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Abstract: Membrane fouling is a major hurdle to effective pressure-driven membrane processes, such
as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO). Fouling
refers to the accumulation of particles, organic and inorganic matter, and microbial cells on the
membrane’s external and internal surface, which reduces the permeate flux and increases the needed
transmembrane pressure. Various factors affect membrane fouling, including feed water quality,
membrane characteristics, operating conditions, and cleaning protocols. Several models have been
developed to predict membrane fouling in pressure-driven processes. These models can be divided
into traditional empirical, mechanistic, and artificial intelligence (AI)-based models. Artificial neural
networks (ANNs) are powerful tools for nonlinear mapping and prediction, and they can capture
complex relationships between input and output variables. In membrane fouling prediction, ANNs
can be trained using historical data to predict the fouling rate or other fouling-related parameters
based on the process parameters. This review addresses the pertinent literature about using ANNs
for membrane fouling prediction. Specifically, complementing other existing reviews that focus
on mathematical models or broad AI-based simulations, the present review focuses on the use of
AI-based fouling prediction models, namely, artificial neural networks (ANNs) and their derivatives,
to provide deeper insights into the strengths, weaknesses, potential, and areas of improvement
associated with such models for membrane fouling prediction.

Keywords: artificial neural networks (ANNs); fouling; prediction; simulation; membranes

1. Introduction

Membrane-based processes have emerged as a promising and efficient approach for
water treatment due to their ability to remove a wide range of contaminants, including
suspended solids, dissolved organic matter, and inorganic salts [1]. Membrane-based
processes utilize semi-permeable membranes capable of the selective separation of different
constituents in liquid or gaseous feed streams. They have several advantages over conven-
tional water treatment methods, including lower energy consumption, a smaller footprint,
and higher removal efficiency [1]. Pressure-driven membrane processes are widely used
technologies for water treatment, desalination, and wastewater reuse [2]. These processes
involve using a semi-permeable membrane that separates contaminants from water based
on size, charge, or hydrophobicity. Pressure-driven membrane processes, which usually
employ porous membranes, include four important and widely used membrane processes,
which are microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis
(RO) [2]. These four processes, in the order mentioned, are defined by their decreasing pore
size. The membrane in these processes acts only as a barrier between a feed stream and a
permeate stream.
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MF membranes usually come with a pore size of 0.1–10 µm and are used to remove
suspended solids, bacteria, and some viruses [3]. UF processes use membranes with a pore
size of 0.001–0.1 µm and are used for the removal of macromolecules such as proteins,
polysaccharides, and viruses. UF is commonly used as a pretreatment step in water
treatment systems, particularly in surface water or wastewater treatment. It can also be
used as a standalone treatment process to produce high-quality drinking water or for the
removal of specific contaminants, such as endotoxins [4,5] or macromolecules [6,7]. It is an
effective and energy-efficient water treatment process that can produce high-quality water
with low consumption of chemicals and minimal waste generation [8]. NF membranes
have a pore size of 0.001–0.01 µm and are used to remove divalent ions, such as calcium
and magnesium. RO membranes have a pore size of less than 0.001 µm and are used to
exclude monovalent ions, such as sodium and chloride, as well as organic molecules and
bacteria [9].

Membrane fouling is a major challenge in these processes, which can impair the per-
formance of the membrane and increase operational costs [10]. Therefore, it is important to
understand, diagnose, predict, and mitigate fouling occurrences for the sustainable and
efficient operation of membrane-based processes [11]. Researchers have heavily relied on
mathematical models that utilize membrane flux, transmembrane pressure, pollutant rejec-
tion, and other operating parameters to better understand and forecast membrane fouling
behavior in water and wastewater treatment processes [12]. While such traditional models
are well established, they have several drawbacks that limit their usefulness in predicting
fouling in different membrane systems and operating conditions (e.g., limited flexibility,
data-intensive, use of simplified assumptions, etc.) [12]. This highlights the need to develop
more effective approaches to better predict the membrane-based processes’ performance
and fouling propensity. Artificial intelligence (AI)-based models have shown promising
results in water membrane research and are expected to play an increasingly important
role in membrane system design, process optimization, and fouling prediction [13–16]. AI-
based models can learn complex patterns and relationships in large datasets to improve the
accuracy of predictions and enable the more efficient optimization of membrane systems,
which may not be possible using conventional models [16,17].

Unlike other existing reviews that focus on mathematical models [18–20] or broad AI-
based simulations [17], the present review focuses on the use of AI-based fouling prediction
models, namely, artificial neural networks (ANNs) and their derivatives, to provide deeper
insights into the strengths, weaknesses, potential, and areas of improvement associated
with such models for membrane fouling prediction. This paper provides an overview of
the different types of membrane fouling and mitigation strategies, a brief review of existing
mathematical models, a basic introduction to ANNs, and a thorough review of the pertinent
literature.

2. Fouling Types and Mitigation Strategies

Membrane fouling is defined as the accumulation of unwanted (organic, inorganic,
and particulate) materials on the surface or within the pores of a membrane, which leads to
a decline in its flux performance over time [12]. The fouling layer can be either reversible
or irreversible, depending on the nature of the foulants and the severity of the fouling.
Generally, fouling formation can be either physical or chemical. Physical fouling occurs
when particles or fibers larger than the pore size of the membrane accumulate on its surface,
leading to a reduction in its permeability. The mechanism of physical fouling involves
the deposition of particles on the membrane surface due to gravitational settling, inertial
impaction, and diffusion. It can also occur due to concentration polarization, which is the
buildup of solutes near the membrane surface due to the concentration gradient across
the membrane, leading to the precipitation of salts or other materials near the membrane
surface and further contributing to fouling. Effective pretreatment strategies are necessary
to mitigate physical fouling in membrane processes, such as sedimentation, filtration, and
coagulation [21].
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On the other hand, chemical fouling can be caused by the reaction of chemical species
in the feed stream with the membrane surface, forming an insoluble layer that obstructs
the membrane pores. The mechanism involves the adsorption of ions on the membrane
surface, followed by the nucleation and growth of the insoluble layer. It can be classified
into scaling and precipitation fouling [12]. Scaling fouling occurs when dissolved salts
or minerals in the feed stream precipitate on the membrane surface or within its pores,
forming a scale layer [22]. Precipitation fouling occurs when dissolved compounds in
the feed stream react with each other or the membrane material, forming an insoluble
precipitate that obstructs the membrane pores [22]. Several factors promote chemical
fouling, such as high pH, temperature, ionic strength, and divalent cations (e.g., calcium
and magnesium) [12]. Inorganic salts, such as calcium carbonate and calcium sulfate, are
common foulants in many membrane-based separation processes. For instance, calcium
ions tend to react with carbonate and bicarbonate ions present in the water, leading to
the precipitation of calcium carbonate (CaCO3) or calcium bicarbonate (Ca(HCO3)2) [23].
These sediments can adhere to the membrane surface and form a scale layer, reducing
the membrane’s permeability and causing flux decline. Calcium scaling is widespread
in water sources with high calcium hardness, such as groundwater or water supplies
containing significant amounts of dissolved calcium. Likewise, poly aluminum chloride
(PAC) is a commonly used coagulant in water and wastewater treatment processes [24].
It is added to remove suspended particles, colloids, and organic matter by forming flocs
that can be easily separated. However, if PAC is not effectively removed or controlled,
it can contribute to fouling in membrane systems. PAC contains aluminum hydroxide
compounds, which can form gel-like particles or precipitates that can adsorb onto the
membrane surface, accumulate, and form a fouling layer [24]. Other common foulants
include silica, iron, and aluminum compounds [22,25]. Effective pretreatment strategies
are necessary to mitigate chemical fouling, such as pH adjustment, antiscalant dosing, and
membrane surface modification. Regular membrane surface cleaning can also help remove
accumulated foulants and prolong the membrane’s lifespan. Therefore, monitoring the
extent and nature of chemical fouling is essential to determine the appropriate cleaning
and maintenance protocols [21,25].

Furthermore, fouling can be classified into different types based on the nature of
the foulants, which include inorganic fouling, particulate fouling, organic fouling, and
biofouling [11,18]. Inorganic fouling occurs when inorganic compounds, such as salts,
metals, and silica, precipitate or crystallize on the membrane surface or within its pores.
Inorganic compounds can come from various sources, such as seawater, groundwater,
and industrial effluents. The mechanism of inorganic fouling is mainly attributed to
the thermodynamic and kinetic properties of the inorganic compounds, which can be
influenced by the feedwater chemistry and operating conditions [25]. The formation
of inorganic deposits can be triggered by temperature, pressure, pH, and concentration
changes, which can induce the supersaturation and nucleation of the compounds. Once
the deposits are formed, they can grow and agglomerate, forming a cake layer on the
membrane surface or within its pores [25]. While chemical fouling can provide a surface
for inorganic fouling, it is not always necessary for inorganic fouling to occur. Inorganic
fouling can also occur on clean surfaces, especially in environments where the materials
have a suitable substrate and environmental conditions for deposition [11,25,26].

Particulate fouling occurs when suspended or colloidal particles accumulate on the
membrane surface or within its pores [27]. The particles can have various sizes and shapes,
and their accumulation can reduce the membrane permeability and increase its pressure
drop. The primary causes of particulate fouling are feedwater quality, operating conditions,
and membrane properties. The mechanisms of particulate fouling are complex and depend
on several factors, including particle size, shape, surface chemistry, and hydrodynamic
conditions. The particles can deposit on the membrane surface due to electrostatic and van
der Waals forces and their attachment can be enhanced by hydrodynamic shear forces [27].
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Once the particles are attached to the membrane surface, they can form a cake layer that
further traps other particles and reduces the membrane’s permeability [27].

Furthermore, organic fouling occurs when organic molecules, such as proteins, polysac-
charides, and humic substances, adsorb onto the membrane surface and block its pores [28].
Organic molecules can be of natural or synthetic origin and can come from various sources,
such as wastewater, food processing, and pharmaceuticals. The mechanism of organic
fouling is mainly attributed to the adsorption of organic molecules onto the membrane
surface, followed by their aggregation and the formation of a cake layer. The adsorption
can be influenced both by the surface properties of the membrane—such as hydropho-
bicity, charge, and roughness—and by the properties of the organic molecules—such as
size, shape, and charge density [28]. In addition, the presence of foulants can alter the
membrane’s surface chemistry and induce surface-induced conformational changes in the
organic molecules, which can further enhance their adsorption and aggregation [28].

Lastly, biofouling occurs when microorganisms, such as bacteria, fungi, and algae,
attach to and grow on the membrane surface or within its pores [19]. It is typically caused
by the presence of organic matter in the feed stream and by the formation of a suitable
environment for microbial growth. Microorganisms can form biofilms, which can further
trap other microorganisms and organic and inorganic particles, reducing the membrane’s
performance and increasing its pressure drop [19]. For example, extracellular polymeric
substances (EPSs) play a critical role in membrane bioreactor (MBR) fouling behavior [29].
EPSs are complex organic compounds produced by microorganisms, primarily in the form
of biofilms, and they are usually present in the mixed liquor-suspended solids within
MBRs. They have a high molecular weight and can form a gel-like layer on the membrane
surface. This gel layer acts as a physical barrier, reducing the permeability of the membrane
and causing flux decline. Moreover, EPSs contain hydrophilic and hydrophobic regions,
allowing them to interact with both water and solid surfaces. These substances can adhere
to the membrane surface due to electrostatic interactions, hydrogen bonding, and van
der Waals forces [29,30]. Additionally, EPSs exhibit cohesion forces among themselves,
leading to the formation of larger foulant structures. Various strategies can be employed
to mitigate the fouling caused by EPSs, such as controlling microbial activity through
proper operation and maintenance, optimizing operational parameters (e.g., aeration and
hydraulic conditions), employing appropriate pretreatment methods to remove or minimize
EPSs, and implementing membrane cleaning protocols. Soluble microbial products (SMPs)
can also contribute to fouling in an MBR [31]. SMPs are organic compounds, primarily of
microbial origin, that are released into the liquid phase during the metabolic activities of
microorganisms. They can accumulate on the membrane surface and form a foulant layer,
consisting of proteins, polysaccharides, nucleic acids, and other organic compounds [32].
Thus, understanding the fouling behaviors of EPSs and SMPs in MBRs is essential for
developing strategies to mitigate fouling, improve membrane performance, and ensure the
reliable operation of MBR systems.

The implications of membrane fouling include a decrease in the membrane flux
and an increase in the required transmembrane pressure, which lead to higher energy
consumption, a shorter membrane lifespan, and reduced product quality [21]. Therefore,
controlling fouling in membrane-based separation processes is essential to ensure optimal
performance, a prolonged membrane lifespan, and consistent product quality [33,34].
Furthermore, monitoring the extent and nature of fouling is essential for determining
the appropriate cleaning and maintenance protocols. Parameters such as transmembrane
pressure, flux decline, and foulant concentration can be monitored to detect fouling and
assess the effectiveness of fouling control strategies [35]. Some strategies for controlling
and mitigating membrane fouling include the following:

• Water pretreatment is an essential step to remove suspended solids, organic matter, and
other foulants that can clog or damage the membrane surface. Pretreatment methods
include sedimentation, coagulation/flocculation, microfiltration/ultrafiltration, and
dissolved air flotation [36].
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• The operating conditions of the membrane-based separation process can have a signifi-
cant impact on fouling. Factors such as the feed flow rate, cross-flow velocity, pressure,
pH, and temperature can be optimized to reduce the extent of fouling [35].

• Antiscalants and dispersants can be added to the feed stream to inhibit the precipita-
tion and accumulation of foulants on the membrane surface. These chemicals work by
modifying the surface chemistry of the membrane or by sequestering the foulants in
the bulk solution [35].

• The surface chemistry of the membrane can be modified to reduce fouling by introduc-
ing hydrophilic or charged functional groups that repel foulants or by creating surface
structures that promote shear-induced turbulence [35].

• Regular membrane surface cleaning is necessary to remove accumulated foulants and
restore the membrane performance. Cleaning methods include physical cleaning, such
as backwashing and air scouring, and chemical cleaning, such as acid cleaning and
enzyme cleaning [37,38].

3. Membrane Fouling Prediction Models
3.1. Conventional Models

It is important to predict fouling early in membrane-based separation processes, as
this can help prevent or mitigate fouling before it becomes severe and irreversible. The
early detection of fouling can help maintain optimal membrane performance, sustain the
membrane performance, and reduce the cost of maintenance and replacement [13]. If foul-
ing is left untreated or detected too late, it can lead to irreversible damage to the membrane
surface, which may incur hefty costs [11]. As mentioned earlier, timely fouling prediction
can be achieved by monitoring key parameters, such as transmembrane pressure, flux
decline, and foulant concentration [11]. Predictive models for anticipating the development
of fouling can also help predict fouling based on feed stream characteristics, operating
conditions, and membrane properties [18]. Table 1 summarizes the advantages and disad-
vantages of currently available fouling prediction models [20]. While this review focuses
on ANN-based models, we will briefly mention the other traditional models herein.

Empirical models are statistical models developed based on experimental data, with-
out necessarily considering the fouling process’s underlying physical or chemical mecha-
nisms [14]. Empirical models for membrane fouling prediction are based on the relationship
between the fouling rate and one or more operational parameters. These models are typ-
ically simpler to develop and require fewer computational resources than mechanistic
models [20]. For example, Darcy’s law model assumes that the resistance to flow across the
membrane is proportional to the thickness of the fouling layer [18]. The model predicts
the change in flux over time as a function of the filtration time and the thickness of the
fouling layer. Another famous model is the Hermia semi-empirical model, which considers
the accumulation of particles on the membrane surface and their interaction with the
pore structure. The model predicts the fouling resistance as a function of the operating
conditions, such as the cross-flow velocity and feed concentration [18].

On the other hand, mechanistic models for predicting membrane fouling are based on
the fundamental physical and chemical mechanisms that govern the fouling process [39].
These models consider the mechanisms of fouling, such as deposition, pore constriction,
and cake filtration, as well as the effects of operating parameters, such as transmembrane
pressure, feed flow rate, and feed concentration [20]. While these models are more complex
than empirical models, they offer a more detailed understanding of the fouling process
and can be used to design more efficient membrane filtration systems. However, they
require a detailed understanding of the underlying physical and chemical mechanisms of
fouling, and they may not apply to all membrane filtration systems. Some examples of
mechanistic models for membrane fouling prediction include the colloidal fouling model,
which considers the interactions between colloidal particles and the membrane surface [26].
The model expresses the fouling rate as a function of the properties of the colloidal particles,
such as size, charge, and concentration, as well as the properties of the membrane surface,
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such as surface charge and hydrophobicity [26]. Another model is the resistance-in-series
model, which is based on the concept of hydraulic resistance in series, where the total
resistance to filtration is the sum of individual resistances due to fouling mechanisms such
as deposition and pore constriction [40]. The model expresses the relationship between
the transmembrane pressure and the fouling resistance as a function of the operating
parameters. Details of such theoretical models can be found in Yang et al.’s review [20].

Conventional models, such as the resistance-in-series model or the cake filtration
model, are often based on well-established principles and mechanisms and can provide
more interpretability; they rely on simplified assumptions that may not accurately capture
the dynamics of membrane fouling in real-world applications [41]. Additionally, con-
ventional models typically require knowledge of a priori information about the system,
such as the nature of the foulants or the fouling mechanism, which may not always be
available [41]. Therefore, AI-based models have been increasingly used to predict mem-
brane fouling because they can learn from data, find complex patterns, and make accurate
predictions [42,43]. They can be trained on historical data of membrane filtration processes,
including operating conditions, membrane properties, and feed characteristics, to predict
the fouling rate [17]. While the interplay and competition effects among parameters that af-
fect fouling may not be directly revealed by the ANNs themselves, the overall performance
of the antifouling membrane under different conditions can be assessed through their
predictive capabilities. The interplay and potential competition effects can be indirectly
inferred by systematically varying the operating parameters (e.g., transmembrane pressure,
flow rate, and feedwater characteristics) in the data and observing the corresponding
changes in the predicted fouling behavior. Sensitivity analysis techniques can be employed
to quantify individual parameters’ influence on the ANN model’s output predictions [44].
The factors that have the most significant impact on fouling behavior can be identified by
measuring the model’s sensitivity to specific parameter changes. This information helps
understand the operating parameters’ relative importance and potential interactions. Thus,
combining the predictive power of ANNs with other analytical techniques and domain
expertise can lead to a more holistic understanding of the complex dynamics involved
in membrane fouling. An upsurge in interest in ANNs for membrane fouling prediction,
proven by the increase in the number of publications over the years (Figure 1), can be
attributed to several factors, like the ability to develop more sophisticated ANN architec-
tures, improved training algorithms, and increased computing power, which have greatly
enhanced the capabilities of ANNs in modeling complex systems. These advancements
have spurred interest in exploring the use of ANNs for membrane fouling prediction,
as they offer the potential to capture intricate fouling patterns and improve prediction
accuracy. Moreover, the accumulation of fouling datasets over the years, through both
laboratory-scale experiments and field studies, has facilitated the development and valida-
tion of ANN models for membrane fouling prediction. These datasets provide researchers
with the necessary information to train and evaluate ANN models, thereby supporting the
increasing interest in this research area. Likewise, the complexity of membrane fouling
necessitates interdisciplinary collaboration between researchers in fields such as membrane
science, water engineering, data science, and AI. This collaboration has fostered the ex-
change of knowledge and expertise, leading to the integration of ANN techniques into the
domain of membrane fouling prediction [17]. Table 1 provides a comparison among the
three prevailing types of fouling modeling.
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Figure 1. An upsurge in the number of publications involving the use of ANNs for membrane
fouling prediction has been observed over the past decade. Figure generated using Dimensions®

at https://app.dimensions.ai/discover/publication, accessed on 20 April 2023, with the keywords
“ANNs” AND “membrane fouling prediction”, limiting the research to peer-reviewed journal arti-
cles [45].

A study by Liu and Kim [46] aimed to compare mathematical blocking laws with
an AI-based model for predicting the fouling mechanism in a synthetic water filtration
system. The model inputs included the run time, feed turbidity, inlet permeate flow rate,
and outlet transmembrane pressure. While insights into membrane fouling mechanisms
can be obtained from the blocking laws, a single blocking law cannot adequately fit the
entire experimental period. The results of this study indicated that the AI model was
more efficient than blocking laws for predicting/simulating complex membrane fouling
processes. This and other examples show that AI-based models can incorporate empirical
knowledge about the process without explicitly formulating its physical relationship [46].
Another comparative study by Khayet et al. [47] compared the performance of response
surface methodology (RSM) versus an AI-based model in predicting RO desalination
performance under various operating conditions. When comparing the models’ permeate
flux predictions with experimental data, the AI-based model exhibited higher accuracy than
the RSM-based model, with a coefficient of determination (R2) exceeding 0.9998, indicating
excellent experimental data predictability.

Table 1. Advantages, disadvantages, and examples of currently available fouling prediction models.

Model Type Advantages Limitations Examples Ref.

Empirical models

- Useful for predicting fouling in a
specific process under certain
conditions

- Can be simple or complex, depending
on the number of parameters included

- Relatively easy to develop
- Can be useful for process optimization

- Inability to generalize to other
processes

- Extensive dependence on the quality
of experimental data

Darcy’s law
model and the
fouling index

model

[41,48]

Mechanistic
models

More accurate and applicable to a wider
range of processes

- More complex to develop
- require extensive experimental data

for calibration

Cake filtration
model and

pore-blocking
model

[39,41,48]

Artificial
intelligence

models

- Can capture nonlinear relationships
between process variables and fouling

- Useful for predicting fouling in
complex systems

- Require a large amount of training
data

- May lack interpretability, making
them less suitable for process
optimization

Support vector
machines
(SVMs)

[41,49,50]

https://app.dimensions.ai/discover/publication
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3.2. AI-Based Models

As shown in Figure 2, there are two broad categories of AI models that differ in
how they are trained and the types of problems they can handle [51]: supervised and
unsupervised. Supervised learning is a type of machine learning in which the model is
trained using labeled data, where each data point is associated with a specific output
or target variable. Supervised learning aims to learn the relationship between the input
and output variables so that the model can accurately predict the output variable for
new, unseen data [52]. Supervised learning algorithms include linear regression, logistic
regression, decision trees, random forests, and artificial neural networks [52]. On the other
hand, unsupervised learning is a type of machine learning in which the model is trained
using unlabeled data, where the target variable is unknown. Unsupervised learning aims to
identify patterns, structures, or relationships in the data that are not immediately apparent,
such as clustering or dimensionality reduction [51]. Unsupervised learning algorithms
include k-means clustering, hierarchical clustering, principal component analysis (PCA),
and autoencoders [51]. Furthermore, regression, classification, clustering, and dimension
reduction are all common types of machine learning problems that can be solved using
various AI models [51]:

• Regression is a type of supervised learning problem in which the goal is to predict a
continuous output variable. The model learns the relationship between input variables
and output variables using labeled training data and then makes predictions on new,
unseen data. Linear, polynomial, and support vector regression are common types of
regression algorithms.

• Classification is another type of supervised learning problem that aims to predict a
categorical output variable. The model learns the relationship between input and
output variables using labeled training data and then assigns new data points to spe-
cific categories based on the learned rules. Common classification algorithms include
logistic regression, decision trees, random forests, and support vector machines.

• Clustering is an unsupervised learning problem that aims to group similar data points
into clusters. The model does not use labeled data, but instead finds patterns and
structures in the data to group similar data points together. K-means clustering and
hierarchical clustering are common clustering algorithms.

• Dimension reduction is a technique used to reduce the number of input variables in a
dataset while still retaining important information. The goal is to simplify the data
and remove noise or redundant features that may hinder learning. Principal compo-
nent analysis (PCA) and autoencoders are common dimension reduction algorithms.
While most dimension reduction problems are unsupervised, they can be supervised
depending on the specific problem and approach.

The choice of whether to use a supervised or unsupervised AI model for membrane
fouling prediction depends on the specific problem and available data [51]. A supervised
model may be appropriate if a labeled dataset with known input–output pairs is available.
If there is no labeled dataset and/or the goal is to identify patterns and trends in the
data, an unsupervised model may be more appropriate [53]. For example, support vector
machines (SVMs) are supervised learning algorithms that separate the input data into
different classes by finding the hyperplane that maximally separates the classes. SVMs
have been applied to membrane fouling prediction by mapping the input features, such as
feed concentration, pH, temperature, and membrane properties, to a higher-dimensional
space and predicting the fouling rate based on the location of the input data in the feature
space. These models are particularly useful for small datasets and can handle noise and
outliers in the data [53,54]. However, they may not perform well when the data are highly
nonlinear or imbalanced. Another supervised algorithm is decision trees, which construct
a tree-like model of decisions and their consequences based on the input data. They have
been used for membrane fouling prediction by constructing a tree model of the fouling
mechanisms based on the input features, such as the shear rate, membrane pore size, and
fouling layer properties. Decision trees are easy to interpret and visualize and can handle
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missing values and categorical data. However, such models may suffer from overfitting
and bias toward the dominant features in the data [55].
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Although AI-based models are flexible, adaptable, and accurate, which make them
attractive tools for optimizing the performance of membrane-based water treatment sys-
tems, they also have limitations that must be considered. For example, AI-based models
can be more complex than conventional models, requiring more advanced techniques
and expertise to develop and interpret. Moreover, these models require large amounts
of high-quality data for training, which may not always be available, especially for the
filtration of new or emerging contaminants [56,57]. Consequently, AI-based models can be
computationally intensive, requiring significant computational resources, time, and exper-
tise to develop and train. Moreover, these models can be considered “black box” models,
meaning that the underlying mechanisms that govern their predictions are not always
clear. Additionally, AI-based models may be susceptible to overfitting, where the model
becomes too complex and fits the training data too closely, resulting in poor generalization
of new data. Lastly, AI-based models heavily rely on the quality and representativeness
of the data used for training. If the training data do not represent the real-world system,
the model may produce inaccurate or biased predictions [56,57]. While this general topic
is extensive, this review will focus on the subset of supervised artificial neural networks
(ANNs), a type of supervised machine learning algorithm, that can be used for membrane
fouling prediction by training on a labeled dataset with known input–output pairs to learn
the relationship between input parameters and the fouling rate [56,58].

4. Basic Concepts of ANNs

Several research studies [59–61] have utilized smart models to predict membrane
fouling indices such as transmembrane pressure (TMP) or membrane permeate flux. These
models are based on AI and aim to provide higher accuracy than mechanistic models while
at the same time eliminating the need for model calibration. ANNs have been widely used
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for fouling prediction in membrane filtration systems. Input parameters include feed water
quality, operating conditions, and membrane properties. ANNs have several advantages
that make them a popular and effective choice for fouling prediction, including [62,63]:
(1) the nonlinear modeling capability to capture nonlinear relationships between input and
output variables [64], (2) the ability to effectively handle high-dimensional data involving a
large number of input parameters, (3) generalizability, as ANNs can be trained on a dataset
and then used to predict fouling for new input parameters that were not present in the
training set, making them useful for real-time fouling prediction in industrial applications,
and (4) flexibility, as they can be easily adapted to different fouling prediction tasks by
adjusting the network architecture and input parameters [65].

The basic structure of an ANN consists of a set of artificial neurons linked together to
exchange signals. The neurons are sequentially connected as input, hidden, and output
layers. Input layers receive input data and pass it on to the hidden layers, which process the
data through a series of nonlinear transformations, allowing the network to learn complex
patterns in the data [66]. It is an iterative process of trial and error to decide the optimal
number of hidden layers, as increasing the number of hidden layers usually increases
accuracy until a certain limit, after which overfitting occurs. Barello et al. [67] showed that
a time-based ANN model with 2, 3, or 5 hidden layers can produce predictions that are in
agreement with correlation data, while 10 and 20 layers result in inaccurate predictions. The
net input signal can be computed by summing the input signals multiplied by a random
factor called the connection weight, adding to the bias value. Training algorithms, such as
Levenberg–Marquardt and gradient descent (GD), tune the weights and biases to reduce
errors and boost the accuracy of simulations [58,68]. Then, the output layers produce a
predicted output based on the processed input data, which can be computed by multiplying
the net input by an activation function, according to Equation (1) [69].

Y = f

(
n

∑
k = 0

xkwk + b

)
(1)

where Y is the output signal, f is an activation function, xk is the input data, wk is the
connection weight, and b is a bias.

The activation function, also known as the transfer function, transfers the signals from
the input to the output domain. Two of the most commonly used transfer functions for
fouling prediction applications are the linear and sigmoidal functions, shown in Equations
(2) and (3), respectively [69].

F(x) = x (2)

F(x) =
1

(1 + e−x)
(3)

Several types of ANN architectures have been used for fouling prediction, including
feed-forward neural networks (FFNNs) such as radial basis functions (RBFs) [70–72], multi-
layer perception (MLP) [72,73], and recurrent networks (RNNs) [74–76]. A comprehensive
comparison between MLP and RBF networks was studied by Xie et al. [77]. The choice
of architecture depends on the specific problem and available data [66,78]. In the work of
Soleimani et al. [79], an FFNN was utilized to predict membrane fouling in oily wastewater.
The optimized process parameters included temperature, transmembrane pressure, pH,
and velocity. The model’s predicted outcomes showed high accuracy, with an R2 value
greater than 0.99, when compared to the experimental and trained data. Similarly, Rahma-
nian et al. [80] suggested that using an FFNN model can successfully decipher nonlinear
relationships among datasets and accurately predict fouling in UF processes. These studies
underscore the suitability of FFNN models for predicting fouling behavior in different
contexts. The FFNN architecture allows for modeling complex, nonlinear relationships
between input variables and fouling outcomes. The high accuracy achieved in both studies
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suggests the potential of FFNN models as valuable tools for understanding and mitigating
membrane fouling in various applications.

Several available codes and software packages can be utilized to conduct fouling
prediction in membrane systems. According to a comprehensive literature survey, MAT-
LAB is the most widely used programming language and software platform, as it offers
various toolboxes and functions for data analysis and modeling. It provides flexibility
in implementing and customizing ANNs for fouling prediction models. However, MAT-
LAB is a proprietary software, requiring a license for full functionality. Several packages
and toolboxes can be useful for membrane fouling prediction using ANNs in MATLAB,
as described in Table 2. Utilizing these packages allows the built-in functions and tools
to implement, train, and evaluate ANNs for membrane fouling prediction, facilitating
the development of accurate and reliable models [81,82]. Another option is Python, an
open-source programming language that has gained popularity in scientific computing
and data analysis. It offers numerous libraries and packages, such as NumPy, SciPy, and
scikit-learn, which provide extensive functionalities for machine learning and predictive
modeling [81,82]. When selecting a code or software package for fouling prediction, it is
important to consider factors such as availability, cost, flexibility, ease of use, support, and
compatibility with existing data and models. Each option has advantages and disadvan-
tages, and the choice depends on specific requirements, expertise, and resources available
to the user.

Table 2. Available MATLAB toolboxes for developing ANNs for membrane fouling prediction [83–85].

Toolbox Advantages Limitations

Neural Network
Toolbox

• Provides a comprehensive set of functions and
tools specifically designed for neural networks.

• Supports various types of neural network
architectures.

• Offers advanced training algorithms to improve
network performance.

• Provides visualization tools for network analysis
and debugging.

• Requires familiarity with neural networks and
their implementation.

• Limited support for other machine learning
algorithms outside of neural networks.

• May require additional customization for specific
fouling prediction tasks.

Curve Fitting
Toolbox

• Offers a wide range of algorithms for curve
fitting and regression analysis.

• Provides functions for optimizing model
parameters and assessing model accuracy.

• Includes tools for model validation and
comparison.

• Supports customization of fitting options for
specific fouling prediction models.

• Primarily focused on curve fitting tasks and may
have limited functionalities for complex ANNs.

• Requires preprocessed data in a suitable format
for curve fitting analysis.

• May require additional statistical knowledge for
optimal model selection and validation.

Optimization
Toolbox

• Offers a variety of optimization algorithms for
parameter tuning in ANNs.

• Provides tools for fine-tuning network
architecture and training parameters.

• Supports constrained and unconstrained
optimization problems.

• Enables efficient parameter search and
optimization of ANN models.

• Focused primarily on optimization tasks and
may require additional integration with ANN
functionalities.

• May require expertise in optimization algorithms
for optimal model configuration.

• Limited support for handling large-scale
optimization problems.

Deep Learning
Toolbox

• Specifically designed for deep learning tasks,
including CNNs and RNNs.

• Offers pre-trained models and transfer learning
capabilities.

• Provides tools for model visualization, training,
and deployment.

• Includes support for Graphics Processing Unit
(GPU) acceleration, enabling faster computations
for large datasets.

• Primarily focused on deep learning models and
may have limited functionalities for other ANN
architectures.

• Requires familiarity with deep learning concepts
and techniques.

• GPU usage may require additional hardware
resources.
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ANNs are developed through a process known as training, which involves adjusting
the weights and biases of the network to minimize the difference between the predicted
output and the actual output for a set of training examples [86]. The steps are summa-
rized in Figure 3. The first step in developing an ANN is to define the problem that the
network will be used to solve. This involves specifying the input variables (e.g., operating
conditions, feed characteristics, and membrane characteristics) and the output variable
(e.g., fouling rate, and flux decline). Once the problem is defined, data must be collected
and preprocessed. This involves cleaning the data to remove any inconsistent or outlier
data and then splitting the data into a training set (used to train the network) and a testing
set (used to evaluate the network’s performance). Next, the network architecture must be
selected based on the problem and the available data. This involves deciding the number of
layers and nodes in each layer, as well as the activation functions to be used. The weights
and biases of the network are initialized randomly before training begins. During training,
the network is presented with a set of input–output pairs from the training set, and the
weights and biases are adjusted using an optimization algorithm (e.g., backpropagation)
to minimize the difference between the predicted output and the actual output. After
training is complete, the performance of the network is evaluated using the testing set.
If the performance is satisfactory, the network can be used for predictions on new data.
Finally, the network can be fine-tuned and optimized by adjusting the network architecture,
training parameters, and preprocessing methods to improve performance [68,86].
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In an ANN model for membrane fouling prediction, the input parameters are the
variables that are used to predict fouling, while the output parameter is a determinant
of fouling propensity, such as the permeate flux decline, fouling growth rate, fouling re-
sistance, or interface energy in MBRs (Figure 4). Interfacial energy plays a crucial role in
determining the degree of membrane fouling predicted by ANNs in MBRs. The short-range
interfacial force or energy between the foulant and the membrane plays a crucial role
in determining the extent of foulant adhesion to the membrane surface. Consequently,
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accurately quantifying this short-range force or energy holds immense significance in the
realm of membrane fouling control [87]. The choice of predicted output parameter depends
on the specific application and output availability. Still, the goal is to predict the fouling
behavior of the membrane to optimize the membrane performance and extend its lifetime.
The selection of input parameters depends on the specific problem and the available data
but typically includes operating conditions (e.g., cross-flow velocity, temperature, trans-
membrane pressure, filtration time, aeration) and/or factors that influence fouling, such as
feed characteristics (e.g., pH, ionic strength, particle size distribution, microbial community,
organic matter content) or membrane properties (e.g., pore size, material, configuration,
hydrophobicity, surface charge) [51]. The material properties of the membrane, such as
mechanical strength, surface characteristics, and chemical composition, can significantly
impact its fouling behavior and overall performance. These properties influence factors
like adhesion, surface interactions, and resistance to fouling agents [88]. Therefore, a com-
prehensive understanding of the material properties is necessary for accurate predictions
and reliable assessments of membrane performance. Without considering the membrane’s
material properties, evaluating the long-term durability, stability, and effectiveness of the
membrane in real-world applications becomes challenging. Likewise, the number and
selection of input parameters can significantly impact the accuracy and performance of the
ANN model. Generally, a larger number of input parameters can lead to better predictions
but can also increase the complexity of the model and make it more difficult to train. Thus,
careful consideration must be given to selecting the most relevant and informative input
parameters or predicting fouling in each application [89].
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Figure 4. A basic ANN structure with commonly used input parameters and output predictions.

The accuracy of an ANN model for membrane fouling prediction can be evaluated
using various statistical metrics, depending on the specific problem and the desired output.
The most commonly used assessment metrics include the mean squared error (MSE), root
mean squared error (RMSE) (Equation (4)), mean absolute error (MAE), and the coefficient
of determination (R2) (Equation (5)) [51,73,90]. The RMSE measures the average of the
squared differences between the predicted and actual values of the output parameter; the
MAE shows the average absolute difference between the predicted and actual values of
the output. Lower values of MSE, RMSE, and MAE indicate better model performance.
Similarly, R2 measures the proportion of variation in the output parameter explained by the
model, where higher values indicate better model performance. Accuracy, sensitivity, and
specificity are also commonly used for classification problems and, respectively, measure
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the percentage of correctly classified instances, true positive instances, and true negative
instances [91].

RMSE =

√(
1
n

) n

∑
k = 0

(
y(k)p − y∗k

)2
(4)

R2 = 1 −

∑n
k = 0

(
y∗k − y(k)p

)
∑n

k = 0
(
y∗k − y

)
 (5)

where y∗k is the kth target response, y(k)p is the kth predicted response, and y is the average y
value over the range of n data points [51].

5. Applications of ANNs for Membrane Fouling Prediction
5.1. Membrane Fouling Prediction in RO and NF Processes

Roehl et al. [92] developed an MLP ANN model to predict RO membrane fouling. To
train the model, the researchers used historical big data consisting of a 76-month process
database from a large-scale RO system employed in a wastewater treatment plant, in
which they entered 59 hydraulic and water quality parameters. The model was used to
calculate the fouling factor, best fouling predictors, and optimization of feed contents to
predict fouling growth. According to the model, the best fouling predictors for early-stage
fouling included total chlorine content, electrical conductance, and total dissolved solids
content; however, late-stage fouling was best predicted by the turbidity, nitrate, nitrite, and
organic matter contents of the feed. The outcomes of the models showed high agreement
with the experimental data. A critical element of this study is claimed to be the use of a
comprehensive experimental approach, resulting in generalized solutions that are expected
to have universal relevance to RO-based wastewater treatment. By identifying specific
fouling predictors for different fouling stages, the model provides valuable insights into the
underlying fouling mechanisms and aids in optimizing operational parameters to mitigate
fouling.

The findings of this study have implications for improving the efficiency and perfor-
mance of RO systems in wastewater treatment, ultimately leading to more effective water
purification processes. Moving forward, it would be beneficial to validate the model’s
performance across a wider range of wastewater treatment plants and explore its potential
application in different water treatment contexts, further establishing its universal relevance
in the field. Additionally, considering the dynamic nature of fouling, future research could
explore the integration of time-dependent variables and incorporate real-time monitoring
data to enhance the accuracy and responsiveness of the ANN model for predicting RO
membrane fouling.

Shim et al. [93] developed a long short-term memory (LSTM) model representative
of an RNN model to study the filtration performance and predict fouling growth in an
NF system. The input parameters were operation time, pressure, initial permeate flux,
dissolved organic carbon content, and OCT images of the fouling layer thickness to predict
fouling layer thickness growth and permeate flux. The model exhibited a high prediction
accuracy for the flux (R2 = 0.9982) and the fouling layer thickness (R2 = 0.9987).

Shetty and Chellam [94] tested the accuracy of an ANN model trained using the
Levenberg–Marquardt algorithm in predicting fouling in the municipal water NF process.
The model inputs—feed pH, ultraviolet absorbance, and total dissolved solids—were used
to predict long-term total resistance to water permeation in flat membrane sheets, single
spiral-wound elements, and large-scale multiple-stage systems. The model’s predictions
were compared against experimental data collected from 11 municipalities using six dif-
ferent membrane types. Collectively, 4 years’ worth of data was used to train, test and
validate the model in this study. The researchers aimed to minimize the dataset needed
for training yet provide enough data to reach the maximum performance of the model in
the testing phase. The prediction accuracy was evaluated based on the RMSE, absolute
relative error, paired t-tests, and Wilcoxon rank sum statistical analyses. For example,
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they used 10% of the dataset to train the model and obtained a 93% prediction accuracy
when tested on a single spiral-wound NF process. Remarkably, they also successfully
trained a model using only 4.4% of the dataset. They obtained a 100% prediction accuracy
when tested on fouling data from a full-scale process at Palm Beach County, FL. Despite
variations in feed water quality and foulant characteristics across different seasons and
locations, the ANN successfully predicted experimental observations with less than 5%
absolute error in all cases. Upon comparison of the experimental results with the ANN
model calculations, they found that the ANN model is a valuable tool for forecasting the
membrane fouling behavior. These studies contribute to advancing membrane fouling
prediction and highlight the potential of ANN models in optimizing membrane systems for
various applications. Future expectations include the further refinement of ANN models
and the integration of other analytical techniques to enhance predictive capabilities and
broaden the applicability of these models in real-world scenarios.

Park et al. [95] developed a deep neural network (DNN) to model membrane fouling
in hybrid NF/RO filtration processes by utilizing optical coherence tomography (OCT) in
situ fouling image data and convolutional neural networks (CNNs). The performance of
the image-based fouling prediction DNN model was compared with existing mathematical
models: the constant resistance model (CRM) and the pore-blocking model (PBM). In total,
13,708 high-resolution fouling layer images were used to develop the DNN model and
validate the model performance. The DNN model was trained to simulate both organic
fouling growth and flux decline, and it reproduced two- or three-dimensional images. The
model showed better predictive performance than the existing mathematical models, as it
achieved an R2 value of 0.99 and RMSE of 2.82 µm for the fouling growth simulation and
an R2 of 0.99 and RMSE of 0.30 Lm−2 h−1 for the flux decline simulation. This was a good
verification experiment demonstrating that the data-driven approach is an alternative way
to model membrane fouling and flux decline processes.

This study also highlighted the potential of data-driven approaches as an alternative
to traditional mathematical models, demonstrating the ability of DNNs to automatically
learn hierarchical representations from data and uncover hidden features and relationships
in complex fouling mechanisms. By utilizing multiple layers of interconnected nodes,
DNNs can learn increasingly abstract and high-level data representations, enabling them
to accurately capture intricate fouling mechanisms and predict fouling behavior that may
not be easily discernible through traditional modeling approaches. Accordingly, the per-
formance of DNNs heavily relies on the availability of high-quality and representative
training datasets. Adequate data preprocessing, including feature engineering and nor-
malization, is crucial for optimizing the model performance. Additionally, the architecture
and hyperparameter tuning of DNNs requires careful optimization to prevent overfitting
or underfitting and to ensure model generalization. The contributions of this study lie in
advancing our understanding of membrane fouling processes and providing a framework
for utilizing DNNs to accurately predict fouling behavior, ultimately enhancing the design
and operation of hybrid NF/RO filtration systems.

Table 3 summarizes some studies that used ANNs to predict fouling in RO and NF
systems.
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Table 3. Summary of some studies on the use of ANNs fouling prediction in RO and NF processes.

Process Type ANN Model Training Algorithm Feed Type Model Inputs Model Outputs Ref.

RO

Basic ANN Levenberg–Marquardt Groundwater Feed salinity, operating pressure, run time,
membrane type Water permeability constant (R2 = 0.996) [67]

Basic ANN Bayesian regularization
backpropagation

Formulated artificial
groundwater Feed concentration, pressure, temperature

Water recovery (R2 = 0.9611)
Total dissolved solids rejection (R2 = 0.9246)
Specific energy consumption (R2 = 0.9044)

[96]

RBF Orthogonal least squares Brackish water Temperature, pH, conductance, pressure Permeate flow rate (R2 = 0.9853)
Total dissolved solids content (R2 = 1)

[72]

RBF Backpropagation Groundwater Clustered input space consisting of an
8-variable vector

Permeate flow rate (R2 = 0.92)
Permeate total dissolved solids content

(R2 = 0.84)
[97]

MLP Backpropagation Wastewater Run time, total dissolved solids content, feed Permeate flow rate (R2 = 0.97–0.99) [98]

MLP Backpropagation Brackish water Time, conductivity, flow rate, transmembrane
pressure

Permeate flow (R2 = 0.94)
Permeate conductivity (R2 = 0.99)

[99]

MLP Backpropagation Dilute saline water

Membrane pore radius, friction constants
between solvent, solute, and membrane,

feed solute concentration,
pressure,

temperature

Total flux (R2 = 0.9982)
Solvent flux (R2 = 0.9980)

Separation factor (R2 = 0.9997)
[100]

MLP Backpropagation Brackish water Feed flow rate, pH, temperature, pressure,
feed conductivity

Standardized permeate flux (R2 = 0.68)
Percent salt passage (R2 = 0.86)

[101]

MLP Backpropagation Seawater
Run time, transmembrane pressure, feed

flow rate, feed total dissolved solids content,
temperature

Permeate flow rate (R2 = 0.75)
Permeate total dissolved solids content

(R2 = 0.96)
[102]

MLP Levenberg–Marquardt Brackish water Feed salt concentration, temperature,
pressure Permeate flow rate (R2 = 0.998) [103]

MLP Levenberg–Marquardt Brackish water Temperature, pH, conductance, pressure Permeate flow rate (R2 = 0.9904)
Permeate total dissolved solids content (R2 = 1)

[72]
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Table 3. Cont.

Process Type ANN Model Training Algorithm Feed Type Model Inputs Model Outputs Ref.

NF

Basic ANN Backpropagation Humic acid-based
feedwater

Cross-flow velocity, initial flux, feed calcium
concentration Permeate flux (absolute relative error <0.1%) [104]

Bootstrap
aggregated

neural networks
(BANNs)

Ensemble creation and
aggregation

Organic-
contaminated

feed

Feed characteristics (dipole moment,
molecular weight, zeta potential, pH),

recovery %, temperature, pressure
Salt rejection percent (R2 = 0.9862) [105]

DNN / Humic acid-based
feedwater

Initial fouling thickness, membrane type,
time, initial permeate flux

Permeate flux (R2 = 0.99)
Fouling layer thickness (R2 = 0.99)

[95]

RNN Backpropagation Artificial saline water

Real-time 2-dimensional OCT images,
operation time, initial permeate flux,

pressure, fluorescence regional integration,
feed dissolved organic carbon content

Permeate flux (R2 = 0.9982)
Fouling layer thickness (R2 = 0.9987)

[93]

Normalized
RBF Backpropagation Groundwater Feed total dissolved solids, feed flux,

recovery %, net driving force Total dissolved solids concentration (R2 = 0.99) [106]

MLP Backpropagation Organic solvent feed

Membrane characteristics (support material,
molecular weight cutoff), solvent properties
(molecular weight, viscosity, density, kinetic

diameter, etc.), operating conditions
(temperature, pressure, solute concentration,

solute type)

Permeance (R2 = 0.98)
Rejection (R2 = 0.91)

[49]

MLP Backpropagation Highly concentrated
salt solutions Feed pressure, salt concentration Permeate flux, salt rejection [107]

MLP Backpropagation Groundwater Feed total dissolved solids, feed flux,
recovery %, net driving force Total dissolved solids concentration (R2 = 0.99) [106]

MLP Backpropagation Organic contaminated
feed

Feed characteristics (dipole moment,
molecular weight, zeta potential, pH),

contact angle, recovery %, temperature,
pressure

Salt rejection percent (R2 = 9527) [108]

MLP Levenberg–Marquardt Groundwater and
surface water

Permeate water flux, feed absorbance, time,
pH, total dissolved solids content,

temperature, influent flow rate

Membrane fouling resistance (absolute relative
error < 5%) [94]

MLP Levenberg–Marquardt Waste brine Transmembrane pressure, temperature, run
time

Permeate flux (R2 = 0.96)
Fouling resistance (R2 = 0.98)

[109]
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5.2. Membrane Fouling Prediction in MF and UF Processes

Liu et al. [60] assessed how well ANN models perform under operating conditions
that resemble those used in MF plants. To achieve this, the researchers used hollow-fiber
membrane modules in constant flux mode, with periodic backwashing, and simulated
the characteristics of surface water using synthetic water. The experimental results and
operating parameters were gathered and used as a training dataset for the ANN model.
The model architecture consisted of one input layer, two hidden layers, and one output
layer, where the input parameters were permeate flux, feed turbidity, operation time,
feed ultraviolet absorbance, backwash frequency, and whether the backwash mode was
enhanced or normal. It was concluded that the feed quality and operational parameters are
of equal importance in predicting the transmembrane pressure profile.

Similarly, Hwang et al. [69] used an MLP model with a backpropagation training
algorithm to predict fouling rates in a pilot-scale MF system for filtering water from the
Han River. The input parameters included water quality parameters such as turbidity, pH,
temperature, total organic carbon, and total algae content, as well as operating conditions
like run time and coagulant dosing. The agreement of the model’s outcomes with the
experimental data was determined based on the RMSE and R2 values. The model accurately
predicted the fouling rate and permeability, with R2 values of 0.92 and 0.94, respectively.

Future expectations from the studies by Liu et al. [60] and Hwang et al. [69] include
further advancements and applications of ANN models for predicting fouling in membrane
filtration systems. Both studies highlight the significance of input parameters related to
water quality and operational conditions in accurately predicting fouling rates and perme-
ability. Moving forward, there is a potential for enhancing the models by incorporating
additional variables or refining the model architectures to improve prediction accuracy.

In another study [110], the effect of polydisperse suspensions on the fouling propensity
of MF membranes was investigated. The feed concentration, inlet permeate flux, feed
shear rate, run time, and transmembrane pressure were fed as inputs to a basic ANN
model consisting of one hidden layer. Statistical analysis at a 95% confidence level using
paired t-tests and Wilcoxon rank sum tests showed no significant disparities between
the outcomes obtained from the ANN model and the experimental data. The authors
concluded that the model adequately depicted how intricate particle transportation and
deposition mechanisms, along with changes in cake morphology and permeability as
a function of variations in the shear rate, permeate flux, and particle size distribution
(PSD), can collectively influence membrane fouling. The future directions of this work
could involve expanding the scope of the study to explore the impact of additional factors
on membrane fouling in polydisperse suspensions. Further investigations could include
analyzing the influence of specific particle characteristics, such as shape or surface charge,
on fouling propensity. Moreover, conducting experiments with a wider range of operating
conditions and varying particle size distributions would enhance the model’s robustness
and generalize its findings across different scenarios. By refining the ANN model and
considering a more comprehensive set of parameters, future research can provide deeper
insights into the mechanisms of fouling in polydisperse suspensions and offer valuable
guidance for designing and optimizing membrane filtration systems.

Recent work by Ahmed and Mir [111] used a multilayer FFNN to predict the permeate
flux in response to variations in the feed’s applied pressure, run time, Cr(VI) concentration,
and cetylpyridinium chloride/Cr ratio in an MF process. The model was trained using the
Levenberg–Marquardt algorithm and showed R2 values ranging from 0.97772 to 0.99992
for different inputs, which indicated that the simulated outputs were in close agreement
with cake filtration model data and experimental permeate flux data. The results of the
model were used to analyze and determine the fouling mechanism, which, along with
other information, can be utilized to save time and cost.

Delgrange et al. [112] developed an ANN model to predict UF fouling, where the
model was trained using data extrapolated from a UF drinking water pilot plant. Three
network structures were developed and tested, where the optimal architecture (i.e., number
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of hidden layers) was decided based on the least difference between the training and testing
phases. Some of the input data contained the feed temperature, turbidity, and permeate
flow rate. It was noted that introducing feed resistance before backwashing as an input to
the model enabled it to predict resistance in organic-containing water, even without pro-
viding any information to the model about the nature of the organic matter. Consequently,
the model developed relationships between organic matter content, irreversible fouling,
and subsequent pressure drop across the membrane. Moreover, turbidity was the most
significant quality parameter in the model input to predict reversible fouling resistance.
Future research could expand the model’s applicability to different operating conditions
and validate its performance with real-world data from UF systems. The results of this
study, along with outcomes from Dornier et al. [113] and Niemi et al. [59], paved the path
for future water research ventures into the use of ANNs for UF fouling prediction.

Another study [114] developed a dynamic ANN model to estimate the specific cake
resistance as a function of process parameters (i.e., transmembrane pressure, feed turbidity,
run time) in a dead-end UF process. The ANN model was used in conjugation with first-
principle filtration models to simplify the nonlinear relationships that exist in the variation
of the specific cake resistance, constant flux, and feed water characteristics. A model with
five hidden layers showed the best performance in accurately predicting specific cake
resistance values that matched with experimental data, with the MSE value < 0.01. While
irreversible fouling was neglected in this work, the model was claimed to be useful for
industrial applications if the ANN data collection and training processes were automated.
The combined approach allows for a more comprehensive fouling prediction by taking
advantage of both empirical knowledge and the ability of the ANN to uncover hidden pat-
terns. The ANN model can serve as a complementary tool to bridge gaps in understanding
and improve fouling predictions’ accuracy and robustness. It can help refine and enhance
the first-principle model by capturing any underlying patterns or nonlinear relationships
that may be missed among the various parameters that impact fouling. Table 4 summarizes
some studies that used ANNs to predict fouling in MF and UF systems, respectively.
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Table 4. Summary of some studies on the use of ANNs for fouling prediction in MF and UF processes.

Process Type ANN Model Training Algorithm Feed Type Model Inputs Model Outputs (R2 Values) Ref.

MF

Basic
ANN Levenberg–Marquardt Bovine serum albumin

solution
Transmembrane pressure, feed pH, cross-flow

velocity
Permeate flux (R2 = 0.9810)

Rejection (R2 = 0.99997)
[115]

RBF / Bovine serum albumin
solution

Transmembrane pressure, feed pH, cross-flow
velocity

Permeate flux (R2 = 0.9932)
Rejection (R2 = 0.97903)

[115]

MLP Gradient descent with momentum Red plum juice Transmembrane pressure, temperature,
membrane pore size, feed flow rate, run time Permeate flux (R2 = 0.961) [116]

MLP Backpropagation Particulate suspensions Influent velocity, feed concentration,
transmembrane pressure

Flux improvement efficiency by turbulence
promoter (R2 = 0.9891)

[117]

MLP Backpropagation Wastewater Temperature, pH, transmembrane pressure,
cross-flow velocity, filtration time

Permeate flux (R2 = 0.9999)
Fouling resistance (R2 = 0.9999)

[79]

MLP Backpropagation Nickel-ion-containing
aqueous solution

Membrane material, pore size, adsorbent type,
surfactant type, surfactant concentration Transient flux (R2 = 0.986) [118]

MLP Levenberg–Marquardt Industrial oily water
Temperature, transmembrane pressure,

cross-flow velocity, feed oil concentration, run
time

Permeate flux (R2 = 0.997) [119]

UF

MLP Backpropagation Wastewater Surfactant-to-metal ratio, pH, cumulative
sampling volume Permeate flux, rejection rate (R2 = 0.9974) [120]

MLP / Organic-contaminated
feed

Parallel factor analysis (PARAFAC) component
maximum fluorescence, pH, turbidity, and
historical average slope of the resistance

Fouling resistance (mean absolute relative
error < 5%) [121]

MLP Backpropagation
Oily wastewater
(polyacrylonitrile

(PAN)-containing feed)

Temperature, pH, transmembrane pressure,
cross-flow velocity, filtration time Permeate flux decline (R2 = 0.99997) [122]

MLP Levenberg–Marquardt Bovine serum albumin
solution

Membrane pore size, protein solution
concentration, pH, transmembrane pressure,

cross-flow velocity

Permeate flux (R2 = 0.996)
Rejection (R2 = 0.994)

[48]

MLP Levenberg–Marquardt Synthetic wastewater
containing zinc ions

Surfactant-to-metal ratio, pH, feed anionic
surfactant concentration, transmembrane
pressure, ligand–to-zinc ratio, electrolyte

concentration

Permeate flux (R2 = 0.929)
Rejection (R2 = 0.981)

[123]

MLP Levenberg–Marquardt backpropagation Polyethylene
glycol-containing feed

Transmembrane pressure, cross-flow velocity,
operation time Permeate flux (R2 = 0.9977) [50]

MLP Bayesian regulation backpropagation
algorithm and Levenberg–Marquardt Wastewater Temperature, pH, transmembrane pressure,

cross-flow velocity, filtration time Permeate flux (R2 = 0.9999) [42]

MLP

Backpropagation, scaled conjugate gradient,
Levenberg–Marquardt, gradient descent with

momentum, adaptive learning rate
backpropagation

Synthetic wastewater
containing lead ions

Surfactant-to-metal ratio, pH, feed anionic
surfactant concentration

Permeate flux (R2 = 0.9254)
Rejection (R2 = 0.9813)

[80]
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Niu et al. [17] reported the accuracy of ANNs in terms of R2 values in predicting
membrane fouling in different membrane-based processes from sixty studies (from 2002 to
2021). Their results are reproduced with their kind permission in Figure 5, which provides
a comprehensive overview of the accuracy of ANN-based models in predicting various
membrane fouling parameters [17]. The most commonly used fouling predictors include
the permeate flux and flow rate, total dissolved solids content, rejection, transmembrane
pressure, and fouling resistance. ANNs were found to successfully predict RO and mem-
brane distillation (MD) systems’ permeate flux, with R2 values exceeding 0.97. However,
since MBRs are more complicated systems with complex nonlinear influential factors that
affect the permeate flux, the R2 values of ANN predictions ranged from 0.85 to 0.99 [124].Membranes 2023, 12, x FOR PEER REVIEW  22  of  31 
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To advance the field, future research efforts should focus on enhancing ANN-based
techniques to achieve even more precise predictions of membrane fouling in different
membrane-driven processes. This can be accomplished through several avenues. Firstly,
expanding the dataset used for training the models by incorporating more diverse operat-
ing conditions, membrane types, and feedwater characteristics would improve the models’
robustness and generalizability. Additionally, integrating advanced data preprocessing
techniques, such as feature engineering and dimensionality reduction, can help uncover
hidden patterns and optimize the input data representation. Furthermore, exploring the
potential of incorporating additional process parameters, such as temperature, pH, and spe-
cific foulants, into the ANN models could enhance their predictive capabilities and provide
a more comprehensive understanding of fouling mechanisms. Finally, considering the dy-
namic nature of fouling, incorporating time-dependent or dynamic modeling approaches,
such as recurrent neural networks (RNNs) or hybrid models combining ANNs with other
modeling techniques, may capture the temporal dynamics and improve long-term predic-
tions. Overall, future research should aim to refine and advance ANN-based techniques for
membrane fouling prediction to enhance process control, optimize operational parameters,
and improve the overall efficiency and reliability of membrane-based processes.
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5.3. Interfacial Energy Prediction in MBRs

During the operation of an MBR, various foulants can be transported toward the
membrane surface due to fluid dynamics induced by agitation, aeration, or filtration.
However, the crucial factor determining the ultimate adhesion of these foulants to the
membrane surface is the short-range interfacial force or energy between the foulant and
the membrane [125,126]. Therefore, accurately quantifying this short-range force or energy
holds immense significance in controlling membrane fouling. The extended Derjaguin–
Landau–Verwey–Overbeek (XDLVO) theory offers a method to quantify the short-range
force or energy between two smooth planes [127]. However, the surfaces of the membranes
utilized in MBRs are typically randomly rough. Consequently, the XDLVO theory cannot
accurately quantify the short-range force or energy between foulants and the actual mem-
brane surface [128,129]. This highlights the need for alternative methods to assess and
quantify the interfacial interactions between foulants and the real membrane surface in
MBR systems [130].

It is important to highlight that recent research has incorporated the surface element
integration (SEI) method and triangulation technology into the existing XDLVO theory [131].
This integration has led to the development of the advanced XDLVO approach, specifically
designed to quantify the interfacial energy between foulants and the actual rough surface
of membranes. The integration process required for the advanced XDLVO approach can be
achieved through computer programming using platforms like MATLAB [132]. However,
it is important to note that this integration process involves ultrahigh computational
complexity due to the intricate nonlinear mapping relations between interfacial energy
and various factors. Even for simple interaction scenarios, it can take several days to
complete the quantification of interfacial energy. As a result, the application value of the
advanced XDLVO approach is significantly reduced. Furthermore, the interfacial energy
is influenced by various factors, such as the surface properties of the foulants and the
membrane, the separation distance, and aqueous solution conditions [133]. Unfortunately,
the advanced XDLVO approach cannot accurately quantify interfacial energies in scenarios
where these conditions are altered, which hinders its practical application. Nevertheless,
ANNs can process complex nonlinear mappings and demonstrate robust capabilities
in pattern recognition and data fitting. As a result, ANNs can potentially address the
limitations of the advanced XDLVO approach.

Zhao et al. [134] utilized an RBF ANN model to predict the interfacial interactions
of sludge foulants with a randomly rough flat-sheet poly(vinylidene fluoride) membrane
within a separation distance ranging from 0.158 nm to 10 nm. In this investigation, the
interfacial interaction data acquired from the advanced XDLVO approach were split into
two sets: a training set and a test set. Once the RBF network was adequately trained, it
was employed to forecast interfacial interactions at different separation distances. They
concluded that training the network with at least ten samples was sufficient to produce
highly trained models that exhibited high calculation accuracy. Moreover, the computation
time consumed by the RBF ANN was 1/50 of that consumed by the advanced XDLVO
approach to simulate the same conditions.

These findings were also supported by the work of Chen et al., who assessed the
viability of utilizing RBF ANN [71], BP ANN, and generalized regression neural network
(GRNN) methods [135] for quantifying interfacial energy related to membrane fouling in an
MBR. In both studies, the researchers used an input vector consisting of five factors, which
were the contact angles of three different model liquids (i.e., ultrapure water, glycerin,
diiodomethane) on the foulant surface, the zeta potential of the membrane surface, and
the separation distance. Remarkably, the RBF ANN illustrated a high regression coef-
ficient, high accuracy, and a more rapid response than the advanced XDLVO approach
when applied to the same dataset [71]. Similarly, both the BP ANN and the GRNN have
demonstrated their robustness and ability to effectively capture the relationships between
interfacial energy and the various tested factors. However, the BP ANN model prediction
performance was superior [135]. BP ANN is an FNN capable of learning and storing nu-
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merous input–output mapping relationships without initially revealing the mathematical
equations underlying these mappings, which makes it one of the most extensively utilized
ANN models. On the other hand, the GRNN possesses nonlinear mapping capabilities,
rapid learning speed, and the ability to converge to optimized regression through effective
sample aggregation. The GRNN can yield satisfactory prediction results even with limited
training samples, making it suitable for handling unstable data. Thus, it is reasonable to ex-
pect that both the BP ANN and GRNN would also offer distinct advantages in quantifying
interfacial energy [135].

In summary, previous studies on membrane bioreactors have provided valuable in-
sights into interfacial energy prediction and fouling behavior. The advanced XDLVO
approach has contributed to understanding the short-range interfacial forces and energy
that govern the adhesion of foulants to membrane surfaces. The introduction of ANNs
(e.g., RBF, BP, and GRNNs) has shown promise in overcoming the limitations of the ad-
vanced XDLVO approach. These ANNs possess the capability to handle complex nonlinear
mappings, enabling them to capture the intricate relationships between interfacial energy
and various factors associated with fouling. Furthermore, the comparison between the
ANN models and the advanced XDLVO approach has demonstrated superior performance
in terms of the regression coefficient, accuracy, and response time. These findings suggest
that ANNs can be a valuable tool for interfacial energy quantification in membrane fouling
studies. Overall, these studies have laid the foundation for further research in developing
efficient methods for predicting and controlling membrane fouling in MBRs, ultimately
leading to the improved performance and longevity of membrane-based systems in various
applications.

6. Future Directions and Conclusions

While the application of ANNs for membrane fouling prediction has shown promising
results, there are several avenues for further exploration and improvement. Current ANN
models for membrane fouling prediction primarily utilize readily available operating
parameters, such as transmembrane pressure, flow rate, and feedwater characteristics.
Future outlooks should include the following:

- Exploring the inclusion of additional input variables that capture other relevant
aspects of the system, such as pretreatment methods, membrane characteristics, and
fouling mitigation strategies. This expansion of input variables can lead to more
comprehensive and reliable prediction models.

- Incorporating the real-time monitoring of relevant process variables, such as mem-
brane permeability, fouling resistance, and hydraulic parameters, can provide valuable
insights into fouling behavior. Integrating these dynamic data into ANN models can
enable the continuous prediction and monitoring of fouling progression. This inte-
gration may facilitate proactive fouling management strategies, allowing for timely
maintenance actions or the optimization of operational conditions to mitigate fouling.

- Integrating analytical techniques to interpret and visualize the learned representations
and decision-making processes within ANNs. While ANNs are known for their excep-
tional predictive capabilities, their black-box nature often limits their interpretability.
The ability to explain model predictions and identify key factors influencing foul-
ing can greatly enhance the practical utility of ANN models. This would enable
researchers and practitioners to gain valuable insights into fouling mechanisms and
optimize operational strategies, accordingly.

- Shifting the focus toward their practical deployment and implementation as the ANN
models mature and demonstrate their effectiveness in membrane fouling prediction.
Researchers can collaborate with membrane manufacturers, operators, and stake-
holders to develop user-friendly software tools or decision support systems that
incorporate ANN models. These tools can aid in real-time fouling prediction and
the early detection of anomalies and support informed decision-making for fouling
control strategies.
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- Incorporating hybrid models to leverage the strengths of multiple modeling tech-
niques allows for a more comprehensive understanding of the complex dynamics
involved in membrane fouling. Researchers can harness the complementary advan-
tages of each approach by integrating ANNs with other models, such as empirical,
mechanistic, or statistical models. By combining the strengths of different models,
hybrid methods can enhance prediction accuracy, generalization capabilities, and the
incorporation of domain knowledge. As research in this area continues to evolve, the
development and refinement of hybrid models hold significant potential for advancing
our understanding of fouling mechanisms and optimizing fouling control strategies
in membrane-based processes.

In conclusion, membrane-based processes have emerged as a promising and efficient
approach for separation, with a wide range of applications in desalination, water reuse, and
wastewater treatment. However, membrane fouling remains a significant challenge in these
processes, and further research is needed to develop effective fouling mitigation strategies
and optimize the performance of membrane-based processes. ANN and its derivatives
have shown great potential in predicting and modeling membrane fouling in various
membrane filtration processes. ANNs offer flexibility in handling diverse types of input
data, including operating parameters, feedwater characteristics, and membrane properties.
This versatility allows for a more holistic understanding of fouling processes and the ability
to capture the interactions between various factors that influence fouling behavior. They
are also data-driven, meaning they can learn and adapt from the available dataset without
being constrained by pre-existing assumptions or theoretical frameworks. In contrast,
other theoretical and mathematical models, such as empirical models or mechanistic
models, offer a more explicit representation of the underlying physical and chemical
processes involved in fouling. These models are often based on well-established principles
and equations, allowing for a deeper understanding of the fouling mechanisms and the
ability to interpret the results more transparently. By exploring the aforementioned future
directions, researchers can advance the field and pave the way for more accurate, robust,
and actionable fouling prediction models, ultimately contributing to the optimization and
cost-effectiveness of membrane filtration systems.
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