



## SUPPLEMENTARY MATERIALS



**Figure 1.** Comparison of NMR spectra taken for human gastrocnemius tissue samples using solution state NMR and HR-MAS. Water region (4.69–4.85 ppm) is removed. A) Solution state <sup>1</sup>H 1D NOESY spectrum for aqueous phase from FOLCH extraction, B) HR-MAS <sup>1</sup>H 1D NOESY spectrum, C) solution state <sup>1</sup>H 1D NOESY spectrum for organic phase from FOLCH extraction. Aromatic region is ~5-times magnified than aliphatic region and insets are ~10-times magnified.

In **Figure S1 A**: 1 represent DSS peak, 2 is leucine, 3 is valine, 4 is isoleucine, 5 is ethanol, 6 is 3-Hydroxybutyrate, 7 is threonine, 8 is lactate, 9 is alanine, 10 is lysine, 11 is arginine, 12 is acetate, 13 is glutamate, 14 is glutamine, 15 is 2-Aminoadipate, 16 is EDTA, 17 is MES buffer, 18 is creatine, 19 is malonate, 20 is taurine, 21 is methanol, 22 is glycerol, 23 is glycine, 24 is 3-methyl histidine, 25 is betaine, 26 is aspartate, 27 is creatine phosphate, 28 is O-phosphoethanolamine, 29 is myoinositol, 30 is Sn-Glycero-3-Phosphocholine, 31 is glucose, 32 is ATP/AMP, 33 is fumarate, 34 is tyrosine, 35 is Histidine, 36 is imidazole, 37 is phenylalanine, 38 is benzoate, 39 is tryptophan, and 40 is formate.

In **Figure S1 B**: a is CH<sub>3</sub>-lipids + lipoproteins, b is (CH<sub>2</sub>)<sub>n</sub> lipids + lipoproteins, c is lactate, d is alanine, e is (CH<sub>2</sub>-CH<sub>2</sub>-CO-)lipids, f is (CH=CH-CH<sub>2</sub>-CO-)lipids, g is glutamine, h is succinate, i is (CH<sub>2</sub>-CH<sub>2</sub>-CO) lipids, j is (=CH-CH<sub>2</sub>-CH=CH) lipids, k is creatine, l is taurine, m is glucose, n is CH<sub>2</sub>OCOR (glyceryl), o is CH-glycerol, p is CH=CH lipids, q is ATP/AMP, r is imidazole, and s is pyrazine.

In **Figure S1 C**: I is (CH<sub>3</sub>) cholesterol/cholesterol ester (C18) , II is (CH<sub>3</sub>) cholesterol/esterified and free fatty acids, III is (CH<sub>3</sub>) cholesterol (C19), IV is cholesterol, V is (CH<sub>2</sub>)<sub>n</sub> of aliphatic chains, VI is (CH<sub>2</sub>-CH<sub>2</sub>-COO-)  $\beta$ -methylene protons associated to carbon groups, VII is (CH<sub>2</sub>-CH=CH-CH<sub>2</sub>)  $\alpha$ -methylene protons associated to double bonds, VIII is (CH<sub>2</sub>-CCO-)  $\alpha$ -methylene protons associated to carbonyl groups, IX is (=CH-CH<sub>2</sub>-CH=CH)divinyl methylene protons of w-3 and w-6 unsaturated fatty acids, X is N<sup>+</sup>(CH<sub>3</sub>)<sub>3</sub> in phosphadidylcholine, choline & sphingomyelin, XI is cholesterol, XII is glycerophospholipids, XIII is (3CH<sub>2</sub>-)glycerophospholipids, XIV is (-CH<sub>2</sub>-) triglyceride, XV is (CH-)triglyceride, XVI is (-CH=CH-) protons in double bonds in unsaturated fatty acids and –CH from cholesterol, XVII are Aromatic protons, XVIII is CDCl<sub>3</sub>, and XIX is pyrazine.

|                     |                                         |                    |              | VIP scores     |
|---------------------|-----------------------------------------|--------------------|--------------|----------------|
| Spectra range (ppm) | Lipid class                             | Associated protons | Peak Pattern | Organic phase  |
|                     |                                         |                    |              | (solution NMR) |
| 2.03-2.07           | Fatty acids /Triglyceride /Phopholipids | (-CH2-HC=CH-CH2)   | m            | ~1.6           |
| 0.69-0.66/1.0-1.01  | Cholesterol                             | C18/C19 CH3        | S            | ~1.6           |
| 5.18-5.23           | Phospholipid                            | (CH–)              | m            | ~1.6           |
| 0.78-0.92           | Fatty acids/cholesterol/phospholipids   | CH3                | m            | ~1.5           |
| 7.05-7.11           | Aromatic protons                        | -CH                | m            | ~1.3           |
| 5.29-5.42           | Fatty acids                             | CH=CH              | m            | ~1.2           |
| 2.03-2.07           | Fatty acids /Triglyceride /Phopholipids | (-CH2-HC=CH-CH2)   | m            | ~1.1           |
| 4.34-4.42           | Triglyceride /Phopholipids              | (1C <b>H</b> –)    | m            | ~1.1           |
| 3.89-3.97           | Glycerophospholipids                    | (3CH2–)            | m            | ~0.8           |
| 1.54-1.64           | Phospholipid/Triglyceride               | (CH2-CH2-COO)      | m            | ~0.6           |
| 1.26-1.39           | Fatty acids /Triglyceride /Phopholipids | (–CH2)n            | m            | ~0.5           |
| 2.22-2.33           | Triglyceride /Phopholipids              | (CH2-CCO-)         | m            | ~0.4           |
| 4.26-4.32           | Triglyceride                            | CH2                | dd           | ~0.4           |

**Table S1.** Chemical shift ranges with the correlated lipid classes that were responsible for the separation of <sup>1</sup>H-NMR metabolomics profiles in organic phase samples of PAD clinical models determined by PLSDA.

Proton/s responsible for the corresponding peak/peaks in the spectra are shown with bold letters and peak pattern are represented as: 's' = singlet, 'd' = doublet, 'dd' = doublet of doublet, 't' = triplet, and 'm' = multiplet. VIP scores greater than 1 can be considered as the significant chemical shifts that are contributing mostly in driving separation among the three groups. Chemical shift with highest VIP score has been reported only for a particular\_metabolites/compounds. Bold font proton/s (in column 3) indicate the proton/s that is/are giving NMR peak/s at that particular spectral range (ppm).



**Figure S2.** Representative <sup>1</sup>H NMR spectra for organic phase samples (normalized w.r.t. internal standard pyrazine peak at 8.61 ppm) for gastrocnemius tissues for all three groups: control, CLTI Pre-surgery, and CLTI Amputation. Samples

with similar wet weight were selected to make legitimate comparison. Figure S2A is CLTI Amputation#7a (10.7 mg), S2B is CLTI Pre-surgery#9a (10.5 mg), and S2C is control#8a (10.5 mg). Different lipid classes that are significantly varying among the three groups are assigned for convenience. CLTI Amputation (red), CLTI Pre-surgery (green), and control (blue).

**Table 2.** Average concentration (mM) or average peak intensity (A.U.) for all metabolites and/or compounds are reported for aqueous phase, organic phase, and HR-MAS data sets obtained with <sup>1</sup>H NMR and HR-MAS spectroscopy.

|      | Aqueous phase: <sup>1</sup> H NMR solution state          |                                       |                             |                            |                            |                               |                               |  |
|------|-----------------------------------------------------------|---------------------------------------|-----------------------------|----------------------------|----------------------------|-------------------------------|-------------------------------|--|
|      |                                                           | Average concentration $(mM) \pm S.D.$ |                             |                            | <i>p</i> -value from ANOVA |                               |                               |  |
| S.No | Metabolite/s                                              |                                       | CI TI Pre-                  | СІТІ                       | Control vs                 | Control vs CI TI              | CLTI Pre-                     |  |
| •    | Wietub Office, S                                          | Control                               | Surgerv                     | Amputation                 | CLTI pre-                  | Amputation                    | surgery vs CLTI               |  |
|      |                                                           |                                       | o unger y                   |                            | Surgery                    |                               | Amputation                    |  |
| 1    | Leucine                                                   | $0.033 \pm 0.003$                     | $0.029 \pm 0.008$           | $0.084 \pm 0.061$          | n.s.                       | 0.049                         | n.s.                          |  |
| 2    | Valine                                                    | $0.055 \pm 0.006$                     | $0.046 \pm 0.013$           | $0.112 \pm 0.071$          | n.s.                       | n.s.                          | 0.042                         |  |
| 3    | Isoleucine                                                | $0.038 \pm 0.003$                     | $0.037 \pm 0.011$           | $0.090 \pm 0.063$          | n.s.                       | n.s.                          | n.s.                          |  |
| 4    | Isobutyrate                                               | $0.073 \pm 0.023$                     | $0.095 \pm 0.032$           | $0.075 \pm 0.026$          | n.s.                       | n.s.                          | n.s.                          |  |
| 5    | 3-methyl-2-oxovalerate                                    | $0.064 \pm 0.012$                     | $0.075 \pm 0.020$           | $0.067 \pm 0.022$          | n.s.                       | n.s.                          | n.s.                          |  |
| 6    | Lactate                                                   | $0.366 \pm 0.110$                     | $0.243 \pm 0.071$           | $2.771 \pm 2.498$          | n.s.                       | 0.021                         | 0.026                         |  |
| 7    | Alanine                                                   | $0.364 \pm 0.069$                     | $0.283 \pm 0.089$           | $0.663 \pm 0.293$          | n.s.                       | 0.019                         | 0.006                         |  |
| 8    | Arginine                                                  | $0.255 \pm 0.083$                     | $0.277\pm0.108$             | $0.318 \pm 0.121$          | n.s.                       | n.s.                          | n.s.                          |  |
| 9    | Lysine                                                    | $0.189 \pm 0.042$                     | $0.237 \pm 0.083$           | $0.190\pm0.082$            | n.s.                       | n.s.                          | n.s.                          |  |
| 10   | Acetate                                                   | $0.316\pm0.223$                       | $0.473 \pm 0.240$           | $0.352 \pm 0.193$          | n.s.                       | n.s.                          | n.s.                          |  |
| 11   | Glutamate                                                 | $0.589 \pm 0.180$                     | $0.478\pm0.162$             | $0.646 \pm 0.247$          | n.s.                       | n.s.                          | n.s.                          |  |
| 12   | 2-Aminoadipate                                            | $0.082 \pm 0.015$                     | $0.099 \pm 0.031$           | $0.083 \pm 0.032$          | n.s.                       | n.s.                          | n.s.                          |  |
| 13   | Pyruvate                                                  | $0.308 \pm 0.045$                     | $0.353 \pm 0.105$           | $0.321 \pm 0.094$          | n.s.                       | n.s.                          | n.s.                          |  |
| 14   | Succinate                                                 | $0.045 \pm 0.009$                     | $0.044 \pm 0.013$           | $0.087 \pm 0.039$          | n.s.                       | 0.015                         | 0.020                         |  |
| 15   | Glutamine                                                 | $1.533 \pm 0.550$                     | $0.791 \pm 0.259$           | $1.782 \pm 0.831$          | n.s.                       | n.s.                          | 0.027                         |  |
| 16   | П-methyl histidine                                        | $0.198 \pm 0.046$                     | $0.259 \pm 0.050$           | $0.141 \pm 0.047$          | n.s.                       | n.s.                          | 0.0006                        |  |
| 17   | Aspartate                                                 | $0.205 \pm 0.044$                     | $0.202 \pm 0.065$           | $0.281 \pm 0.167$          | n.s.                       | n.s.                          | n.s.                          |  |
| 18   | Myo-inositol                                              | $0.106 \pm 0.064$                     | $0.084 \pm 0.050$           | $0.188 \pm 0.124$          | n.s.                       | n.s.                          | n.s.                          |  |
| 19   | Creatine                                                  | $1.482 \pm 0.210$                     | $1.050 \pm 0.444$           | $2.495 \pm 1.337$          | n.s.                       | n.s.                          | 0.022                         |  |
| 20   | Creatinine + PCr                                          | $0.894 \pm 0.358$                     | $0.496 \pm 0.240$           | $0.708 \pm 0.433$          | n.s.                       | n.s.                          | n.s.                          |  |
| 21   | Malonate                                                  | $0.282 \pm 0.044$                     | $0.330 \pm 0610.$           | $0.239 \pm 0.076$          | n.s.                       | n.s.                          | 0.043                         |  |
| 22   | Betaine                                                   | $1.901 \pm 0.444$                     | $2.486 \pm 0.451$           | $0.891 \pm 0.553$          | n.s.                       | 0.002                         | < 0.0001                      |  |
| 23   | Taurine                                                   | $4.321 \pm 0.504$                     | $4.665 \pm 0.790$           | $3.504 \pm 0.1.382$        | n.s.                       | n.s.                          | n.s.                          |  |
| 24   | Glycerol                                                  | $0.367 \pm 0.149$                     | $0.367 \pm 0.105$           | $0.653 \pm 0.453$          | n.s.                       | n.s.                          | n.s.                          |  |
| 25   | Glycine                                                   | $0.072 \pm 0.027$                     | $0.058 \pm 0.014$           | $0.154 \pm 0.070$          | n.s.                       | 0.009                         | 0.005                         |  |
| 26   | Sn-glycero-3-phosphocholine                               | $0.046 \pm 0.032$                     | $0.014 \pm 0.010$           | $0.062 \pm 0.037$          | n.s.                       | n.s.                          | 0.03                          |  |
| 27   | O-phosphocholine                                          | $0.217 \pm 0.097$                     | $0.200 \pm 0.133$           | $0.267 \pm 0.141$          | n.s.                       | n.s.                          | n.s.                          |  |
| 28   | Maltose                                                   | $0.038 \pm 0.022$                     | $0.027 \pm 0.022$           | $0.034 \pm 0.021$          | n.s.                       | n.s.                          | n.s.                          |  |
| 29   | α-Glucose                                                 | $0.005 \pm 0.003$                     | $0.004 \pm 0.003$           | $0.163 \pm 0.223$          | n.s.                       | n.s.                          | n.s.                          |  |
| 30   | Fumarate                                                  | $0.003 \pm 0.001$                     | $0.001 \pm 0.000$           | $0.008 \pm 0.003$          | n.s.                       | < 0.0001                      | < 0.0001                      |  |
| 31   | Tvrosine                                                  | $0.006 \pm 0.006$                     | $0.000 \pm 0.000$           | $0.025 \pm 0.025$          | n.s.                       | n.s.                          | 0.03                          |  |
| 32   | Histidine                                                 | $0.266 \pm 0.189$                     | $0.010 \pm 0.006$           | $0.578 \pm 0.571$          | n.s.                       | n.s.                          | 0.04                          |  |
| 33   | Phenylalanine                                             | $0.036 \pm 0.020$                     | $0.021 \pm 0.007$           | $0.104 \pm 0.065$          | n.s.                       | 0.015                         | 0.006                         |  |
| 34   | Benzoate                                                  | $0.168 \pm 0.045$                     | $0.123 \pm 0.045$           | $0.177 \pm 0.055$          | n.s.                       | n.s.                          | n.s.                          |  |
| 35   | Inosine                                                   | $0.016 \pm 0.010$                     | $0.011 \pm 0.008$           | $0.109 \pm 0.071$          | ns                         | 0.002                         | 0.003                         |  |
| 36   | Formate                                                   | $0.183 \pm 0.065$                     | $0.248 \pm 0.058$           | $0.225 \pm 0.084$          | n.s.                       | n.s.                          |                               |  |
|      | Tomate                                                    | Organ                                 | nic phase: <sup>1</sup> H N | MR solution stat           | te                         | 11.0.                         | 11.0.                         |  |
|      |                                                           | $\frac{1}{2}$                         |                             | <i>n</i> -value from ANOVA |                            |                               |                               |  |
| S.No |                                                           | Control                               | cult intensity (1           | 1.0.) 2 0.0.               | Control vs                 |                               | CLTI Pre-                     |  |
|      | Peak/Lipid component                                      |                                       | CLTI Pre-<br>Surgery        | CLTI<br>Amputation         | CLTI pre-<br>Surgerv       | Control vs CLTI<br>Amputation | surgery vs CLTI<br>Amputation |  |
| 1    | (CH <sub>3</sub> ) cholesterol/cholesterol<br>ester (C18) | $2.07 \pm 0.37$                       | $2.69 \pm 0.46$             | $2.87 \pm 0.54$            | n.s.                       | 0.007                         | n.s.                          |  |

| 2  | (CH3) cholesterol/esterified<br>and free fatty acids                                              | 173.07 ± 73.11   | 407.86 ± 203.54     | 347.69 ± 157.62     | 0.03   | n.s. | n.s.  |
|----|---------------------------------------------------------------------------------------------------|------------------|---------------------|---------------------|--------|------|-------|
| 3  | (CH <sub>3</sub> ) cholesterol (C19)                                                              | $4.19\pm2.33$    | $8.96 \pm 5.17$     | $9.48 \pm 4.18$     | n.s.   | 0.04 | n.s.  |
| 4  | (CH <sub>2</sub> ) <sub>n</sub> of aliphatic chains                                               | $468.29 \pm 125$ | $981.33 \pm 243.47$ | $616.35 \pm 241.81$ | 0.001  | n.s. | 0.01  |
| 5  | (CH <sub>2</sub> -CH <sub>2</sub> -COO-) β-<br>methylene protons associated<br>to carbon groups   | 80.60 ± 19.15    | 189.16 ± 75.64      | 122.39 ± 48.96      | 0.004  | n.s. | n.s.  |
| 6  | (CH <sub>2</sub> -CH=CH-CH <sub>2</sub> ) α-<br>methylene protons associated<br>to double bonds   | 127.30 ± 58.17   | 217.80 ± 77.55      | 134.55 ± 41.96      | 0.034  | n.s. | 0.043 |
| 7  | (CH <sub>2</sub> –CCO–) α-methylene<br>protons associated to carbonyl<br>groups                   | 54.83 ± 18.52    | 120.38 ± 29.29      | 69.61 ± 27.65       | 0.0006 | n.s. | 0.004 |
| 8  | (=CH-CH2-CH=CH)divinyl<br>methylene protons of w-3 and<br>w-6 unsaturated fatty acids             | 30.52 ± 6.11     | 46.77 ± 9.15        | 35.37 ± 12.17       | 0.023  | n.s. | n.s.  |
| 9  | N⁺(CH₃)₃ in<br>phosphadidylcholine, choline<br>& sphingomyelin                                    | $10.70 \pm 5.55$ | $11.51 \pm 5.00$    | $12.57 \pm 4.85$    | n.s.   | n.s. | n.s.  |
| 10 | (3CH <sub>2</sub> –)glycerophospholipids                                                          | $7.92 \pm 3.07$  | $5.98 \pm 3.49$     | $7.56 \pm 2.06$     | n.s.   | n.s. | n.s.  |
| 11 | (–CH <sub>2</sub> –) triglyceride                                                                 | $17.78\pm6.03$   | $39.02\pm9.43$      | $23.14 \pm 9.21$    | 0.0007 | n.s. | 0.007 |
| 12 | 1CH-Phospholipids +<br>triglyceride                                                               | $2.32 \pm 1.08$  | $2.91 \pm 0.84$     | $2.02 \pm 1.09$     | n.s.   | n.s. | n.s.  |
| 13 | CH–Phospholipid                                                                                   | $2.69 \pm 1.05$  | $2.59 \pm 1.25$     | $1.72 \pm 1.04$     | n.s.   | n.s. | n.s.  |
| 14 | (CH–)triglyceride                                                                                 | $7.53 \pm 3.31$  | $18.31 \pm 4.81$    | $9.61 \pm 3.98$     | 0.0004 | n.s. | 0.002 |
| 15 | is (-CH=CH-) protons in<br>double bonds in unsaturated<br>fatty acids and -CH from<br>cholesterol | 68.79 ± 16.17    | 128.46 ± 26.51      | 80.64 ± 29.01       | 0.0012 | n.s. | 0.006 |

|      | <sup>1</sup> H HR-MAS                |                                      |                            |                            |                                    |                                  |                                               |  |
|------|--------------------------------------|--------------------------------------|----------------------------|----------------------------|------------------------------------|----------------------------------|-----------------------------------------------|--|
|      |                                      | Average peak intensity (A.U.) ± S.D. |                            |                            | <i>p</i> -value from ANOVA         |                                  |                                               |  |
| S.No | Peak/Lipid component                 | Control                              | CLTI Pre-<br>Surgery       | CLTI<br>Amputation         | Control vs<br>CLTI pre-<br>Surgery | Control vs<br>CLTI<br>Amputation | CLTI Pre-<br>surgery vs<br>CLTI<br>Amputation |  |
| 1    | Caprate                              | 13084.27 ±<br>5838.28                | 9289.73 ±<br>5567.79       | 16813.36 ±<br>7402.78      | n.s.                               | n.s.                             | n.s.                                          |  |
| 2    | CH3 lipid + lipoproteins             | 476287.61 ±<br>207308.17             | 686983.89 ±<br>354495.43   | 824058.86 ±<br>472699.46   | n.s.                               | n.s.                             | n.s.                                          |  |
| 3    | Leucine                              | 23380.17 ±<br>9012.89                | 28135.30 ±<br>10057.48     | 36783.53 ±<br>15810.18     | n.s.                               | n.s.                             | n.s.                                          |  |
| 4    | CH <sub>2</sub> lipid + lipoproteins | 2441401.41 ±<br>1081576.26           | 3548817.41 ±<br>2038398.91 | 4249379.56 ±<br>2455974.01 | n.s.                               | n.s.                             | n.s.                                          |  |
| 5    | Lactate                              | 436870.58 ±<br>223482.27             | 667438.16 ±<br>246420.08   | 842161.32 ± 500851.47      | n.s.                               | n.s.                             | n.s.                                          |  |
| 6    | Alanine                              | 4682.51 ±<br>3929.08                 | 6949.01 ±<br>4286.98       | 6976.17 ±<br>3938.07       | n.s.                               | n.s.                             | n.s.                                          |  |
| 7    | (CH2-CH2-CO-)lipids                  | 273081.04 ±<br>133411.54             | 417870.67 ± 213532.55      | 476485.56 ±<br>296909.26   | n.s.                               | n.s.                             | n.s.                                          |  |
| 8    | (CH=CH-CH2-CO-)lipids                | 436670.36 ±<br>198080.60             | 642056.29 ±<br>313842.50   | 749793.64 ±<br>473916.53   | n.s.                               | n.s.                             | n.s.                                          |  |
| 9    | Glutamine                            | 12255.62 ±<br>5874.45                | 6953.62 ±<br>3202.25       | 14244.43 ±<br>5105.60      | n.s.                               | n.s.                             | n.s.                                          |  |
| 10   | (CH2–CH2–CO) lipids                  | 273380.60 ±<br>131030.24             | 408248.38 ±<br>207170.79   | 478095.76 ±<br>295189.96   | n.s.                               | n.s.                             | n.s.                                          |  |

| 11 | (=CH-CH2-CH=CH) lipids | $251856.33 \pm$ | $410418.68 \pm$ | 175043.42 ±    | 0.03 | n.s. | 0.0016 |
|----|------------------------|-----------------|-----------------|----------------|------|------|--------|
|    |                        | 90647.59        | 45427.77        | 122023.75      |      |      |        |
| 12 | Creatine               | $43087.17 \pm$  | $39659.88 \pm$  | $42890.81 \pm$ | n.s. | n.s. | n.s.   |
|    |                        | 8570.69         | 8258.93         | 18995.70       |      |      |        |
| 13 | Taurine                | $61142.46 \pm$  | $70382.61 \pm$  | $46485.58 \pm$ | n.s. | n.s. | n.s.   |
|    |                        | 15723.28        | 7932.46         | 22315.84       |      |      |        |
| 14 | Glucose                | $2608.77 \pm$   | 2622.30 ±       | 2179.61 ±      | n.s. | n.s. | n.s.   |
|    |                        | 1145.73         | 1180.86         | 1920.82        |      |      |        |
| 15 | CH2OCOR (glyceryl)     | $93204.00 \pm$  | $126402.36 \pm$ | 153033.57 ±    | n.s. | n.s. | n.s.   |
|    |                        | 39588.85        | 58312.31        | 87731.77       |      |      |        |
| 16 | CH–glycerol            | $43204.39 \pm$  | $64778.92 \pm$  | 77811.03 ±     | n.s. | n.s. | n.s.   |
|    |                        | 20189.11        | 31150.94        | 48679.94       |      |      |        |
| 17 | CH=CH lipids           | 267460.68 ±     | 403227.65 ±     | 473309.94 ±    | n.s. | n.s. | n.s.   |
|    |                        | 129833.12       | 198230.93       | 310343.17      |      |      |        |

Data are presented as mean ± S.D. One way ANOVA using Tukey's multiple comparisons test was performed on each metabolite/compounds and the p-values are also reported for each of them. Bold font proton/s indicate the proton/s that is/are giving NMR peak/s at that particular spectral range (ppm). n.s., not significant.



Figure S3. A portion of COSY spectrum for the muscle sample (control 6a: aqueous phase) showing individual metabolites.



Figure S4. A portion of TOCSY spectrum for the muscle sample (control 6a: aqueous phase) showing individual metabolites.



**Figure S5.** A portion of HSQC spectrum for the muscle sample (control 6a: aqueous phase) showing individual metabolites.



Figure 6. A portion of HMBC spectrum for the muscle sample (control 6a: aqueous phase) showing individual metabolites.