Efficient Removal of PFASs Using Photocatalysis, Membrane Separation and Photocatalytic Membrane Reactors
Abstract
:1. Introduction
2. Degradation of Per- and Polyfluoroalkyl Substances via Photocatalysis
2.1. Factors Affecting the Degradation and Defluorination of Per- and Polyfluoroalkyl Substances
2.1.1. Light Source
2.1.2. pH
2.1.3. Concentration
2.1.4. Photocatalyst Dosage
2.2. Nanoparticles Used for Photocatalytic Degradation of PFASs
2.2.1. Metal Oxides
2.2.2. Modification of TiO2 to Improve Degradation of PFOA
2.2.3. Adsorptive Photocatalysts
3. Membrane Separation
3.1. Factors Affecting Membrane Separation of Per- and Polyfluoroalkyl Substances
3.1.1. Organic Matter
3.1.2. Solute Concentration
3.1.3. Transmembrane Pressure
3.1.4. Solution pH
3.1.5. Ionic Strength
3.1.6. Membrane Characteristics
Membrane Pore Size
Membrane Surface Charge and Hydrophobicity
Membrane Material
3.2. Membranes Used for Rejection of PFASs
3.2.1. Ceramic Membranes
3.2.2. Polymeric Membranes
3.2.3. Two-Dimensional Material Membranes
Membrane | Selective Layer | PFAS | Operation Parameters | Removal Efficiency | Remarks | Reference |
---|---|---|---|---|---|---|
Graphene oxide | Polyethyleneimine (PEI) | PFOA | [PFOA] = 50 ppm pH = 7.0 Temp = 25 °C TMP = 1 bar Crossflow rate = 0.25 L/min | 96.5% | PEI improved mechanical stability and enhanced retention | [92] |
Polysulfone (PSF) hollow fibre support | Polyamide–MXene nanosheets | PFOS | [PFOS] = 2 ppm pH = 5.5 Temp = 25 °C TMP = 4.5 flow rate = 0.3 mL/min | 96% | MXene nanosheets modified surface charge and morphology of membrane surface, thus improving rejection of PFOS | [93] |
NF hollow fibre membrane | Poly(m-phenylene isophthalamide) | PFOS | [PFOS] = 100 μg/L pH = 5.5 Temp = 25 °C TMP = 4 bar flow rate = 1.50 L/min | 99.40% | Donan exclusion and steric hindrance were responsible for efficient rejection of PFOS | [62] |
Thin-film composite NF with Hyaluronic (HA) interlayer | Polyamide (PA) | PFHxS | [PFHxS] = 100 μg/L pH = 5.5 Temp = 25 °C TMP = 4 bar | 93.4% | HA layer resulted in thinner PA layer and improved hydrophilicity, resulting in higher permeability | [94] |
Aluminium oxide hydroxide | Linear fluorinated silanes | PFOA PFOS | [PFOA] = 390 ppt [PFOS] = 860 ppt pH = 7.5 Temp = 25 °C | >90% | Linear fluorinated silanes decreased pressure drop in γ-AlOOH filter whilst maintaining 99.9% rejection of PFOA and PFOS | [95] |
4. Photocatalytic Membrane Reactors
4.1. Photocatalytic Membrane Reactors with Suspended Photocatalysts (Slurry Reactors)
4.2. Photocatalytic Membrane Reactors with Immobilized Photocatalyst
4.3. Membrane Fouling
5. Challenges and Recommendations
5.1. Limitations to Large-Scale Applications
- Light irradiation: The efficiency of photocatalysis often depends on light penetration depth. In large-scale systems, uneven light distribution can lead to reduced effectiveness.
- Reaction kinetics: The kinetics of PFAS degradation can be influenced by numerous factors, including the presence of competing substances, pH levels and temperature. These factors can hinder photocatalytic activity and lead to lower observed degradation efficiencies than those reported in theoretical studies.
- Real water matrices: The presence of competing substances in real wastewater can inhibit photocatalytic reactions, affecting the overall efficiency and selectivity of PFAS degradation.
- Fouling: Membrane fouling is a significant challenge that can reduce efficiency and increase operational costs. In large-scale systems, managing fouling is complex and requires effective cleaning protocols.
- Material compatibility: The materials used for membranes and photocatalysts must be compatible to avoid degradation, which can complicate the design and increase costs.
5.2. Recommendations
- To overcome the challenge of light distribution in full-scale operation, innovative reactor designs must be developed to ensure sufficient light distribution to photocatalysts, thereby facilitating effective photocatalysis.
- The development of support materials such as membranes for photocatalysts should be prioritized to ensure adequate interaction between the photocatalyst and PFASs to enhance degradation.
- Implementing systems with built-in cleaning systems for membrane separation can help mitigate fouling and prolong the lifespan of membranes.
- More pilot-scale studies should be conducted to assess the effectiveness of new nanomaterials under real-world conditions.
- More cost analyses should be conducted, and areas where costs can be reduced should be identified and implemented.
- The mass balance of fluorine should be carried out as part of the destructive technologies of PFAS.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chaudhary, M.; Sela-Adler, M.; Ronen, A.; Nir, O. Efficient PFOA removal from drinking water by a dual-functional mixed-matrix-composite nanofiltration membrane. NPJ Clean Water 2023, 6, 77. [Google Scholar] [CrossRef]
- Verma, S.; Mezgebe, B.; Hejase, C.A.; Sahle-Demessie, E.; Nadagouda, M.N. Photodegradation and photocatalysis of per- and polyfluoroalkyl substances (PFAS): A review of recent progress. Next Mater. 2024, 2, 100077. [Google Scholar] [CrossRef] [PubMed]
- McCleaf, P.; Englund, S.; Östlund, A.; Lindegren, K.; Wiberg, K.; Ahrens, L. Removal efficiency of multiple poly- and perfluoroalkyl substances (PFASs) in drinking water using granular activated carbon (GAC) and anion exchange (AE) column tests. Water Res. 2017, 120, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Deng, S.; Chen, Y.; Wang, B.; Huang, J.; Wang, Y.; Yu, G. Removal of perfluorinated carboxylates from washing wastewater of perfluorooctanesulfonyl fluoride using activated carbons and resins. J. Hazard. Mater. 2015, 286, 136–143. [Google Scholar] [CrossRef]
- Zhang, D.; Luo, Q.; Gao, B.; Chiang, S.-Y.D.; Woodward, D.; Huang, Q. Sorption of perfluorooctanoic acid, perfluorooctane sulfonate and perfluoroheptanoic acid on granular activated carbon. Chemosphere 2016, 144, 2336–2342. [Google Scholar] [CrossRef]
- Deng, S.; Nie, Y.; Du, Z.; Huang, Q.; Meng, P.; Wang, B.; Huang, J.; Yu, G. Enhanced adsorption of perfluorooctane sulfonate and perfluorooctanoate by bamboo-derived granular activated carbon. J. Hazard. Mater. 2015, 282, 150–157. [Google Scholar] [CrossRef]
- Chen, W.; Liu, M.; Ding, M.; Zhang, L.; Dai, S. Advanced thin-film composite polyamide membrane for precise trace short-chain PFAS sieving: Solution, environment and fouling effects. Process Saf. Environ. Prot. 2023, 169, 493–503. [Google Scholar] [CrossRef]
- Liu, C.J.; Strathmann, T.J.; Bellona, C. Rejection of per- and polyfluoroalkyl substances (PFASs) in aqueous film-forming foam by high-pressure membranes. Water Res. 2021, 188, 116546. [Google Scholar] [CrossRef]
- Flores, C.; Ventura, F.; Martin-Alonso, J.; Caixach, J. Occurrence of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in N.E. Spanish surface waters and their removal in a drinking water treatment plant that combines conventional and advanced treatments in parallel lines. Sci. Total. Environ. 2013, 461–462, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Moreira, R.; Esfahani, E.B.; Zeidabadi, F.A.; Rostami, P.; Thuo, M.; Mohseni, M.; Foster, E.J. Hybrid graphenic and iron oxide photocatalysts for the decomposition of synthetic chemicals. Commun. Eng. 2024, 3, 114. [Google Scholar] [CrossRef]
- Leung, S.C.E.; Shukla, P.; Chen, D.; Eftekhari, E.; An, H.; Zare, F.; Ghasemi, N.; Zhang, D.; Nguyen, N.-T.; Li, Q. Emerging technologies for PFOS/PFOA degradation and removal: A review. Sci. Total. Environ. 2022, 827, 153669. [Google Scholar] [CrossRef] [PubMed]
- Garg, S.; Wang, J.; Kumar, P.; Mishra, V.; Arafat, H.; Sharma, R.S.; Dumée, L.F. Remediation of water from per-/poly-fluoroalkyl substances (PFAS)—Challenges and perspectives. J. Environ. Chem. Eng. 2021, 9, 105784. [Google Scholar] [CrossRef]
- Riaz, S.; Park, S.-J. An overview of TiO2-based photocatalytic membrane reactors for water and wastewater treatments. J. Ind. Eng. Chem. 2020, 84, 23–41. [Google Scholar] [CrossRef]
- McQueen, A.D.; Tedrow, O.; Ballentine, M.L.; Kennedy, A.J. Demonstration of Photocatalytic Degradation of Per- and Polyfluoroalkyl Substances (PFAS) in Landfill Leachate Using 3D Printed TiO2 Composite Tiles. Water. Air. Soil Pollut. 2022, 233, 444. [Google Scholar] [CrossRef]
- Pavel, M.; Anastasescu, C.; State, R.-N.; Vasile, A.; Papa, F.; Balint, I. Photocatalytic Degradation of Organic and Inorganic Pollutants to Harmless End Products: Assessment of Practical Application Potential for Water and Air Cleaning. Catalysts 2023, 13, 380. [Google Scholar] [CrossRef]
- Tshangana, C.S.; Muleja, A.A.; Mamba, B.B. Photocatalytic activity of graphene oxide quantum dots in an effluent from a South African wastewater treatment plant. J. Nanoparticle Res. 2022, 24, 43. [Google Scholar] [CrossRef]
- Muleja, A.A.; Mubiayi, M.P.; Hassard, F.; Mamba, B.B. Titania containing natural clay doped with carbon nanotubes for enhanced natural photocatalytic discoloration of wastewater. J. Nanoparticle Res. 2021, 23, 97. [Google Scholar] [CrossRef]
- Li, F.; Wei, Z.; He, K.; Blaney, L.; Cheng, X.; Xu, T.; Liu, W.; Zhao, D. A concentrate-and-destroy technique for degradation of perfluorooctanoic acid in water using a new adsorptive photocatalyst. Water Res. 2020, 185, 116219. [Google Scholar] [CrossRef]
- Villaluz, A.; Daniel, M.; Colades, J.I.; Sergi, G.-S.; Lu, M.-C. Removal of 4-chlorophenol by visible-light photocatalysis using ammonium iron (II) sulfate-doped nano-titania. Process Saf. Environ. Prot. 2019, 125, 121–128. [Google Scholar] [CrossRef]
- Cuerda-Correa, E.M.; Alexandre-Franco, M.F.; Fernández-González, C. Advanced Oxidation Processes for the Removal of Antibiotics from Water. An Overview. Water 2019, 12, 102. [Google Scholar] [CrossRef]
- Jiang, F.; Zhao, H.; Chen, H.; Xu, C.; Chen, J. Enhancement of photocatalytic decomposition of perfluorooctanoic acid on CeO2/In2O3. RSC Adv. 2016, 6, 72015–72021. [Google Scholar] [CrossRef]
- Zhang, W.; Efstathiadis, H.; Li, L.; Liang, Y. Environmental factors affecting degradation of perfluorooctanoic acid (PFOA) by In2O3 nanoparticles. J. Environ. Sci. 2020, 93, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Park, S.-J.; Lee, C.-G. Enhanced removal of perfluoroalkyl substances using MMO-TiO2 visible light photocatalyst. Alex. Eng. J. 2024, 87, 31–38. [Google Scholar] [CrossRef]
- Shao, T.; Zhang, P.; Li, Z.; Jin, L. Photocatalytic decomposition of perfluorooctanoic acid in pure water and wastewater by needle-like nanostructured gallium oxide. Chin. J. Catal. 2013, 34, 1551–1559. [Google Scholar] [CrossRef]
- Xu, B.; Zhou, J.L.; Altaee, A.; Ahmed, M.B.; Johir, A.H.; Ren, J.; Li, X. Improved photocatalysis of perfluorooctanoic acid in water and wastewater by Ga2O3/UV system assisted by peroxymonosulfate. Chemosphere 2020, 239, 124722. [Google Scholar] [CrossRef] [PubMed]
- Vecitis, C.D.; Park, H.; Cheng, J.; Mader, B.T.; Hoffmann, M.R. Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA). Front. Environ. Sci. Eng. 2009, 3, 129–151. [Google Scholar] [CrossRef]
- Cheng, J.; Vecitis, C.D.; Park, H.; Mader, B.T.; Hoffmann, M.R. Sonochemical Degradation of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) in Landfill Groundwater: Environmental Matrix Effects. Environ. Sci. Technol. 2008, 42, 8057–8063. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Cao, C.; Zhang, Y.; Zhang, Y.; Zhu, L. Decomposition of highly persistent perfluorooctanoic acid by hollow Bi/BiOI1-xFx: Synergistic effects of surface plasmon resonance and modified band structures. J. Hazard. Mater. 2021, 402, 123459. [Google Scholar] [CrossRef]
- Guin, J.P.; Sullivan, J.A.; Muldoon, J.; Thampi, K.R. Visible light induced degradation of perfluorooctanoic acid using iodine deficient bismuth oxyiodide photocatalyst. J. Hazard. Mater. 2023, 458, 131897. [Google Scholar] [CrossRef]
- Liu, X.; Duan, X.; Bao, T.; Hao, D.; Chen, Z.; Wei, W.; Wang, D.; Wang, S.; Ni, B.-J. High-performance photocatalytic decomposition of PFOA by BiOX/TiO2 heterojunctions: Self-induced inner electric fields and band alignment. J. Hazard. Mater. 2022, 430, 128195. [Google Scholar] [CrossRef]
- Steinle-Darling, E.; Reinhard, M. Nanofiltration for Trace Organic Contaminant Removal: Structure, Solution, and Membrane Fouling Effects on the Rejection of Perfluorochemicals. Environ. Sci. Technol. 2008, 42, 5292–5297. [Google Scholar] [CrossRef]
- Shang, E.; Li, Y.; Niu, J.; Li, S.; Zhang, G.; Wang, X. Photocatalytic degradation of perfluorooctanoic acid over Pb-BiFeO3/rGO catalyst: Kinetics and mechanism. Chemosphere 2018, 211, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Wang, Y.; Ling, Z.; Zu, D.; Li, Z.; Shen, Y.; Li, C. Enhanced photocatalytic degradation of perfluorooctanoic acid by Ti3C2 MXene-derived heterojunction photocatalyst: Application of intercalation strategy in DESs. Sci. Total. Environ. 2020, 746, 141009. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.-J.; Lo, S.-L.; Lee, Y.-C.; Huang, C.-C. Photocatalytic decomposition of perfluorooctanoic acid by transition-metal modified titanium dioxide. J. Hazard. Mater. 2015, 288, 168–175. [Google Scholar] [CrossRef]
- Xu, B.; Ahmed, M.B.; Zhou, J.L.; Altaee, A. Visible and UV photocatalysis of aqueous perfluorooctanoic acid by TiO2 and peroxymonosulfate: Process kinetics and mechanistic insights. Chemosphere 2020, 243, 125366. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Zuo, J.; Wang, Y.-J.; Song, N.-N.; Li, H.-H.; Qiu, K. Enhanced Photocatalytic Degradation of Perfluorooctanoic Acid by Mesoporous Sb2O3/TiO2 Heterojunctions. Front. Chem. 2021, 9, 690520. [Google Scholar] [CrossRef] [PubMed]
- Samuel, M.S.; Shang, M.; Niu, J. Photocatalytic degradation of perfluoroalkyl substances in water by using a duo-functional tri-metallic-oxide hybrid catalyst. Chemosphere 2022, 293, 133568. [Google Scholar] [CrossRef]
- Wang, J.; Cao, C.; Wang, Y.; Wang, Y.; Sun, B.; Zhu, L. In situ preparation of p-n BiOI@Bi5O7I heterojunction for enhanced PFOA photocatalytic degradation under simulated solar light irradiation. Chem. Eng. J. 2020, 391, 123530. [Google Scholar] [CrossRef]
- Chen, M.-J.; Lo, S.-L.; Lee, Y.-C.; Kuo, J.; Wu, C.-H. Decomposition of perfluorooctanoic acid by ultraviolet light irradiation with Pb-modified titanium dioxide. J. Hazard. Mater. 2016, 303, 111–118. [Google Scholar] [CrossRef]
- Huang, D.; Yin, L.; Niu, J. Photoinduced Hydrodefluorination Mechanisms of Perfluorooctanoic Acid by the SiC/Graphene Catalyst. Environ. Sci. Technol. 2016, 50, 5857–5863. [Google Scholar] [CrossRef]
- Panchangam, S.C.; Yellatur, C.S.; Yang, J.-S.; Loka, S.S.; Lin, A.E.; Vemula, V. Facile fabrication of TiO2-graphene nanocomposites (TGNCs) for the efficient photocatalytic oxidation of perfluorooctanoic acid (PFOA). J. Environ. Chem. Eng. 2018, 6, 6359–6369. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, P.; Shao, T.; Li, X. In2O3 nanoporous nanosphere: A highly efficient photocatalyst for decomposition of perfluorooctanoic acid. Appl. Catal. B Environ. 2012, 125, 350–357. [Google Scholar] [CrossRef]
- Shao, T.; Zhang, P.; Jin, L.; Li, Z. Photocatalytic decomposition of perfluorooctanoic acid in pure water and sewage water by nanostructured gallium oxide. Appl. Catal. B Environ. 2013, 142–143, 654–661. [Google Scholar] [CrossRef]
- Fu, C.; Xu, X.; Zheng, C.; Liu, X.; Zhao, D.; Qiu, W. Photocatalysis of aqueous PFOA by common catalysts of In2O3, Ga2O3, TiO2, CeO2 and CdS: Influence factors and mechanistic insights. Environ. Geochem. Health 2022, 44, 2943–2953. [Google Scholar] [CrossRef] [PubMed]
- Navidpour, A.H.; Safaei, J.; Johir, A.H.; Ni, B.-J.; Dashti, A.; Li, X.; Zhou, J.L. Zinc oxide@citric acid-modified graphitic carbon nitride nanocomposites for adsorption and photocatalytic degradation of perfluorooctanoic acid. Adv. Compos. Hybrid Mater. 2024, 7, 53. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, P.; Shao, T.; Wang, J.; Jin, L.; Li, X. Different nanostructured In2O3 for photocatalytic decomposition of perfluorooctanoic acid (PFOA). J. Hazard. Mater. 2013, 260, 40–46. [Google Scholar] [CrossRef]
- Li, X.; Zhang, P.; Jin, L.; Shao, T.; Li, Z.; Cao, J. Efficient Photocatalytic Decomposition of Perfluorooctanoic Acid by Indium Oxide and Its Mechanism. Environ. Sci. Technol. 2012, 46, 5528–5534. [Google Scholar] [CrossRef]
- Chowdhury, N.; Choi, H. Photocatalytic degradation of perfluorooctanoic acid on Pb-doped TiO2 coated with reduced graphene oxide. Water Environ. Res. 2023, 95, e10871. [Google Scholar] [CrossRef]
- Li, M.; Yu, Z.; Liu, Q.; Sun, L.; Huang, W. Photocatalytic decomposition of perfluorooctanoic acid by noble metallic nanoparticles modified TiO2. Chem. Eng. J. 2016, 286, 232–238. [Google Scholar] [CrossRef]
- Gomez-Ruiz, B.; Ribao, P.; Diban, N.; Rivero, M.J.; Ortiz, I.; Urtiaga, A. Photocatalytic degradation and mineralization of perfluorooctanoic acid (PFOA) using a composite TiO2-rGO catalyst. J. Hazard. Mater. 2018, 344, 950–957. [Google Scholar] [CrossRef]
- Song, C.; Chen, P.; Wang, C.; Zhu, L. Photodegradation of perfluorooctanoic acid by synthesized TiO2–MWCNT composites under 365 nm UV irradiation. Chemosphere 2012, 86, 853–859. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Xu, T.; Zhao, D.; Li, F.; Liu, W.; Wang, B.; An, B. Adsorption and solid-phase photocatalytic degradation of perfluorooctane sulfonate in water using gallium-doped carbon-modified titanate nanotubes. Chem. Eng. J. 2021, 421, 129676. [Google Scholar] [CrossRef]
- Zhu, Y.; Ji, H.; He, K.; Blaney, L.; Xu, T.; Zhao, D. Photocatalytic degradation of GenX in water using a new adsorptive photocatalyst. Water Res. 2022, 220, 118650. [Google Scholar] [CrossRef]
- Ophorst, M.; de Grooth, J.; Heijman, S.G.J.; Vaudevire, E.M.H.; Jafari, M. Operation and performance analysis of direct hollow fibre nanofiltration: A pilot study at IJsselmeer. Sep. Purif. Technol. 2024, 349, 127786. [Google Scholar] [CrossRef]
- Safulko, A.; Cath, T.; Li, F.; Tajdini, B.; Boyd, M.; Huehmer, R.; Bellona, C. Rejection of perfluoroalkyl acids by nanofiltration and reverse osmosis in a high-recovery closed-circuit membrane filtration system. Sep. Purif. Technol. 2023, 326, 124867. [Google Scholar] [CrossRef]
- Liu, C.; Shen, Y.; Zhao, X.; Chen, Z.; Gao, R.; Zuo, Q.; He, Q.; Ma, J.; Zhi, Y. Removal of per- and polyfluoroalkyl substances by nanofiltration: Effect of molecular structure and coexisting natural organic matter. J. Hazard. Mater. 2023, 454, 131438. [Google Scholar] [CrossRef]
- Ma, Q.; Lei, Q.; Liu, F.; Song, Z.; Khusid, B.; Zhang, W. Evaluation of commercial nanofiltration and reverse osmosis membrane filtration to remove per-and polyfluoroalkyl substances (PFAS): Effects of transmembrane pressures and water matrices. Water Environ. Res. 2024, 96, e10983. [Google Scholar] [CrossRef]
- Wang, L.; Luo, D.; Faria, A.V.; Deliz, K.Y.; Zhang, C.; He, Q.; Ma, J.; Shen, Y.; Zhi, Y. Evaluating the efficiency of nanofiltration and reverse osmosis membrane processes for the removal of per- and polyfluoroalkyl substances from water: A critical review. Sep. Purif. Technol. 2022, 302, 122161. [Google Scholar] [CrossRef]
- Zhao, C.; Tang, C.Y.; Li, P.; Adrian, P.; Hu, G. Perfluorooctane sulfonate removal by nanofiltration membrane—The effect and interaction of magnesium ion/humic acid. J. Membr. Sci. 2016, 503, 31–41. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L.; Xu, C.; Zhi, R.; Miao, R.; Liang, T.; Yue, X.; Lv, Y.; Liu, T. Perfluorooctane sulfonate and perfluorobutane sulfonate removal from water by nanofiltration membrane: The roles of solute concentration, ionic strength, and macromolecular organic foulants. Chem. Eng. J. 2018, 332, 787–797. [Google Scholar] [CrossRef]
- Hang, X.; Chen, X.; Luo, J.; Cao, W.; Wan, Y. Removal and recovery of perfluorooctanoate from wastewater by nanofiltration. Sep. Purif. Technol. 2015, 145, 120–129. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, C.; Li, P.; Li, Y.; Wang, J. Fabrication of novel poly (m-phenylene isophthalamide) hollow fiber nanofiltration membrane for effective removal of trace amount perfluorooctane sulfonate from water. J. Membr. Sci. 2015, 477, 74–85. [Google Scholar] [CrossRef]
- Boonya-Atichart, A.; Boontanon, S.K.; Boontanon, N. Removal of perfluorooctanoic acid (PFOA) in groundwater by nanofiltration membrane. Water Sci. Technol. 2016, 74, 2627–2633. [Google Scholar] [CrossRef] [PubMed]
- Hara-Yamamura, H.; Inoue, K.; Matsumoto, T.; Honda, R.; Ninomiya, K.; Yamamura, H. Rejection of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) by severely chlorine damaged RO membranes with different salt rejection ratios. Chem. Eng. J. 2022, 446, 137398. [Google Scholar] [CrossRef]
- Appleman, T.D.; Higgins, C.P.; Quiñones, O.; Vanderford, B.J.; Kolstad, C.; Zeigler-Holady, J.C.; Dickenson, E.R. Treatment of poly- and perfluoroalkyl substances in U.S. full-scale water treatment systems. Water Res. 2014, 51, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Soriano, A.; Gorri, D.; Urtiaga, A. Selection of High Flux Membrane for the Effective Removal of Short-Chain Perfluorocarboxylic Acids. Ind. Eng. Chem. Res. 2019, 58, 3329–3338. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, J.; He, G.; Wang, T.; Hou, D.; Luan, Z. Perfluorooctane sulfonate removal by nanofiltration membrane the role of calcium ions. Chem. Eng. J. 2013, 233, 224–232. [Google Scholar] [CrossRef]
- Wang, F.; Shih, K. Adsorption of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on alumina: Influence of solution pH and cations. Water Res. 2011, 45, 2925–2930. [Google Scholar] [CrossRef] [PubMed]
- Chaleshtari, Z.A.; Foudazi, R. A Review on Per- and Polyfluoroalkyl Substances (PFAS) Remediation: Separation Mechanisms and Molecular Interactions. ACS EST Water 2022, 2, 2258–2272. [Google Scholar] [CrossRef]
- Zeng, C.; Tanaka, S.; Suzuki, Y.; Yukioka, S.; Fujii, S. Rejection of Trace Level Perfluorohexanoic Acid (PFHxA) in Pure Water by Loose Nanofiltration Membrane. J. Water Environ. Technol. 2017, 15, 120–127. [Google Scholar] [CrossRef]
- Nadagouda, M.N.; Lee, T. Cross-Flow Treatment of PFAS in Water: Materials Challenges and Potential Solutions. Acc. Mater. Res. 2021, 2, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y. Efficient removal of perfluorinated compounds with the polyamide nanofiltration membrane and membrane fouling resistance analysis. Water Qual. Res. J. 2023, 58, 215–229. [Google Scholar] [CrossRef]
- Chen, X.D.; Vanangamudi, A.; Wang, J.; Jegatheesan, J.V.; Mishra, V.; Sharma, R.S.; Gray, S.; Drioli, E.; Kujawski, W.; Wicaksana, F.; et al. Direct contact membrane distillation for effective concentration of perfluoroalkyl substances—Impact of surface fouling and material stability. Water Res. 2020, 182, 116010. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Sun, C.; Huang, Y.; Zheng, X.; Zhao, M.; Gray, S.; Dong, Y. Treatment of oily wastewaters by highly porous whisker-constructed ceramic membranes: Separation performance and fouling models. Water Res. 2022, 211, 118042. [Google Scholar] [CrossRef] [PubMed]
- Boo, C.; Wang, Y.; Zucker, I.; Choo, Y.; Osuji, C.O.; Elimelech, M. High Performance Nanofiltration Membrane for Effective Removal of Perfluoroalkyl Substances at High Water Recovery. Environ. Sci. Technol. 2018, 52, 7279–7288. [Google Scholar] [CrossRef]
- Chakachaka, V.; Mahlangu, O.; Tshangana, C.; Mamba, B.; Muleja, A. Highly adhesive CoFe2O4 nanoengineered PES membranes for salts and Naproxen removal and antimicrobial activities. J. Membr. Sci. 2023, 676, 121612. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Busse, N.; Kerker, S.; Schmitz, O.; Hilpert, M.; Czermak, P. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration. Membranes 2015, 6, 7. [Google Scholar] [CrossRef]
- Sawunyama, L.; Oyewo, O.A.; Seheri, N.; Onjefu, S.A.; Onwudiwe, D.C. Metal oxide functionalized ceramic membranes for the removal of pharmaceuticals in wastewater. Surf. Interfaces 2023, 38, 102787. [Google Scholar] [CrossRef]
- Moyo, W.; Motsa, M.M.; Chaukura, N.; Msagati, T.A.M.; Mamba, B.B.; Heijman, S.G.J.; Nkambule, T.T.I. Characterization of natural organic matter in South African drinking water treatment plants: Towards integrating ceramic membrane filtration. Water Environ. Res. 2022, 94, e10693. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, Y.; Sun, R.; Zhang, W. Preparation of Ceramic Membranes and Their Application in Wastewater and Water Treatment. Water 2023, 15, 3344. [Google Scholar] [CrossRef]
- Liu, F.; Hua, L.; Zhang, W. Influences of microwave irradiation on performances of membrane filtration and catalytic degradation of perfluorooctanoic acid (PFOA). Environ. Int. 2020, 143, 105969. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.C.; Vatankhah, H.; McDonough, C.A.; Nickerson, A.; Hedtke, T.T.; Cath, T.Y.; Higgins, C.P.; Bellona, C.L. Removal of per- and polyfluoroalkyl substances using super-fine powder activated carbon and ceramic membrane filtration. J. Hazard. Mater. 2019, 366, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; He, Z.; Tao, Y.; Xiao, Y.-H.; Zhou, T.; Jing, T.; Zhou, Y.; Mei, S. Preparation of a functional silica membrane coated on Fe3O4 nanoparticle for rapid and selective removal of perfluorinated compounds from surface water sample. Chem. Eng. J. 2016, 303, 156–166. [Google Scholar] [CrossRef]
- Mastropietro, T.F.; Bruno, R.; Pardo, E.; Armentano, D. Reverse osmosis and nanofiltration membranes for highly efficient PFASs removal: Overview, challenges and future perspectives. Dalton Trans. 2021, 50, 5398–5410. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Chen, S.; Shi, K.; Xu, S.; Yi, Z.; Lei, L.; Zhuang, L.; Wan, H.; Xu, Z. Hydrophilic membranes for effective removal of PFAS from water: Anti-fouling, durability, and reusability. Sep. Purif. Technol. 2024, 348, 127379. [Google Scholar] [CrossRef]
- Jin, T.; Peydayesh, M.; Joerss, H.; Zhou, J.; Bolisetty, S.; Mezzenga, R. Amyloid fibril-based membranes for PFAS removal from water. Environ. Sci. Water Res. Technol. 2021, 7, 1873–1884. [Google Scholar] [CrossRef]
- Xu, H.; Ma, J.; Ding, M.; Xie, Z. Mechanistic insights into the removal of PFOA by 2D MXene/CNT membrane with the influence of Ca2+ and humic acid. Desalination 2022, 529, 115643. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Y.; Xu, H.; Ding, M.; Gao, L. MXene (Ti3T2CX)-reinforced thin-film polyamide nanofiltration membrane for short-chain perfluorinated compounds removal. Process Saf. Environ. Prot. 2022, 168, 275–284. [Google Scholar] [CrossRef]
- Yang, H.; Han, M.; Zhang, W.; Yi, M.; Xia, L.; Meng, F.; Wang, Y.; Zhao, S. High performance mixed-dimensional assembled MXene composite membranes for molecular sieving. J. Membr. Sci. 2024, 698, 122606. [Google Scholar] [CrossRef]
- Khorramdel, H.; Omidvar, M.; Tajaddini, M.; Huang, Y.; Saeb, M.R.; Seidi, F.; Xiao, H. Surface engineering of graphene oxide membranes for selective separation of perfluorooctanoic acids. J. Membr. Sci. 2022, 664, 121047. [Google Scholar] [CrossRef]
- Abdikheibari, S.; Baskaran, K.; Guijt, R.; Lei, W.; Dumée, L.F. Cross-linked boron nitride-piperazine amide thin film nanocomposite membranes for rejection and concentration of per- and poly-fluoroalkyl substances (PFAS). Environ. Qual. Manag. 2022, 31, 425–432. [Google Scholar] [CrossRef]
- El Meragawi, S.; Akbari, A.; Hernandez, S.; Mirshekarloo, M.S.; Bhattacharyya, D.; Tanksale, A.; Majumder, M. Enhanced permselective separation of per-fluorooctanoic acid in graphene oxide membranes by a simple PEI modification. J. Mater. Chem. A 2020, 8, 24800–24811. [Google Scholar] [CrossRef]
- Le, T.; Jamshidi, E.; Beidaghi, M.; Esfahani, M.R. Functionalized-MXene Thin-Film Nanocomposite Hollow Fiber Membranes for Enhanced PFAS Removal from Water. ACS Appl. Mater. Interfaces 2022, 14, 25397–25408. [Google Scholar] [CrossRef]
- Liu, M.; Chen, W.; Fu, J.S.; Wang, S.A.; Ding, M.; Zhang, L.; Han, L.; Gao, L. Hyaluronic acid-modified nanofiltration membrane for ultrahigh water permeance and efficient rejection of PFASs. Process Saf. Environ. Prot. 2022, 166, 214–221. [Google Scholar] [CrossRef]
- Johnson, J.K.; Hoffman, C.M.; Smith, D.A.; Xia, Z. Advanced Filtration Membranes for the Removal of Perfluoroalkyl Species from Water. ACS Omega 2019, 4, 8001–8006. [Google Scholar] [CrossRef]
- Chakachaka, V.M.; Tshangana, C.S.; Mahlangu, O.T.; Mamba, B.B.; Muleja, A.A. Remediation of a non-steroidal anti-inflammatory drug from aqueous solutions using cobalt ferrite-photocatalytic membranes. Catal. Commun. 2024, 7, 106855. [Google Scholar] [CrossRef]
- Espíndola, J.C.; Cristóvão, R.O.; Mendes, A.; Boaventura, R.A.R.; Vilar, V.J.P. Photocatalytic membrane reactor per-formance towards oxytetracycline removal from synthetic and real matrices: Suspended vs immobilized TiO2-P25. Chem. Eng. J. 2019, 378, 122114. [Google Scholar] [CrossRef]
- Hou, C.; Chen, W.; Fu, L.; Zhang, S.; Liang, C.; Wang, Y. Efficient degradation of perfluorooctanoic acid by electrospun lignin-based bimetallic MOFs nanofibers composite membranes with peroxymonosulfate under solar light irradiation. Int. J. Biol. Macromol. 2021, 174, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Darowna, D.; Wróbel, R.; Morawski, A.W.; Mozia, S. The influence of feed composition on fouling and stability of a polyethersulfone ultrafiltration membrane in a photocatalytic membrane reactor. Chem. Eng. J. 2017, 310, 360–367. [Google Scholar] [CrossRef]
- Boonya-Atichart, A.; Boontanon, S.K.; Boontanon, N. Study of hybrid membrane filtration and photocatalysis for removal of perfluorooctanoic acid (PFOA) in groundwater. Water Sci. Technol. 2018, 2017, 561–569. [Google Scholar] [CrossRef]
- Muleja, A.A.; Mamba, B.B. Development of calcined catalytic membrane for potential photodegradation of Congo red in aqueous solution. J. Environ. Chem. Eng. 2018, 6, 4850–4863. [Google Scholar] [CrossRef]
- Argurio, P.; Fontananova, E.; Molinari, R.; Drioli, E. Photocatalytic Membranes in Photocatalytic Membrane Reactors. Processes 2018, 6, 162. [Google Scholar] [CrossRef]
- Norsham, I.N.M.; Sambasevam, K.P.; Shahabuddin, S.; Jawad, A.H.; Baharin, S.N.A. Photocatalytic degradation of perfluorooctanoic acid (PFOA) via MoS2/rGO for water purification using indoor fluorescent irradiation. J. Environ. Chem. Eng. 2022, 10, 108466. [Google Scholar] [CrossRef]
- Liu, C.J.; McKay, G.; Jiang, D.; Tenorio, R.; Cath, J.T.; Amador, C.; Murray, C.C.; Brown, J.B.; Wright, H.B.; Schaefer, C.; et al. Pilot-scale field demonstration of a hybrid nanofiltration and UV-sulfite treatment train for groundwater contaminated by per- and polyfluoroalkyl substances (PFASs). Water Res. 2021, 205, 117677. [Google Scholar] [CrossRef] [PubMed]
- Chakachaka, V.; Tshangana, C.; Mahlangu, O.; Mamba, B.; Muleja, A. Interdependence of Kinetics and Fluid Dynamics in the Design of Photocatalytic Membrane Reactors. Membranes 2022, 12, 745. [Google Scholar] [CrossRef]
- Eke, J.; Banks, L.; Mottaleb, M.A.; Morris, A.J.; Tsyusko, O.V.; Escobar, I.C. Dual-Functional Phosphorene Nanocomposite Membranes for the Treatment of Perfluorinated Water: An Investigation of Perfluorooctanoic Acid Removal via Filtration Combined with Ultraviolet Irradiation or Oxygenation. Membranes 2020, 11, 18. [Google Scholar] [CrossRef]
- Junker, A.L.; Christensen, F.M.S.; Bai, L.; Jørgensen, M.K.; Fojan, P.; Khalil, A.; Wei, Z. Emerging investigator series: Photocatalytic treatment of PFAS in a single-step ultrafiltration membrane reactor. Environ. Sci. Water Res. Technol. 2024, 10, 2062–2074. [Google Scholar] [CrossRef]
Photocatalyst | Type of PFAS | Experimental Conditions | Light Source | Degradation Efficiency (%) | Time of Reaction (min) | Reference |
---|---|---|---|---|---|---|
In2O3 microspheres | PFOA | [PFOA] = 30 mg/L pH = 3.9 | UV (254 nm) | 100 | 20 | [42] |
In2O3 nanocubes | PFOA | [PFOA] = 30 mg/L pH = 3.9 | UV (254 nm) | 100 | 40 | [42] |
In2O3 nanoplates | PFOA | [PFOA] = 30 mg/L pH = 3.9 | UV (254 nm) | 100 | 120 | [42] |
P25 TiO2 | PFOA | [PFOA] = 30 mg/L pH = 3.9 | UV (254 nm) | 28.5 | 180 | [42] |
Needle-like Ga2O3 | PFOA | [PFOA] = 500 μg/L [Ga2O3] = 0.5 g/L Temp = 25 °C pH = 4.7 | UV (254 nm) VUV (185 nm) | 100 100 | 60 40 | [26] |
Sheaf-like Ga2O3 | PFOA | [PFOA] = 500 μg/L [Ga2O3] = 0.5 g/L Temp = 25 °C pH = 4.7 | UV (254 nm) | 100 | 45 | [43] |
CeO2 | PFOA | [PFOA] = 50 mg/L [CeO2] = 0.5 g/L pH = 3.0 | UV (254 nm) | 40 | 600 | [44] |
ZnO | PFOA | [PFOA] = 53 mg/L [ZnO] = 0.53 g/L Temp = 30 °C pH = 6.5–7.0 | Visible light (400–800 nm) | 64 | 360 | [45] |
Photocatalyst | Type of PFAS | Operational Parameters | Light Source | Degradation Efficiency (%) | Defluorination Ratio | Time of Reaction (h) | Reference |
---|---|---|---|---|---|---|---|
TiO2 | PFOA | [PFOA] = 60 mg/L pH = 3.0 [catalyst] = 0.5 g/L | UV (365 nm) | 31.1 | 3.1 | 7 | [49] |
Ag-TiO2 | 57.7 | 8.1 | 7 | [4] | |||
Pd-TiO2 | 94.2 | 25.9 | 7 | [49] | |||
Pt-TiO2 | 100 | 34.8 | 5 | [49] | |||
Fe-TiO2 | PFOA | [PFOA] = 50 mg/L pH = 5.0 [catalyst] = 0.5 g/L | UV (254 nm) | 69 | 9 | 12 | [34] |
Cu-TiO2 | PFOA | UV (254 nm) | 91 | 19 | 12 | [34] | |
Pb-TiO2 | PFOA | [PFOA] = 50 mg/L pH = 5.0 [Pb-TiO2] = 0.5 g/L | UV (254 nm) | 99.9 | 22.4 | 12 | [39] |
TiO2-rGO | PFOA | [PFOA] = 99.4 mg/L pH = 3.8 [TiO2-rGO] = 0.1 g/L | UV (254 nm) | 93 | - | 12 | [50] |
TiO2-Pb/rGO | PFOA | PFOA] = 10 mg/L pH = 4.5–7.0 [TiO2-Pb/rGO] = 0.33 g/L | UV (254 nm) | 98 | 32 | 24 | [50] |
TiO2-MWCNT | PFOA | [PFOA] = 30 mg/L pH = 5.0 [TiO2–MWCNT] = 1.6 g/L | UV (365 nm) | ~100 | - | 8 | [51] |
TiO2-GO | PFOA | [PFOA] = 5 mg/L pH = 4.64 [TiO2-GO] = 200 mg/L | UV (254 nm) | 93.6 | - | 8 | [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mabaso, N.S.N.; Tshangana, C.S.; Muleja, A.A. Efficient Removal of PFASs Using Photocatalysis, Membrane Separation and Photocatalytic Membrane Reactors. Membranes 2024, 14, 217. https://doi.org/10.3390/membranes14100217
Mabaso NSN, Tshangana CS, Muleja AA. Efficient Removal of PFASs Using Photocatalysis, Membrane Separation and Photocatalytic Membrane Reactors. Membranes. 2024; 14(10):217. https://doi.org/10.3390/membranes14100217
Chicago/Turabian StyleMabaso, Nonhle Siphelele Neliswa, Charmaine Sesethu Tshangana, and Adolph Anga Muleja. 2024. "Efficient Removal of PFASs Using Photocatalysis, Membrane Separation and Photocatalytic Membrane Reactors" Membranes 14, no. 10: 217. https://doi.org/10.3390/membranes14100217
APA StyleMabaso, N. S. N., Tshangana, C. S., & Muleja, A. A. (2024). Efficient Removal of PFASs Using Photocatalysis, Membrane Separation and Photocatalytic Membrane Reactors. Membranes, 14(10), 217. https://doi.org/10.3390/membranes14100217