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Abstract: Integrated permeate channel (IPC) flat sheet membranes were examined for  

use as a reverse membrane bioreactor (rMBR) for lignocellulosic ethanol production. The 

fermenting organism, Saccharomyces cerevisiae (T0936), a genetically-modified strain 

with the ability to ferment xylose, was used inside the rMBR. The rMBR was evaluated for 

simultaneous glucose and xylose utilization as well as in situ detoxification of furfural and 

hydroxylmethyl furfural (HMF). The synthetic medium was investigated, after which the 

pretreated wheat straw was used as a xylose-rich lignocellulosic substrate. The IPC membrane 

panels were successfully used as the rMBR during the batch fermentations, which lasted 

for up to eight days without fouling. With the rMBR, complete glucose and xylose 

utilization, resulting in 86% of the theoretical ethanol yield, was observed with the 

synthetic medium. Its application with the pretreated wheat straw resulted in complete 

glucose consumption and 87% xylose utilization; a final ethanol concentration of 30.3 g/L 

was obtained, which corresponds to 83% of the theoretical yield. Moreover, complete in 

situ detoxification of furfural and HMF was obtained within 36 h and 60 h, respectively, 

with the rMBR. The use of the rMBR is a promising technology for large-scale lignocellulosic 

ethanol production, since it facilitates the co-utilization of glucose and xylose; moreover, 

the technology would also allow the reuse of the yeast for several batches. 
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1. Introduction 

Ethanol production from lignocellulosic materials, such as woody biomass, forest, and agricultural 

residues, has the potential of reducing society’s dependence on fossil fuels [1–3]. Lignocellulosic materials 

consist of three main structural components: cellulose, hemicellulose, and lignin [4–6]. The hemicellulose 

fraction of hardwoods and agricultural residues, e.g., wheat straw, is dominated by xylose; hence, 

xylose utilization is essential for the successful fermentation of all the sugars into ethanol. However, 

the wild-type of yeast, Saccharomyces cerevisiae, which is commonly used for the fermentation of 

sugar to ethanol, cannot utilize xylose. Thus, the use of genetically-engineered S. cerevisiae for xylose 

uptake for the fermentation of xylose-rich biomass for ethanol production is one of the options that 

have been widely investigated [7–9]. On the other hand, the genetically-modified strain prefers glucose 

in a mixture of glucose and xylose, leading to the sequential utilization of sugars and, consequently, 

incomplete sugar utilization [10–12]. 

The cell retention strategy denoted as encapsulation has been reported to improve the xylose utilization 

and aids the in situ detoxification of the bioconvertible inhibitors [9,13,14]. Previous reports [9,13,15] 

show that the encapsulation of genetically-modified strains creates a sugar concentration gradient 

inside the tight agglomeration of cells. The glucose is consumed by the cells closer to the membrane  

of the capsules, thereby lowering the glucose concentration, which the inner cells closer to the core of 

the capsules acquire. Consequently, this improves the xylose uptake, thereby facilitating simultaneous 

sugar utilization. The encapsulated cells are in a microenvironment provided by the membrane layer  

of the capsules, a similar concept to the rMBR technology. However, encapsulating the cells is a laborious 

and time consuming task, since the process takes about 48 h to accomplish [16,17]. In addition, the 

capsules can easily disintegrate during the process with agitation. Moreover, complete xylose utilization 

was not achieved with the encapsulated cells [9]. 

Over the last decade, membrane bioreactors (MBRs) have had a conventional application in water 

and wastewater treatment [16,18,19]. In recent years, the MBRs have gained a wider application including 

its use in ethanol production. The technology has been used to e.g., enhance in situ detoxification  

of furfural [20] and to make it possible to perform continuous cultivations at high acetic acid 

concentrations [21]. MBRs have also been applied to allow optimum conditions in the hydrolysis and 

fermentation reactors in a recently developed simultaneous saccharification, filtration and fermentation 

(SSFF) process for lignocellulosic ethanol production [22]. The use of flat sheet membranes to contain 

and retain the cells can be advantageous over other cell retention methods such as encapsulation. The 

membrane modules are commercially available for use and could, thus, be a means of successfully 

creating several agglomerations of cells inside the panels, which will create the desired sugar 

concentration gradient in the agglomerates of the cells and eventually facilitate simultaneous 

utilization of both glucose and xylose. It will also facilitate in situ detoxification of the available 

lignocellulosic inhibitors in the medium to their less toxic derivatives and also create a possibility of 
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instant cell reuse for several fermentation batches, even in substrates which contain particles. To our 

knowledge, the application of the flat sheet membranes in a reverse manner, wherein the yeast S. 

cerevisiae is inside the membrane panels for ethanol production, has not been reported in the literature. 

This study investigated the use of integrated permeate channels (IPC) membranes in a reverse manner 

for lignocellulosic ethanol production, a technology referred to as rMBR. Simultaneous utilization  

of glucose and xylose was first investigated with the rMBR in a synthetic media. The rMBR was later 

evaluated in xylose-rich pretreated lignocellulosic material for sugar co-utilization and detoxification 

of the bioconvertible inhibitors. 

2. Results and Discussion 

The reverse membrane bioreactor (rMBR) provides a microenvironment for the yeast cells through 

the agglomeration of the yeast cells inside the membrane panels. The technology could facilitate a 

similar concentration gradient of sugars and inhibitors, as observed with the encapsulated cells [13] 

through the agglomerates of cells inside the inner matrix of the membrane panels. The agglomeration 

of cells will consequently facilitate the simultaneous utilization of glucose and xylose as well as in situ 

detoxification of the bioconvertible inhibitors. Moreover, the limitations of encapsulation such as long 

processing time, disintegration of capsules, and incomplete sugar utilization [9,16,17] necessitate the 

use of an improved technology, such as rMBR. The commercial availability of the membranes, as well 

as the ease of its application, makes the rMBR a preferred technology over encapsulation. The rMBR 

technology was investigated for simultaneous utilization of both glucose and xylose, as well as in situ 

detoxification of inhibitors in this study. 

2.1. Performance of the Integrated Permeate Channel (IPC) Flat Sheet Membrane as rMBRs for 

Ethanol Production 

The IPC membranes were used in a novel way as rMBR with the genetically-modified yeast inside 

the membrane panels (Figure 1). The membranes performed well during their use, as the yeast inside 

the rMBR were able to ferment the available sugars to ethanol. Fouling is a major challenge in 

membrane applications [16,18]. However, the IPC membranes were successfully used for batch 

fermentations of the synthetic medium as well as the liquid fraction of the lignocellulosic hydrolyzate 

for up to eight days without fouling. The membranes were found to be reusable after the fermentation. 

The yeast cells inside the rMBR were also found to be metabolically active after the fermentation, as 

the cells were able to form colonies when plated. However, it was observed that after the panels had been 

used for two consecutive batch fermentations, there was a need for chemical cleaning and back-washing in 

order to get rid of all the cells entrapped inside the matrix of the membrane panels. This indicates that 

the rMBR can be used for a prolonged fermentation of lignocellulosic medium without any significant 

effect on the membranes or the cells. 

2.2. Simultaneous Utilization of Glucose and Xylose in a Synthetic Medium with the rMBR 

In order to obtain a good ethanol yield and productivity during the fermentation of the xylose-rich 

lignocellulosic medium, it is important that the fermenting organism has an efficient uptake of xylose 
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and conversion to ethanol. Xylose utilization by genetically-modified yeast strains has been previously 

reported to be dependent on glucose concentration, as low glucose concentration can facilitate xylose 

uptake [8]. Creating a sugar concentration gradient within the cell agglomeration has been reported to 

facilitate a controlled glucose supply to the different layers of the cell agglomerates which will, thus, 

facilitate the xylose uptake [13]. During the fermentation with the synthetic medium, it was observed 

that both the glucose and the xylose concentrations of 6 g/L and 21 g/L, respectively, decreased 

simultaneously (Figure 2), which indicates that there was a simultaneous uptake of both sugars during 

the fermentation. This shows that the inner fabric cross layer of the IPC membrane panels, which 

contained the genetically-modified yeast created the required agglomeration for the cells. Thus, there 

was a concentration gradient of sugars inside the cell agglomerates (Figure 1), which facilitated the 

xylose metabolism. Interestingly, after 96 h of fermentation, both the glucose and the xylose concentrations 

were completely consumed, and an ethanol concentration of 12 g/L was observed (Figure 2), which 

corresponds to 85.7% of the theoretical yield. 

 

Figure 1. Schematic representation of the rMBR system configuration showing the IPC 

membrane panels’ inner matrix layers and the concentration gradient of glucose, xylose, 

and inhibitors into different layers of the yeast cell’s agglomerates inside the panels. 

The synthesis of glycerol during the yeast fermentations plays a significant role for its growth; 

glycerol maintains the intracellular redox balance as well as the osmoregulation with the cell’s external 

environment [23,24]. The glycerol concentration was observed to be very low during the fermentation, 
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an indication that the cells inside the rMBR were able to maintain their metabolic activities throughout 

the fermentation, with very low glycerol formation and without having a significant effect on the 

ethanol yield. The highest glycerol concentration was 1.4 g/L during the fermentation, which lasted  

for 96 h (Figure 3); similar observation of low glycerol production with the specific strain has been 

reported [9]. Lactic acid concentration of approximately 0.2 g/L was measured at the end of the 

fermentation (Figure 3). This suggests that the chemical cleaning procedure used as a means of sterilizing 

and disinfecting the membrane panels in the reactor is effective in keeping contamination under control 

throughout the fermentation. It also indicates that the rMBR can successfully be used for prolonged 

fermentation without any contamination effect. Acetic acid is an inhibitor that is strongly pH dependent; 

it can be present in the medium as well as be a product of the fermentation [25]. Acetic acid concentration 

of only 0.5 g/L was produced by the end of the fermentation (Figure 3), which suggests that the acid 

was also produced during the fermentation with no direct effect on the fermentation process. 

 

Figure 2. Concentration (g/L) profiles of glucose, xylose, and ethanol during the use of 

rMBR in the synthetic medium. The values presented are mean values of the two experiments, 

with error bars as the standard deviation between the two values. 

 

Figure 3. Concentration (g/L) profiles of glycerol, acetic acid, and lactic acid during the 

use of rMBR in the synthetic medium. Presented values are average values of two experiments, 

with error bars as the standard deviation between the two values. 



Membranes 2015, 5 849 

 

 

2.3. Co-Utilization of Sugars and In Situ Detoxification Using the Liquid Fraction of the 

Lignocellulosic Hydrolyzate with the rMBR 

The performance of the rMBR was later investigated using the liquid fraction of the hydrolyzed 

wheat straw slurry. This was done in order to evaluate the performance of the rMBR in the real 

lignocellulosic medium. The supplied slurry of 14.9% SS was diluted to 10% SS with deionized water 

after which it was hydrolyzed. The 24 h enzymatic hydrolysis was performed at a temperature of 50 °C 

and a pH of 5.0. This increased the glucose concentration from 6.0 g/L up to 50.6 g/L, which indicates 

that the Cellic® Ctec2 enzyme cocktail used was very effective for the cellulose hydrolysis. It was also 

observed that operating the enzymatic hydrolysis at optimum conditions is profitable for the lignocellulosic 

ethanol production, which is in agreement with a previous report on the benefits of performing the 

hydrolysis and fermentations at separate optimum conditions [22]. 

During the fermentation with the rMBR, despite the presence of the inhibitors; e.g., acetic acid, 

HMF, and furfural in the medium, the co-utilization of glucose and xylose was observed (Figure 4). 

The glucose was consumed faster than the xylose, as the 50.1 g/L glucose was completely depleted 

within 132 h while 2.6 g/L of the xylose remained, out of the initial concentration of 21.2 g/L after  

the fermentation that lasted for 180 h (Figure 4). This corresponds to 87.7% xylose utilization. It was 

observed that the xylose uptake by the genetically-modified yeast encased in the membrane panels was 

not affected by the high initial glucose concentration of 50.1 g/L. This suggests that the rMBR resulted 

in a higher xylose uptake compared to the study performed by the encapsulated yeast used in a SSFF 

process, where a 80% xylose uptake was reported at an initial glucose concentration of 36 g/L, 

while only 36% xylose uptake was reported at an initial glucose concentration of 53.5 g/L due to 

catabolite repression [9]. 

 

Figure 4. Concentration (g/L) profiles of glucose, xylose, and ethanol during the use of 

rMBR in the liquid fraction of the prehydrolyzed pretreated wheat straw used as xylose-rich 

lignocellulosic material. The values presented are mean values of two experiments, with 

error bars as the standard deviation between the two values. 
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The observations from this study indicate that a high initial glucose concentration in the medium 

does not really affect the xylose uptake by the genetically-modified strain as much as the fermentation 

process used does. Creating a microenvironment for the cells by having the cells inside the IPC 

membranes facilitated the co-utilization and higher xylose uptake despite the initial glucose 

concentration. The possibility of achieving the desired concentration gradient due to the agglomeration 

of cells in the panels facilitated the improved xylose uptake. 

In situ detoxification of furfural and HMF was also observed. Within 36 h of fermentation, the 

initial furfural concentration of 4.5 g/L was completely converted (Figure 5), while the initial HMF 

concentration of 0.6 g/L was completely converted within 60 h (Figure 5). Although HMF has a lesser 

inhibitory effect compared to furfural, its rate of conversion has been reported to be slower than that  

of furfural [26,27] as observed in this study. This observation suggests that the agglomeration of cells 

in the panels, which created the concentration gradient of the streams reaching the cells, does not only 

facilitate the co-utilization of the glucose and xylose but also helps with the in situ detoxification.  

The cells close to the outer layer of the agglomerates detoxified the inhibitors, hence, improving the 

rate of their conversion (Figure 1). This observation is in agreement with a previous report on in situ 

detoxification of the bioconvertible inhibitors [14]. The rate of the in situ detoxification with the rMBR 

was much faster than an earlier reported rate with the particular strain when encapsulation was used 

with the SSFF process. It was reported that it took up to 72 h for both HMF and furfural to be completely 

converted even though a cell concentration of 6 g/L was used [9]. With the use of the rMBR in this 

study, the ethanol concentration of 30.3 g/L was observed at the end of the fermentation, which lasted 

for 180 h (Figure 4). This corresponds to 83% of the theoretical ethanol yield. It can, thus, be stated 

that the rMBR with the IPC membrane panels is beneficial for the co-utilization of glucose and xylose 

utilization as well as for the in situ detoxification of the bioconvertible inhibitors, which are important 

factors for an efficient and successful lignocellulosic ethanol production. 

 

Figure 5. Concentration (g/L) profiles of furfural and HMF during the use of rMBR in the 

liquid fraction of prehydrolyzed pretreated wheat straw used as xylose-rich lignocellulosic 

material. Presented values are average values of two experiments, with error bars as the 

standard deviation between the two values. 
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3. Experimental Section 

3.1. Lignocellulosic Material 

Wheat straw, an agricultural residue from a Swedish farm was used in the experiments. It is a 

xylose-rich lignocellulosic biomass. The biomass was chemically pretreated with dilute H2SO4  

(0.3%–0.5%) at 185 °C for 8 min at SEKAB E-Technology (Örnsköldsvik, Sweden). It was supplied 

as a pretreated slurry with pH of 1.9, 14.9% suspended solids (SS), and 22.2% total solids. The slurry 

was stored in a cold room at 5 °C until use. The composition of the liquid fraction of the slurry was 

analyzed by the high-performance liquid chromatography (HPLC) and presented in Table 1. The solid 

fraction of the slurry was characterized according to the NREL protocols [28]; it contained  

43.6% ± 0.5% cellulose, 34.8% ± 0.1% acid insoluble lignin (AIL), 5.1% ± 0.1% acid soluble lignin 

(ASL), and 39.9% ± 0.2% total lignin. The hemicellulose fraction was completely fractionated into 

monomeric sugars during the pretreatment. The theoretical ethanol yield was calculated based on 0.51 g/g 

of the glucose and xylose available in the liquid fraction of the enzymatically-hydrolyzed slurry. 

Table 1. Composition of the liquid fraction of the supplied pretreated wheat straw (slurry), 

used as xylose-rich lignocellulosic biomass with 14.9% suspended solids. 

Component Concentration (g/L) 

Monomeric sugars

Xylose 33.4 
Glucose 8.5 
Mannose 1.5 
Arabinose 4.9 
Galactose 3.1 

Inhibitors 
Acetic acid 8.9 

HMF 1.1 
Furfural 9.2 

3.2. Enzymes and Yeast Strain 

The Cellulase Cellic® Ctec2 enzyme (Novozymes, Bagsvaerd, Denmark) was used for the enzymatic 

hydrolysis. The enzymatic activity was measured as 185 FPU/mL activity and was determined 

according to the NREL method [29]. A genetically-engineered strain of Saccharomyces cerevisiae 

(T0936) was used in all the experiments. The yeast was maintained at 4 °C on yeast extract, peptone, 

and dextrose (YPD) agar plates, containing 20 g/L agar, 10 g/L D-glucose, 10 g/L D-xylose, 10 g/L yeast 

extract, and 20 g/L peptone. Prior to the fermentations, 200 mL yeast pre-culture in the YPD growth 

medium, containing 25 g/L D-glucose, 25 g/L xylose, 20 g/L peptone, and 10 g/L yeast extract was 

prepared by cultivations performed in two 250 mL Erlenmeyer flasks with 100 ml medium in each. 

The flasks were incubated in a shake-bath (Grant OLS 200, Grant Instrument Ltd., Royston, UK) at 

121 rpm and 30 °C for 48 h. 
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3.3. Cell Cultivation for the rMBR 

In order to achieve a high cell concentration inside the membrane panels, the 200 mL pre-culture 

was inoculated into a 2.5 L bioreactor (Infors AG107504, Minifors, Bottmingen, Switzerland) at 30 °C 

and pH 5.0, using a YPD growth medium consisting of 17 g/L D-glucose, 33 g/L D-xylose, 20 g/L 

peptone, and 10 g/L yeast extract. Silicone antifoam (1 g/L) and 3.5 g/L KH2PO4 were added. The 

cultivation was aerated at 4.0 vvm for 42 h to produce a cell concentration of 5 g/L per intended 

fermentation volume of 3 L. After the cell cultivation, the cells were harvested by centrifugation at 

4500 rpm for 5 min and concentrated into 150 mL, thus, making a cell concentration of 100 g/L per 

membrane volume of 150 mL 

3.4. Flat Sheet Integrated Permeate Channels (IPC) as the rMBR 

The IPC membrane panels were developed and produced by the Flemish Institute for Technological 

Research (Vito NV, Boeretang, Mol, Belgium). The polymeric membrane panels consist of double 

membrane layers that consist of an integrated permeate channels, interposed to the two membrane 

layers. The IPC membrane was manufactured of PES/PVP with a pore size of 0.3 μm. The IPC 

membranes are unique for their sturdiness and ability to withstand high pressure differences during the 

filtration and backwashing [30]; this property qualifies the membrane for application as rMBR. Each 

membrane panel had a total membrane area of 0.0252 m2, which was available for the filtration and 

can take a volume of about 50 mL Three membrane panels were placed in parallel inside a 4.0 L 

bioreactor (Webant BE0076, Belach Bioteknik AB, Skogås, Sweden). 

The membrane panels cannot be sterilized by autoclavation; hence, they were chemically cleaned 

and disinfected according to the following procedures before each fermentation run. First, the membrane 

panels were immersed in a two percent NaOH solution at 50–80 °C for 30 min, after which they were 

rinsed with deionized water. Then, 1% phosphoric acid solution was applied to the panels for 30 min 

and then rinsed with deionized water. Thereafter, the panels were disinfected with 200 ppm NaOCl 

solution and rinsed with sterile deionized water before the fermentation run. Finally, the concentrated 

cultivated cells described earlier were aseptically transferred into the membrane panels, resulting in  

5 g/L dry weight of the yeast cells that were added to the rMBR. 

3.5. Configuration of the Reverse Membrane Bioreactor (rMBR) 

The schematic configuration of the rMBR is shown in Figure 1. The genetically-modified yeasts 

cells were added inside the membrane panels, which were submerged in the medium inside the reactor 

(Figure 1). The inner matrix layer of the membrane panels created a microenvironment for the yeast 

cells and resulted in several agglomerations of the cells. The yeast cells inside the panels acquired 

substrate and nutrients when the medium diffuses through the membrane panel. The metabolites also 

diffuse through the membrane panels into the medium. 

3.6. Synthetic Medium Fermentation with the rMBR 

The performance of the genetically-modified yeast cell inside the rMBR was first investigated in  

3 L synthetic medium containing glucose and xylose, equivalent to that present in the 10% suspended 
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solids (SS), corresponding to 6 g/L glucose and 21 g/L xylose. The medium was supplemented with  

2 g/L (NH4)2SO4, 0.35 g/L KH2PO4, and 1 g/L yeast extract; 0.6 g/L silicone antifoam was also added. 

The three membrane panels containing the yeast cells were submerged in the fermentation medium 

inside the bioreactor. The fermentation was performed anaerobically at a temperature of 30 °C and  

a pH of 5.0. A marprene process tube (internal diameter 8.0 mm, thickness 2.4 mm and outer diameter 

12.6 mm, 902.0080.24, Watson Marlow, Falmouth, England) was used for circulating the liquid inside the 

bioreactor with a peristaltic pump (323DU/D Watson Marlow, Falmouth, England) at a flow rate of  

0.6 L/min and thereby mixing the medium. Fermentation was carried out for 96 h, and samples were 

taken every 12 h from the medium to monitor the sugar consumption and the metabolite production. 

3.7. Fermentation of the Liquid Fraction of the Hydrolyzed Pretreated Wheat Straw with the rMBR 

Enzymatic hydrolysis of the pretreated wheat straw was carried out at a temperature of 50 °C,  

pH of 5.0, and agitation of 700 rpm for 24 h. Substrate and enzyme loading of 10% SS and 12 FPU/g 

SS, respectively, was used. Thereafter, the hydrolyzate was centrifuged aseptically (5000 rpm, 5 min) 

in order to separate the liquid fraction from the solid residue. The liquid fraction containing the sugars 

and the inhibitors was later used for the fermentation, in a similar way as the synthetic medium 

described above, with freshly cultivated genetically-modified yeast inside the membrane panels. All of 

the experiments were performed in duplicates, with error bars showing the standard deviation. 

3.8. Analytical Methods 

Cellulose, hemicellulose and lignin contents of the solid fraction of the slurry was determined according 

to the NREL protocols [28]. The solid and liquid fractions of the slurry were separated with a centrifuge 

at 4000 × g for 5 min. The solid fraction was washed with 40 mL deionized water to a neutral pH and 

then freeze-dried (Labconco, Kansas City, MO, USA) at −52 °C until its moisture content was less 

than 10%. Two steps hydrolysis was later performed on the dried solid fraction: first with 72% H2SO4 

in a shaker water bath at 30 °C for 60 min, and later with 4% H2SO4 in an autoclave at 121 °C for  

60 min. The ASL was determined on the liquid portion of the hydrolyzate with a UV spectrophotometer 

(Libra S60, Biochrom, Cambridge, UK) at 283 nm. The AIL was gravimetrically determined as the 

residual solid after the hydrolysis, corrected with the ash content. The ash content was determined  

in the muffle furnace at 575 °C overnight. The hydrolysis liquid was analyzed by HPLC for the 

monomeric sugars. 

The sugars and the metabolic products were analyzed using a HPLC (Walters 2695, Walters 

Corporation, Milford, CT, USA). A hydrogen-based column (Aminex HPX-87H, Bio-Rad, Hercules, 

CA, USA) at 60 °C and 0.6 mL/min 5 mM H2SO4 as eluent was used for the glucose, furans, 

carboxylic acids, ethanol, lactic acid, and glycerol. Mannose, glucose, galactose, xylose, and arabinose 

were analyzed using the Aminex HPX-87P column (Bio-Rad) at 85 °C and 0.6 mL/min ultrapure water 

as an eluent. A UV absorbance detector (Walters 2487), operating at 210 nm wavelength, was used in 

a series with a refractive index (RI) detector (Walters 2414). 
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4. Conclusions 

Integrated permeate channel (IPC) flat sheet membranes were examined as a reverse membrane 

reactor (rMBR) for lignocellulosic ethanol production. The rMBR was investigated for co-utilization 

of glucose and xylose utilization as well as for in situ detoxification of inhibitors. The synthetic 

medium was initially investigated, followed by using the liquid fraction of the enzymatically 

hydrolyzed pretreated wheat straw as a xylose-rich media. The IPC membrane panels containing the yeast 

cells were successfully used for the batch fermentation lasting for up to eight days without fouling. 

With the rMBR, complete xylose utilization, together with 86% of the theoretical ethanol yield, was 

observed when the synthetic medium was used. Its usage with the pretreated wheat straw resulted in 

87% xylose utilization and complete in situ detoxification of furfural and HMF within 36 h and 60 h, 

respectively; a final ethanol concentration of 30.3 g/L equivalent to an ethanol yield of 83% of the 

theoretical value was obtained. The use of the rMBR with the yeast cells inside the membranes could 

be a promising technology in the future for large-scale lignocellulosic ethanol production. 
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