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Abstract: The presence of heavy metal ions in polluted wastewater represents a serious threat to
human health, making proper disposal extremely important. The utilization of nanofiltration (NF)
membranes has emerged as one of the most effective methods of heavy metal ion removal from
wastewater due to their efficient operation, adaptable design, and affordability. NF membranes
created from advanced materials are becoming increasingly popular due to their ability to depollute
wastewater in a variety of circumstances. Tailoring the NF membrane’s properties to efficiently
remove heavy metal ions from wastewater, interfacial polymerization, and grafting techniques, along
with the addition of nano-fillers, have proven to be the most effective modification methods. This
paper presents a review of the modification processes and NF membrane performances for the
removal of heavy metals from wastewater, as well as the application of these membranes for heavy
metal ion wastewater treatment. Very high treatment efficiencies, such as 99.90%, have been achieved
using membranes composed of polyvinyl amine (PVAM) and glutaraldehyde (GA) for Cr3+ removal
from wastewater. However, nanofiltration membranes have certain drawbacks, such as fouling of the
NF membrane. Repeated cleaning of the membrane influences its lifetime.

Keywords: membranes; nanofiltration; heavy metal; removal; wastewater

1. Introduction

Surface and groundwater resources are at risk of degradation and pollution due to
heavy metal ions present in discharges from various industries. The harmful effects of heavy
metal ions on human health require their complete removal from various wastewaters
using advanced treatment technologies [1]. The manufacturing processes of various goods,
such as paints, vehicle batteries, pigments, and fertilizers, mainly lead to the pollution of
water supplies [2]. Overexposure to heavy metal ions can cause severe diseases to humans
and animals [3]. Table 1 shows some of the heavy metals present in wastewater, their
effects on human health [4], and their concentrations permitted in wastewater according
to NTPA 001/2002 [5]. Conventional methods for wastewater treatment polluted with
heavy metal ions include electrochemical treatment, flotation, ion exchange, and chemical
precipitation [6–8]. Each method has its own restrictions, such as the formation of a huge
amount of sludge in the chemical precipitation approach [9,10], low treatment efficiency,
high resin cost, and problems in regenerating spent resin in the ion exchange process [11,12].

Currently, membrane-based technology is considered an effective and scalable method
for removing heavy metal ions present in wastewater [13]. The most commonly used
membrane materials are polymeric, ceramic, and hybrid substances [14], but the use of
polymeric membranes is the preferred choice due to their ease of operation, excellent
selectivity rates, and surface modification [15]. Microfiltration (MF), nanofiltration (NF),
ultrafiltration (UF), and reverse osmosis (RO) are the four classifications of membranes
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used for membrane-based technologies [16]. However, RO and NF have become the most
suitable technologies for water treatment and desalination [17–19].

Table 1. Main organs and systems of humans affected by heavy metal ions present in wastewater
and recommended water load limit values of NTPA 001/2002 [5].

Heavy Metals Effects upon the Main Organs and Systems Permitted Concentration
[mg/dm3]

Mercury (Hg2+)
Reproductive system, cardiovascular system and

immunological system, kidneys, liver, brain, lungs 0.05

Chromium (Cr)
Cr3+/Cr3++Cr6+/Cr6+

Gastrointestinal system and reproductive system, taste,
brain, pancreas, kidneys, liver, skin, lungs -/1.00/0.10

Cadmium (Cd2+)
immunological system and cardiovascular system, brain,

kidneys, lungs, bones, liver 0.20

Zinc (Zn2+) Skin, stomach 0.50

Arsenic (As+) Immunological system, endocrine system, metabolic system
and cardiovascular system, brain, kidneys, skin, lungs 0.10

Nickel (Ni2+) Gastrointestinal system, skin, kidneys, and lungs 0.50

Copper (Cu2+)
Immunological system, haematological system, and

gastrointestinal system, lungs, kidneys, cornea, liver, brain 0.10

Manganese (Mn2+) Respiratory tract, brain. 1.00

Lead (Pb2+)
Cardiovascular system, reproductive system immunological
system, and haematological system, lungs, spleen, kidneys,

brain, bones, liver
0.20

Nanofiltration (NF) is a membrane-based separation technique that utilizes hydro-
static pressure to transport molecules across semipermeable membranes (Figure 1). This
method allows low-molecular-weight solutes and solvents to move through the membrane
while larger molecules are trapped. NF membranes have a molecular weight threshold
of around 400–500 Da, have pore diameters between 0.5 and 2 nm, and require working
pressures in the range of 10–50 bar. They have the capacity of retaining neutral species
with a molecular weight between 200 and 300 g/mol and reject inorganic ions through a
combination of electrostatic interactions between the charged membrane and the ions and
size exclusion [20,21]. NF provides several advantages over other membrane technologies,
such as stronger rejection of higher flux and divalent ions, reduced energy usage, and lower
operating pressure. This makes it a promising technology for removing oil and grease,
suspended particles, heavy metals, dyes, and other chemicals from industrial effluents and
drinking water [22,23]. NF membranes can be improved by modifying their composition,
morphology, and structure to enhance their permeability, selectivity, and chemical and
mechanical stability. Thin film composite (TFC) membranes are commercially used due
to their heavy metal removal rate, high water permeability, and strong mechanical and
chemical stabilities [24–26].

Membrane desalination is a highly efficient technique for treating saline water and
wastewater and has received significant attention recently. The key challenge in membrane
research is to fabricate highly permeable and stable membranes with excellent selectivity,
favorable physico-chemical properties, and antifouling properties [27–29]. To achieve this
objective, nanotechnology has appeared as a promising approach for the development of
new membranes for industrial applications. The synthesis of nanoparticles with strong
sorption of pollutants, high compatibility with membrane matrix, and a high specific
surface is the most important. Additionally, the size of particles is a critical factor that
affects the membrane’s mass transfer and separation performance, as well as the potential
for their reuse [30–33].
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Figure 1. Principle of the method for pollutants removal from wastewater using nanofiltration
membrane.

Although nanomaterials, particularly inorganic fillers, can provide excellent perme-
ation pathways to active sites for the pollutant’s adsorption, unwanted defects between the
polymer matrix and the fillers, weak nanomaterial dispersion on the membrane surface
or in the membrane structure, and nanomaterial agglomeration can greatly reduce the
selective separation of pollutants [30].

This article focuses on nanofiltration membranes and their use for the removal of
heavy metals from wastewater. However, many membranes have been synthesized and
studied for the removal of dyes [34–36], fluorides [37–39], and others. Some examples are
given in the following paragraphs and Table 2.

Table 2. Membranes synthesized and used for the removal of various pollutants.

Membranes Pollutants Treatment
Efficiencies [%] Ref.

ZIF-67@wood composites congo red dye 99.28 [34]

MOF-based macroporous membrane uranium 80.60 [40]

La-Mn-Fe tri-metal oxide fluoride 99.33 [39]

Metal-organic framework materials (MOFs) having an ultra-high specific surface area
were studied for the degradation of Congo red dye from wastewater. The researchers devel-
oped ZIF-67@wood composites by growing ZIF-67 onto the wood surfaces. Additionally,
hydrophilic magnetic WC-Co composites were synthesized by carbonizing ZIF-67@wood.
These WC-Co composites effectively combine the magnetic core-shell Co/C nanoparticle
active sites with the carbonized wood’s hierarchical porous structure. At dye concentration
of 1200 mg/L, the Co/C-1000 exhibits a remarkable removal efficiency of 99.98% under
gravity. When connected to a peristaltic pump with a flux of 1.0 × 104 L m−2h−1 for a
congo red solution (100 mg/L), the Co/C-1000 filter demonstrates an impressive removal
efficiency of nearly 99.28%. Furthermore, the Co/C-1000 filter offers high reusability. The
adsorbed dyes can be easily eliminated through simple burning [34].

Researchers have investigated a novel macroporous membrane based on Metal-
Organic Frameworks (MOFs) for highly efficient uranium extraction from seawater through
continuous filtration. To achieve this, UiO-66 was modified with poly (amidoxime) (PAO)
to enhance its dispersion in a solution containing graphene oxide and cotton fibers in N,N-
dimethylformamide. The resulting MOF-based macroporous membrane, which exhibits
superhydrophilicity, was easily fabricated by simple suction filtration. The membrane
demonstrated a uranium extraction capacity of 579 mg·g−1 in simulated seawater contain-
ing 32 ppm of U after only 24 h. Notably, the 100 mg of UiO-66@PAO membrane effectively
removed 80.60% of uranyl ions from seawater [40].
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Magnetically separable electrospun nanofibers composed of La-Mn-Fe tri-metal oxide
(LMF NFs) for fluoride removal were synthesized. The LMF NFs were prepared through
electrospinning followed by heat treatment. Notably, the nanofibers exhibited a uniform
distribution of magnetic Fe3O4 nanoparticles along their axis, effectively preventing ag-
glomeration. The magnetic nature of the fibrous LMF NFs facilitated their easy separation
from the solution by applying an external magnet after fluoride adsorption. The highest
efficiency for fluoride remediation was 99.33% [39].

Further, the nanofiltration membranes and the characterization methods and charac-
teristics of NF membranes are described. Finally, this study presents the applications of
NF membranes for wastewater treatment containing heavy metal ions. A representative
scheme of the article composition is presented in Figure 2.
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2. Nanofiltration Membranes

Initially, NF was developed as an offshoot of RO and UF; hence, it was initially called
open RO or tight UF, depending on its application. The obtaining of Loeb-Sourirajan
(L-S) asymmetric or anisotropic cellulose acetate membranes in the late 1950s for seawater
desalination provided the foundation for the development of NF membranes, as well
as pressure-driven membranes in the RO and UF sectors in the early 1960s [41]. These
membranes served as the basis for the development of today’s membranes in the UF
and RO sectors. Lately, an asymmetric UF was developed, supported by RO composites
with a submicron coating on a selective layer. Advances in RO and UF technologies led
to the emergence of a new field known as nanofiltration (NF), which was researched
and developed for approximately 15 years beginning in 1960. In the 1970s, a range of
cellulose acetate asymmetric membranes covering the whole spectrum from RO to UF
were available [42]. Limitations of cellulose acetate as a membrane material were observed,
and thus NF could not be widely applied [43]. Thus, cellulose acetate (Figure 3) has been
replaced by other materials such as polyether sulfone (PES) (Figure 4), polysulfone (PSU)
(Figure 5), chlorinated polyvinyl chloride (PVC) (Figure 6), polyamide (PA) (Figure 7), or
polyvinylidene fluoride (PVDF) (Figure 8). Polymers, such as PVC, can be leached into the
treated water due to continuous exposure to high pressure [44]. Even so, the NF membranes
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were not good enough to achieve the required selectivity/flux balance [45,46]. Composite
membranes based on interfacial polymerization (IP) of UF supports having a submicron
selective barrier were then developed [47]. Another alternative was the development of
ceramic and inorganic NF membranes [48].
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NF membranes, which are commonly composed of three TFC layers, have a support
layer on top that facilitates mass transportation. The second layer acts as a UF or MF
membrane and supports the first layer. By this mechanism, the third active layer support
layer controls the hydrophilicity, membrane charge, and surface features. Regenerated
cellulose and polyvinyl alcohol are two common hydrophilic materials used to manufacture
NF membranes [49], but other synthetic polymers have also gained popularity since the
2010s due to their suitability for specific applications [50]. However, membrane technology
has some drawbacks, such as membrane fouling and high initial investment costs, which
necessitate additional treatment procedures [4]. A major problem is also the membranes’
biofouling with bacteria and soluble microbial products. Biofouling can create significant
problems in terms of removal efficiency during filtration and flux [51]. To enhance the
performance of NF membranes, various methods such as plasma and chemical treatment,
UV radiation, additive blending, grafting, crosslinking, and adsorbed coatings are used
to modify the membrane surface. Cross-linking with hydroxyl compounds, for example,
is used to improve membrane stability, increase the hydrophilicity of PA surfaces, and
decrease molecular cut-off [52]. Recently, the development of positively charged NF mem-
branes to remove heavy metals using the IP approach has attracted significant attention.
Studies have demonstrated that the addition of nanoparticles and the creation of interlayers
and surfactants can enhance the permeation flux of NF membranes [53]. The timeline for
the discovery and use of nanofiltration membranes is shown in Figure 9.
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Commercially available NF membranes are known for their pore size of approximately
1 nm. They have a molecular weight cutoff between 300 and 500 Da. While NF membranes
exhibit low salt rejection (10–30%) for monovalent salts (e.g., NaCl), they exhibit high
salt rejection (80–100%) for divalent salts (e.g., Na2SO4). These inherent characteristics
distinguish NF membranes from RO membranes, giving NF membranes superior selectivity
for various classes of ions and small molecules. As a result, NF membranes find extensive
utility in specialized applications in various industries, including water and wastewater
treatment, biotechnology, food engineering, and pharmaceuticals [54].

3. Characterization Methods of NF Membranes

Recent studies have focused on developing membranes that can simultaneously in-
crease rejection rates and solute permeation rates. To achieve this, a thorough understand-
ing of various membrane parameters is essential, and various characterization techniques
can aid in this process. Thus, before conducting nanofiltration experiments, it is beneficial
to characterize the NF membranes using different methods to determine their physical
and chemical properties, stability, and separation performance. There are various ana-
lytical instruments available that can be used to characterize NF membranes, including
several chemical and physical methods that determine pore size or nanopore distribution
on the surface, surface roughness, surface morphology, compatibility, topography, and
interactions between membrane and nanoparticles [55]. Fourier transform infrared spec-
troscopy (FTIR) can detect the PA layer band and the substrate band, elucidating membrane
composition, morphology, and structure because the IR beam depth exceeds the PA layer
thickness [56,57]. Zeta potential is a commonly used characterization method to establish
the surface charge property of NF membranes in an aqueous environment at different pH
levels [58]. The zeta potential analysis is important to understand the acid-base properties,
separation efficiency, and fouling tendency of the NF membrane under different pH con-
ditions. Electro-osmosis can be used to measure the zeta potential of the membrane pore
perpendicular to the membrane surface [59]. X-ray photoelectron spectroscopy (XPS) is
a spectroscopic method that provides information regarding the basic composition of NF
membranes and the cross-linking structure of the PA layer, which is useful for research
purposes. The X-ray diffraction (XRD) method is helpful in determining the NF mem-
brane’s crystalline properties, including the nanoparticle incorporation on the membrane
surface [55]. Additionally, nuclear magnetic resonance (NMR) is a useful method to charac-
terize the freshly prepared monomer organic structure and any change in the membrane
surface cross-linking structure [60]. Numerous instruments and methods are available to
estimate the NF membrane’s physical properties, making research in this area intriguing.
The gas adsorption-desorption technique, also known as the Brunauer-Emmett-Teller (BET)
method, is one such method that provides a direct assessment of pore size distribution [61].
Composite membrane morphology analysis, from nanometers to hundreds of micrometers,
can be accomplished using various electron microscopy methods. Three commonly used
types of electron microscopy for investigating the morphological properties of NF mem-
branes are field emission scanning electron microscopy (FESEM) [56,62], scanning electron
microscopy (SEM) [55], and transmission electron microscopy (TEM) [63]. These methods
offer the advantage of producing visual data on the morphology of the membrane at a
desired resolution. TEM can directly determine pore size and distribution by using reverse
surface impregnation [63]. SEM can be used to examine the membrane surface, membrane
cross-section, fouling layers, and thickness [55]. Positron annihilation spectroscopy (PAS)
is an advanced tool used to analyze molecular pores and vacancies in membrane materials
in a non-destructive and descriptive-analytical way [64]. Atomic force microscopy (AFM)
can directly determine surface roughness, topography, pore size distribution, and force
interactions between the membrane and colloids [65,66]. The hydrophilicity, hydrophobic-
ity, or wettability of the NF membrane can be determined with the help of a contact angle
analyzer [67].
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Solute-solute rejection selectivity is a crucial aspect of membrane performance, as it
determines the membrane’s ability to selectively reject different solutes in water. This selec-
tivity relies on various rejection mechanisms, including steric hindrance, the Donnan effect,
and the dielectric effect [68–71]. A key membrane property that governs the solute-solute
rejection selectivity is represented by the distribution of the membrane pore size [72–74]. A
more uniform pore size distribution is considered to contribute to a higher selectivity of
solute-solute rejection [75].

Usually, the membrane pore size distribution is determined by fitting the model to
experimentally acquired rejection data for a range of different-sized probe solutes [76,77].
Conventionally, NF membrane pores are supposed to follow a log-normal distribution,
characterized by two adjustable parameters representing non-uniformity and the median
pore size. A method to obtain the pore size distribution of the membrane is by equating
the cumulative distribution function to the solute rejection profile as a function of size [78].
The issues with this commonly used traditional approach stems from its underlying and
unreasonable assumptions. These assumptions suggest that pore rejection is a binary
function, either 0 or 1, solely based on pore size, and that the water flux that passes through
pores is unaffected by pore size. To achieve a more accurate representation of membrane
pore size distribution, it is necessary to consider the intricate effects of pore size on solvent
flux and solute rejection [79].

Several mathematical models have been created to establish a connection between
membrane properties and membrane performance [80–82]. Among these, a notable one is
the model Donnan steric pore. This model characterizes water flux in relation to pore size
using the Hagen–Poiseuille equation while also assessing solute flux in relation to pore size
by considering the steric and electrostatic influences on solute partitioning at the interface
and subsequent mass transport within the pores, as described by the extended equation of
Nernst–Planck [83].

4. NF Membranes Characteristics
4.1. Hydrophilicity

To evaluate a membrane’s hydrophilicity, the water contact angle is utilized. Increas-
ing a membrane’s hydrophilicity can enhance its permeability and antifouling properties.
Although most solids possess natural roughness, this roughness is usually not enough to
maintain a superhydrophilic state on the material’s surface. In theory, any natural or artifi-
cial substance can be chemically processed or mechanically roughened to create a super
hydrophilic surface, or it can be broken down into sub-microscopic particles and stored to
create a super hydrophilic coating. Titanium dioxide (TiO2) and zinc oxide (ZnO) are two
inorganic substances that are commonly used because of their photoinduced self-cleaning
capacities [84]. Silicon dioxide (SiO2) is extensively studied for its low cost and hydrophilic-
ity. Various processes, such as electron beam, X-ray or ion surface irradiation, microwave
treatment, and plasma, can be used to modify the surface chemistry of a polymer and in-
crease its hydrophilicity. In order for a polymer to become super hydrophilic, the treatment
must affect surface roughness or be applied simultaneously with surface roughening [85].
Increasing the surface roughness will decrease the strength of the NF membrane due to the
thinning of the outer separation layer and, at the same time, the NF membrane [86]. Various
coating techniques have been employed to modify the surface wetting, including dip coat-
ing, sol-gel, thermal, layer-by-layer assembly, electrospinning, electrodeposition, ion beam
irradiation, femtosecond laser irradiation, spin coating, plasma irradiation, chemical vapor
deposition, and spray coating. The production of super hydrophilic surfaces typically
involves the use of low surface energy materials, surface roughness, or a combination of
both. The membrane’s performance depends on properties such as surface energy, pore
size, and wettability [85].

In recent years, interest has been growing in coatings that exhibit switchable wetting
properties. Some coatings have been developed that can transition between superhydropho-
bic and superhydrophilic states, such as those produced using the sol-gel technique [87].
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Graft polymerization has emerged as a practical alternative for improving the polymeric
membranes’ hydrophilicity and enhancing their antifouling properties [88]. This technique
involves attaching hydrophilic polymer chains to the surface of the membrane and offers
advantages such as long-term hydrophilicity maintenance and high water flux [85].

4.2. Permeability and Selectivity

The energy consumption and effectiveness of NF processes are determined by the
selectivity of NF membranes, which is largely influenced by pore size distribution and
Donnan effects. A narrow pore-size distribution can play a crucial role in obtaining high
efficiency of selective solute separation, while the steric resistance and charge interactions
of NF membranes determine their selective properties. Manipulating the membrane surface
charge can increase selectivity, specifically for charged solutes. Membrane fouling, which
causes the membrane pore diameters to become smaller, can decrease the water flux through
NF membranes during operation. Heavy metals can have a significant impact on membrane
fouling by altering sludge properties or causing inorganic fouling [89]. Inorganic fouling by
heavy metal compounds can be permanent, requiring cleaning with acids like citric acid [90].
Researchers have made various attempts to improve membrane selectivity by creating NF
membranes with uniform pore diameters or modifying the charges on or in the selective
layer or hydrophilicity, with some success in minimizing the fouling of membranes [91].
Increasing the selectivity of NF membranes can lead to improved membrane permeance
while maintaining high rejection of ions/molecules. One approach for enhancing NF
membrane selectivity is by incorporating nanofillers into the polymer matrix, creating new
molecular transport channels. Metal-organic frameworks and covalent organic frameworks
are promising materials for increasing membrane selectivity due to their high surface area,
controllable pore structure, strong thermochemical stability, and functionalized pore walls.
Metal-organic frameworks and covalent organic frameworks can tailor their pore shape
and size and chemical design versatility through post-functionalization or by combining
their ligands. Additionally, their cavities can be customized for specific applications and
can facilitate beneficial interactions with polymers [92].

4.3. Surface Morphology

The effectiveness of membrane filtration in heavy metal removal depends heavily on
the surface coating and morphology of the membrane, as they can impact both fouling
and anti-fouling performance. The surface topography of a membrane, which includes
its roughness, lay, waviness, and flow, can be affected by a variety of factors such as
vibrations, manufacturing processes, work deflections, stresses, and the material’s internal
structure [93].

The effect of surface roughness on membrane performance remains a significant
challenge. It was observed that a commercial thin film composite membrane fouled more
quickly than a cellulose acetate membrane, attributing the effect to the thin film composite
membrane’s rougher surface [94]. It was demonstrated that, for certain NF membranes,
fouling is closely related to surface roughness [95], as colloidal particles tend to accumulate
in the valleys of a rough membrane surface due to increased interactions between them.
This obstructs the valleys and leads to increased fouling on rougher surfaces [96]. Thus, the
effect of surface roughness on membrane performance remains a complex issue. However,
different results have been observed for organic particles [97,98]. Adhesive forces, which
refer to the interaction between the membrane surface and the organic particles, are thought
to be crucial factors in fouling [99]. In the fouling process, particles directly contact the
membrane surface, and the interaction between the membrane surface and the organic
particles determines the extent of fouling. On the other hand, after the formation of the
gel layer, the interaction between organic particles becomes very important. It is plausible
that a smoother surface would present less adsorption for the organic molecules, while a
more heterogeneous and rougher surface would have a greater surface area and be more
effective at adsorption [100].
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Chemical surface modification is a technique used to decrease surface roughness by
allowing chemicals in the liquid phase to enter pores more effectively, providing a smoother
surface [101]. Atomic layer deposition is an alternative method used to manage rough-
ness. It is a process of self-limiting surface reaction that produces uniform thin coatings
with flawless intactness and an atomic-scale-controllable thickness [102]. By adjusting
the total number of atomic layer deposition cycles, the thickness of the thin film can be
precisely controlled at the atomic scale during deposition [103,104]. Surface hydrophilicity
can be achieved using atomic layer deposition of alumina [105,106]. TFC-PA (thin film
composite—polyamide) membranes were treated with atomic layer deposition to enhance
their hydrophilicity and anti-fouling ability [107]. Additionally, low-temperature plasma
discharges offer a flexible and controllable method for homogenous surface treatments, al-
lowing for a wide range of conceivable surface functionality and minimizing damage [108].

4.4. Surface Charge

NF membranes can acquire an electric charge through various mechanisms when
they come in contact with an aqueous electrolyte solution. For example, potential mecha-
nisms include the adsorption of ions from solutions, ionic surfactants, and charged macro-
molecules on surfaces; the adsorption of polyelectrolytes; and the separation of functional
groups [59,109–111]. This process can occur on the membrane’s external surface as well as
its internal pore surface. Because the system must maintain electroneutrality, the distribu-
tion of ions is affected by surface charges. Thus, the surface becomes charged, leading to
the development of an electrical double layer and the neutralization of excess counterions
present in the surrounding solution. In alkaline or neutral settings, NF membranes tend
to be negatively charged, and in highly acidic settings, positively charged. The surface
charge of the NF membrane is helpful for selectively intercepting multivalent ions. Due
to the set negative charge of the polymer backbone (which usually contains sulfonic acid
and carboxylic acid), commercially available NF membranes typically have a negative
charge [59,109–114].

Negatively charged NF membranes have been found to have better retention for
divalent or multivalent anions having the same charge as the membrane surface due to the
steric hindrance and Donnan effect [115]. The retention of heavy metal cations is poor in
commercially available NF membranes, with rejection rates reported to be as low as 12% for
PbCl2 and up to 90% for CdCl2, depending on the membrane and conditions used [116]. A
lower pH in the feed solution relative to the isoelectric point of the membrane can improve
the retention of heavier metal cations. The selectivity of the membrane improves with
greater charge density, and a positively charged surface on an NF membrane can facilitate
the retention of divalent or multivalent cations because of electrostatic repulsion [117].

Three main methods have been developed for producing positively charged NF
membranes, namely phase inversion, interfacial polymerization, and surface modification
(which includes surface grafting, surface deposition, and surface cross-linking) [118]. Pro-
ducing composite membranes that are positively charged using surface modification and
interfacial polymerization often necessitates the use of harmful or carcinogenic chemicals,
as well as many preparation stages [119]. As an alternative, integrally skinned asymmetric
membranes can be created using a simpler cross-linking approach and phase inversion
methodology [120]. By introducing nitrogen groups or quaternary amines to the surface
and interior pores of the membrane, it is reported that positively charging the integrally
skinned asymmetric membrane can be possible [121].

5. Applications of NF Membranes for Heavy Metals Wastewater Treatment

NF membranes (Figure 10) have been recognized and approved worldwide for their
remarkable durability, low energy consumption, affordability, and a heightened capacity to
remove pollutants. Choosing NF for membrane separation processes not only ensures cost-
effectiveness but also promotes environmental friendliness. New thin film composite (TFC)
and thin film nanocomposite (TFN) membranes have been developed using a vapor-phase
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interfacial polymerization process. These membranes were designed to remove heavy metal
ions [122]. Some researchers utilized triethanolamine as a crosslinking agent to create the
nanofiltration membranes polyethyleneimine/trimesoyl chloride (PEI/TMC) for studying
the removal of heavy metal ions from wastewater. The presence of lone pair electrons
on triethanolamine’s nitrogen atoms increased the positive charges and reduced the pore
sizes, leading to a significant increase in the rejection rate of heavy metal ions in polluted
water. The calculated rejection percentages were approximately 97.00% for Ni2+, Cu2+,
Zn2+, Cd2+, and 92.00% for Pb2+. The modification of the membrane with triethanolamine
also enhanced its hydrophilicity, resulting in a flow increase of 13.6 Lm−2h−1bar−1. These
improvements make the triethanolamine-modified membrane highly suitable for industrial
applications in the removal of divalent heavy metal ions from wastewater, offering superior
performance and stability [123].
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Graphene-based membranes, which are two-dimensional nanofiltration membranes,
have gained prominence as a successful separation technique due to their distinctive
bounded channels [124]. An NF membrane was developed through the use of reduced
graphene oxide (rGO) using a plasma-assisted in-situ photocatalytic reduction technique.
Initially, graphene oxide-silver (GO-Ag) composite sheets were formed and collected on
the membrane surface using vacuum filtration. Subsequently, the GO-Ag layer was in situ
reduced into rGO-based membranes by employing a plasmonic photocatalyst, namely Ag
nanoparticles. The modification from GO-Ag to rGO-Ag resulted in enhanced water flux,
stability, and rejection capacity of the membrane when exposed to toxic heavy metal ions
(such as Cr(III), Cr(IV), Pb(II), and Cu(II)) solutions. The experimental results indicated the
potential of the prepared membrane to effectively separate complex wastewater systems
containing mixed solutions of Cr(IV) and Cr (III) [125].

A highly positively charged NF selective layer has been successfully developed on
the hollow fiber membrane outer surface using iodomethane quaternization and surface
grafting techniques. Comparative studies were conducted to evaluate the effectiveness
of the membrane that was prepared compared to other membranes with single charges.
The resulting membrane composed of polyvinyl amine (PVAM) and glutaraldehyde (GA)
exhibited exceptional removal capacity, with rejection rates of 99.40, 99.60, and 99.90% for
the heavy metal ions Ni2+, Cu2+, and Cr3+. Moreover, it demonstrated a higher permeate
flux of approximately 27.9 Lm−2h−1bar−1. The NF membrane also showed favorable
antifouling properties against heavy metal ions. The application of quaternization and
surface grafting significantly enhanced the NF membrane’s performance, making it a
promising advancement in the field of membrane separation [126]. The tubular AFC 40
nanofiltration membrane’s performance was investigated using real wastewater samples
from the industry. The results of the experiment indicated that the membrane was effective
in separating zinc, as it exhibited high rejection rates and a significant permeate flow. The
rejection percentage exceeded 99.00% in most cases, except for the lowest pressure and
lowest concentration. The rejection rate varied depending on the feed flow rate. The highest
rejection rate of 98.66% was achieved at a flow rate of 9 Lmin−1 and a pressure of 10 bar.
Notably, the pH value of 3 yielded the highest rejection rate, reaching 99.29%. This study
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confirmed that the membrane AFC 40 is well adapted for efficiently removing zinc from
wastewater [127].

A novel and controllable approach is introduced for the synthesis of Fe3O4@PDA-
g-L-Cys materials. Initially, Fe3O4 nanoparticles were prepared and then coated with
PDA through auto polymerization of dopamine monomer, resulting in the formation of
Fe3O4@PDA core-shell nanoparticles. Subsequently, the PDA-coated Fe3O4 surface was
modified by grafting L-cysteine and introducing amine and carboxyl groups. The core/shell
composites that resulted can be conveniently recycled through magnet separation. These
core-shell nanomaterials were used for the efficient removal of lead ions from wastewater.
The Fe3O4@PDA and Fe3O4@PDA-g-L-Cys materials demonstrate maximum adsorption
capacities of 31.84 mg/g and 46.95 mg/g [128].

Table 3 presents some examples of NF membranes that have been studied for the
removal of heavy metal ions from wastewater.

Table 3. Examples of membranes for the removal of heavy metal ions from wastewater.

NF Membranes Heavy Metal Ions Removal Efficiencies (%) Ref.

PEI/TMC
Ni2+, Cu2+, Zn2+, Cd2+ ~97.00

[123]
Pb2+ 92.00

PVAM/GA

Ni2+ 99.40

[126]Cu2+ 99.60

Cr3+ 99.90

AFC 40 Zn2+ 99.29 [127]

In contrast, wastewater often contains complex substances that must be separated to
protect the well-being of organisms in both land and water environments. A study on the
depollution of industrial wastewater that contained chloride-rich effluent was conducted.
The wastewater was collected from a clarified tank in India. For the experiment, the research
team developed two composite NF membranes using polyethylene glycol, polysulfone,
and zinc chloride. Prior to utilizing the NF membrane for wastewater treatment, a pretreat-
ment process involving granular activated carbon (GAC) was employed. Under optimal
conditions of 1390 kPa pressure and a crossflow rate of 80 L/h, the rejection percentages
were as follows: 32.00% for fluoride, 27.00% for nitrate, and 70.00% for phosphate at an
effluent pH of 7.95. NF membrane in-situ washing with tap water resulted in a permeate
flux recovery of up to 97.00%. The impact of polarization on system performance was
assessed by applying resistance to the series model. The experiment’s findings indicate the
potential success of scaling up this system in a spiral-wound configuration [129].

6. Conclusions

Heavy metals such as As, Cd, Cr, Cu, Ni, Zn, Pb, Hg, and Ag pose significant risks
when they are present in wastewater. Various researchers have conducted numerous
experiments utilizing conventional wastewater treatment techniques to eliminate these
heavy metals from wastewater. Despite the establishment of techniques such as electro-
chemical, adsorption, reverse osmosis, nanofiltration, ultrafiltration, or microfiltration,
there is currently no comprehensive review addressing the NF membrane modification for
heavy metal removal. This review article provides valuable insights into NF membranes,
including their preparation, advancements, and applications. Several challenges and limi-
tations must be overcome for these membranes to have a substantial impact on wastewater
treatment processes.

A noteworthy finding is that the careful integration of organic, inorganic, or hy-
brid nanofillers in polymer membranes can lead to a high removal percentage for heavy
metal ions from wastewater. Among the introduced NF membranes, the B-Cur/PES (Cur-
cumin/Polyethersulfones), Ti3C2TX/EDA (Titanium Carbide/Ethylenediamine), and GO-
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PAMAM/PES (Graphene Oxide-Poly amidoamine/Polyethersulfones) composite-based
membranes, which incorporate organic, inorganic, or hybrid nanofillers, demonstrate
higher potential compared to others. These membranes, respectively, exhibit heavy metal
chelation in polyelectrolytes, a combination of organic and metallic linkers, and an abun-
dance of hydrophilic functional groups. Parameters such as water permeability, membrane
fouling, toxicity, reusability, and stability largely depend on the materials employed in
membrane fabrication and synthesis methods.

7. Challenges and Perspectives

NF membranes are receiving more and more attention and are being studied by
researchers for water treatment applications. However, future research should consider
improving NF membranes to reduce fouling, and biofouling, or increase their efficiency
for industrial use. Some ideas for improving NF membranes are: improvement of certain
technical characteristics of NF membranes to mitigate fouling, increase durability, and
improve stability; in order to control the membrane’s biofouling, it will be necessary to
understand the physicochemical interactions between bacteria and the membrane and
between the membrane and the soluble microbial product; in order to commercialize NF
membranes more easily, the reduction of energy costs for nanofiltration systems should
be considered; improving the technology to be able to detect fouling in time and take
the necessary measures. The potential capacity of NF membranes to remove heavy metal
ions (e.g., Mn2+, Zn2+, Co2+, Cu2+, Ni2+, Pb2+, Cd2+, and others) from wastewater can
be improved by surface modification through interfacial polymerization and grafting,
appropriate systematic membrane synthesis, and modification of membrane structure by
the addition of nanofillers. Fouling of NF membranes directly influences their chemical
resistance and lifetime. For the most efficient process, energy consumption, choice of
materials, operating conditions, cleaning chemicals, and overall environmental impact
must be considered. For wastewater applications, a major drawback is the frequency
of membrane cleaning, which influences the lifetime of the membranes and requires a
well-thought-out strategy to prevent rapid fouling of the membranes.
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