m2). The permeate concentration obtained were
1196 and 2517 ppm, which is 2.87% and 5% percentage error from the predicted value of
1162 and 2389 ppm. Meanwhile, the average flux obtained were 50.56 and 197.64 L/m2 h
with percentage error of 3.22% and 4.98%.

Table 6. Model validation for concentration permeate.

Source Feed (%) Flowrate (mL/min) Area (m2) Predicted Experimental Percentage Error (%)

1 3.5 248 0.00175 9.94 10.27 3.30
2 69 258.7 0.0009 1196.14 1161.79 2.87
3 100 200 0.0009 2517.17 2389.26 5.00

Table 7. Model validation for average flux.

Source Feed (%) Flowrate (mL/min) Area (m2) Predicted Experimental Percentage Error (%)

1 3.5 248 0.00175 69.77 66.67 4.45
2 69 258.7 0.0009 48.98 50.56 3.22
3 100 200 0.0009 208 197.64 4.98

4.6. Economic Analysis
4.6.1. Effect of Feed Concentration on Annual CAPEX and OPEX (Rm/y)

The relationship between the feed concentration and the annual CAPEX and OPEX is
shown in Figure 12. Other design parameters are held constant, flow rate = 200 mL/min
and membrane area = 0.0009 m2.
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As can be seen from Figure 12, the increase of feed concentration gradually increases
both the annual cost. This can be explained by the reduction of permeate flux due to
membrane fouling [2,17,65]. The higher number of oil composition/solute in the feed
accelerates the pores blockage and cake layer formation hence reduce the amount of
permeate [45,66]. Consequently, this increases the specific power consumption (kW/m3)
which led to higher OPEX as demonstrated in Equation (13). The CAPEX also increases
due to increment in the pump price, as can be referred to Equation (7). Since the current
permeate flow (m3/h) is lower, it causes the scale-up factor to be greater, hence increases
the pump flow capacity (m3/h), as can be referred to Equation (11) and Equation (7). In
other way, higher energy is required to transport water across the membrane.

4.6.2. Effect of Flow Rate on Annual CAPEX and OPEX (RM/y)

The relationship between the feed flow rate and the CAPEX and OPEX is shown in
Figure 13. Other design parameters are held constant, feed concentration = 100% and
membrane area = 0.0009 m2.
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Based on Figure 13, initially, the flow rate increases both the annual CAPEX and OPEX
of the proposed system. This could be related with the relationship of flowrate with specific
power consumption of the pump, i.e., higher flowrate, higher power consumption. At
lower flowrate, the CAPEX and OPEX is linearly equated. This is due to low average flux
in low flowrate region. The fouling effect is more prominent (therefore more energy is
required per m3 permeate). This is in the agreement with our previous discussion in which
the average flux reduces as the flowrate increases due to reduction in membrane contact
time with water which led to lower transmembrane pressure. Nevertheless, as the flowrate
increases more than 250 mL/min, the average flux increases. It can be assumed that higher
feed flowrate would decrease the retention time of the foulant, hence controlling the fouling
effect. In other words, higher flowrate reduced the membrane fouling tendency which
contributes to higher permeate flux [54]. Therefore, lower energy required per m3 permeate.

4.6.3. Effect of Membrane Area on Annual CAPEX and OPEX (RM/y)

Figure 14 shows the relationship between the membrane area and the annual CAPEX
and OPEX. Other design parameters are held constant, feed concentration = 100% and flow
rate = 225 mL/min.
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From Figure 14a, the increase in membrane surface area decreases the annual CAPEX.
This can be explained by considering the permeate flux and pump price as in Equation (7).
From the equation, the pump flow capacity (m3/h) is the dominant factor in controlling
the pump price considering the pressure is kept constant. Therefore, the higher the mem-
brane area (translated to lower average flux) the lower the pump capacity. Therefore, the
CAPEX for the overall system would be reduced. In conjunction, the OPEX increases with
membrane area due to lower pump capacity. Larger surface area requires higher specific
power consumption (kWh/m3) since the permeate flux is lower. This means higher energy
is required per m3 permeate to achieved targeted permeate water production (100 m3/day).
Moreover, the membrane replacement price also increases due to the increment in the
membrane scale-up factor, as can be seen in Equation (12).

4.6.4. Optimum Design and Scalability

According to Malaysia Environmental Quality Act [67], the minimal discharge quality
of oil and grease is 10 ppm. Therefore, the optimum design was based on achieving the
minimal discharge quality outline by Malaysia Environmental Quality Act. Based on the
scale-up modelling of achieving 10 ppm of permeate concentration with 100 m3 permeate
volume per day, it is found that the optimum design was 4.9% of feed concentration,
200 mL/min of flowrate and 0.0009 m2 of membrane area to achieve 10 ppm oil discharge
quality (Table 8). The CAPEX and OPEX of the design are RM 3.742 M and RM/year 1660.

Table 8. Optimum parameters for scale-up MF.

Conc.
Feed (%)

Flow Rate
(mL/min) Area (m2)

Average Flux
(L/m2h)

Power Consumption
(kWh/m3)

Con Permeate
(ppm)

CAPEX
(RM) OPEX (RM/y)

4.9 200 0.0009 216.5 0.09 10 3.743 M 1660

In scale-up operation, for any membrane technology, membrane fouling is still an
issue. It is worth noting that while this study conducted using a small-scale device, fouling
was easier to control (by means of high feed flowrate). For scale-up operation, using high
flowrate pumping would not be recommended as the OPEX would increase. To solve this
issue, it may be more beneficial to dilute the feed concentration via buffer tank prior to
treatment based on Figure 2 with respect to effluent discharge quality.
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4.6.5. Comparison with Other Literature

Table 9 shows the comparison studies between this proposed system and other mem-
brane filtration systems which focus on oily wastewater treatment. The comparisons
are based on the specific energy consumption (kWh/m3) and OPEX in terms of utilities
(RM/year), extrapolated from literature with respect to calculation in this study. Based on
the table, in this study, the proposed MF system has the lowest specific energy consumption
(0.09 kWh/m3) and lowest OPEX (RM/year 1126) to achieve 10 ppm of oil and grease
concentration which is as required by Malaysia Environmental Quality Act [67]. It is then
followed by another MF system which requires total OPEX of RM/year 5929 in which
flowrate gave major impact on the pump utilities [45]. The highest cost was recorded at
OPEX of RM/year 21,346 by Al-Husaini et.al. (2019) which applied UF membrane filtra-
tion [68] for synthetic oily wastewater treatment. From this, it can be concluded that the
proposed system (cross-flow MF system using waste materials) can be a perfect alternative
for PW pre-treatment to reduce the total cost required (reduce the consumption of high
energy) while at the same time able to adhere the oil and grease limits as required by
the legislation.

Table 9. Comparison studies on membrane filtration for oily wastewater treatment in terms of OPEX
(RM/year).

No Type of
Membrane

Flowrate
(mL/min)

Membrane
Area (m2)

Feed Conc
(ppm)

Permeate
Conc (ppm)

Average Flux
(L/m2 h)

Specific
Energy

Consumption
(kW/m3)

OPEX in
Terms of
Utilities
(RM/y)

Ref.

1 MF 200 0.0009 304.13 10 217 0.09 1126 This study
2 MF 237.6 0.0009 88.43 4.93 80 0.45 5929 [45]
3 UF 1000 0.0025 12,000 660 347 1.61 21,346 [68]

5. Conclusions

This study explores the potential usage of nylon 6,6 waste polymer which proved
that the NFM is feasible to be used for PW treatment. Modelling analysis shows that feed
concentration (%) plays a dominant role in controlling permeate concentration (ppm) and
average flux (L/m2 h) as compared with the flowrate (mL/min) and membrane surface area
(m2). Moreover, in terms of techno-economic analysis, it can be concluded that permeate
flux is the most vital operational factor which has the highest impact in the overall capital
and operational costs of this crossflow MF system. The optimum parameters were found at
4.9% of feed concentration, 200 mL/min of flowrate and 9 cm2 of membrane area to achieve
10 ppm of permeate concentration with CAPEX at RM 3.7 M and OPEX at RM/y 1660. The
significant of this study reports the use of waste NFM in PW treatment using cross-flow
MF that is able to achieve standard discharge requirement with attractive economic benefit.
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Nomenclature

ANOVA Analysis of Variance
CAPEX Capital Cost/Capital Expenditure
FESEM Field Emission Scanning Electron Microscope
FO Forward Osmosis
FTIR Fourier Transform Infrared Spectroscopy
MD Membrane distillation
MF Microfiltration
MVC Mechanical Vapor Compression
NF Nanofiltration
NFM Nanofiber Membrane
OPEX Operating Cost/Operating Expenditure
PCA Principle Component Analysis
PPC Physical Plant Cost
PW Produced Water
RMSE Root Mean Square Error
RO Reverse Osmosis
TEA Technoeconomic Analysis
UV-Vis Ultraviolet-Visible
WCA Water Contact Angle

Appendix A

Table A1. Design of experiment for cross-flow microfiltration (MF).

Run Feed
Concentration (%)

Flow Rate
(mL/min) Area (m2) Permeate

Concentration (ppm) Rejection (%)
Average Flux

(L/m2 h)
1 0 200.00 0.0009 0.00 0.00 214.44
2 25 225.00 0.0009 100.20 79.78 79.78
3 25 275.00 0.0009 67.98 86.28 101.11
4 50 200.00 0.0009 928.27 57.75 78.00
5 50 250.00 0.0009 1008.48 54.09 87.22
6 50 300.00 0.0009 1122.17 48.92 88.33
7 75 225.00 0.0009 1461.21 60.47 61.67
8 75 275.00 0.0009 967.22 73.83 64.00
9 100 250.00 0.0009 2097.84 66.20 44.67
10 0 225.00 0.0018 0.00 0.00 82.22
11 25 225.00 0.0018 217.70 56.08 25.28
12 25 275.00 0.0018 286.94 42.10 21.11
13 50 250.00 0.0018 508.13 76.87 59.44
14 50 300.00 0.0018 558.27 74.59 17.22
15 75 225.00 0.0018 861.49 76.69 79.07
16 75 275.00 0.0018 928.27 74.89 24.50
17 100 250.00 0.0018 876.53 85.88 65.00
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