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Abstract: Among the most common causes of death worldwide, ischemic heart disease (IHD) is
recognized to rank first. Even if atherosclerotic disease of the epicardial arteries is known as the
leading cause of IHD, the presence of myocardial infarction with non-obstructive coronary artery
disease (MINOCA) is increasingly recognized. Notwithstanding the increasing interest, MINOCA
remains a puzzling clinical entity that can be classified by distinguishing different underlying
mechanisms, which can be divided into atherosclerotic and non-atherosclerotic. In particular, coronary
microvascular dysfunction (CMD), classifiable in non-atherosclerotic mechanisms, is a leading factor
for the pathophysiology and prognosis of patients with MINOCA. Genetic susceptibility may have
a role in primum movens in CMD. However, few results have been obtained for understanding
the genetic mechanisms underlying CMD. Future studies are essential in order to find a deeper
understanding of the role of multiple genetic variants in the genesis of microcirculation dysfunction.
Progress in research would allow early identification of high-risk patients and the development of
pharmacological, patient-tailored strategies. The aim of this review is to revise the pathophysiology
and underlying mechanisms of MINOCA, focusing on CMD and actual knowledge about genetic
predisposition to it.

Keywords: MINOCA; INOCA; coronary microvascular dysfunction; coronary flow reserve; index of
microvascular resistance; genetic predisposition

1. Introduction

Among the most common causes of death worldwide, ischemic heart disease (IHD)
is recognized to rank first, with increasing frequency despite diagnostic and therapeutic
progresses [1]. Atherosclerotic disease involving the epicardial arteries is known as the
leading cause of IHD [2]. However, among patients presenting an ST elevation myocar-
dial infarction (STEMI), about 10% had no significant coronary artery disease (CAD) on
angiography [3]. This demonstrates how other pathophysiological mechanisms may be
involved. According to the Fourth Universal Definition of Myocardial Infarction [4], the
combination of symptoms and a positive cardiac biomarker, cardiac troponin, is diagnostic
of acute myocardial injury (AMI). When coronary plaques ≥50% of epicardial vessels
diameter are excluded at coronary angiography, and other alternative diagnoses can be
ruled out (i.e., pulmonary embolism, myocarditis), the diagnosis of myocardial infarction
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with non-obstructive coronary artery disease (MINOCA) can be applied [4–6]. MINOCA
was documented for the first time more than 75 years ago, and since then, it has been the
object of several clinical studies. These latter have reported a prevalence of MINOCA from
5% to 6% of AMI cases, with a range between 5% and 15% depending on the population
examined [7]. The COAPT study reported MINOCA in 5.8% of patients with myocardial
infarction [8]; in the GENESIS-PRAXY trial, MINOCA was identified in 8.2% of the sample
examined [9].

Another definition worth mentioning is myocardial ischemia with non-obstructive
coronary arteries (INOCA). This is an entity that has been found to be much more prevalent
in women, associated with the increased risk of major adverse cardiovascular events
(MACE), heart failure with preserved ejection fraction (HFpEF), coronary microvascular
dysfunction (CMD), and stroke. The major difference between MINOCA and INOCA is
that the former requires evidence of acute myocardial infarction and, at the same time,
angiographic proof of non-occlusive coronary disease. Risk factors predisposing to these
two conditions also differ: those for MINOCA include arterial hypertension, psychological
stress, younger age, and platelet disorders, while risk factors for INOCA relate to older
age, compared to patients affected by MINOCA, and traditional cardiovascular risk factors
such as dyslipidemia, diabetes mellitus, and smoking [10].

Strong evidence supports the role of traditional risk factors in the pathogenesis of the
disease [11,12], which have also been associated with a poor prognosis [13]. In particular,
chronic hyperglycemia is associated with a significantly reduced endothelial-dependent
and endothelial-independent coronary vasodilator function [14]. In addition, chronic
inflammation is frequently observed in patients with frequent ischemic episodes, because
it promotes an overproduction and storage of cellular reactive oxygen species (ROS) [15].

Notwithstanding the increasing interest, MINOCA remains a puzzling clinical entity,
also because of the discrepancy between the population enrolled in clinical studies and the
population affected by it in clinical practice. Indeed, even if epidemiologically younger
women are the most affected, the vast majority of studies enroll men and older patients,
biasing our actual knowledge [16]. Lastly, patients with MINOCA have a variable prognosis
that is mainly dependent on the underlying cause [17].

This review aims to explore the state of the art of this disease with a particular focus
on the pathophysiological mechanism of CMD.

2. Pathophysiology and Underlying Mechanisms of MINOCA
2.1. Coronary Physiology and Regulation of Coronary Blood Flow

The coronary arterial system consists of a vessel network characterized by different
sizes and functions. On the one hand, epicardial coronary arteries have minimal resistance
to coronary flow, and their tone is mainly regulated by shear stress and endothelial function.
On the other hand, arterioles represent most of the resistance to the heart circuit and adjust
their blood distribution according to the needs of myocardial tissue metabolism. Pre-
arterioles, arterioles, and capillaries represent the coronary microcirculation [18].

Even if the real role of the systems responsible for the cross-talk between coronary
flow and myocardial metabolism has not been clearly identified, it is known that, in
physiological conditions, coronary blood flow (CBF) regulation is mediated by various
different systems, including endothelial, neurohumoral, nervous, metabolic, and myogenic
mechanisms [19,20]. Firstly, endothelial cells affect vasomotor activity through vasoactive
substances, such as vasodilator nitric oxide (NO) and vasoconstrictor endothelin-1 (ET-1),
whose balance may be altered by oxidative stress and inflammation. For instance, ROS
augmentation can foster the transformation of NO into peroxynitrite radicals, switching
the endothelial NO synthetase (eNOS) from a NO- to a ROS-producing enzyme. It causes
a reduction in NO-mediated vasodilation and increases ET-1 vasoconstriction activity
through the RhoA/Rho-kinase pathway [21,22]. Secondly, the resistance to the coronary
vascular network is regulated by the parasympathetic nervous system and the synthesis
of acetylcholine, which causes vasodilation through the production of NO by eNOS. The
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sympathetic system acts as a vasoconstrictor, through the α-receptors expressed on the
epicardial vessels, and as a vasodilator, through the β-receptors of the intramyocardial ves-
sels and the Ca++-activated K+ (KCa) channels [23,24]. In addition, myogenic mechanisms
enable coronary self-regulation systems that maintain the blood flow constant, despite
changes in the perfusion pressure. The increase in myogenic tone is due to Ca++-dependent
signals through the L-type Ca++ channels and the voltage-gated K+ (Kv) channels [24].
Moreover, metabolic regulation has a crucial role in working through adenosine, adenosine
triphosphate (ATP), adenosine diphosphate (ADP), prostaglandins, and ROS, causing the
dilation of arterioles. In normal conditions, creatine kinase inhibits adenylate kinase, and
through inhibition by ATP, the ATP-sensitive potassium channels (K-ATP) are mostly in a
“closed” state. Hypoxia reduces the activity of creatine kinase and increases adenylate ki-
nase activity with the consequent production of adenosine monophosphate (AMP), K-ATP
channel opening, hyperpolarization of the membrane, and coronary vasodilation [25–27].

CBF regulation also depends on several ion channels activities, which are the end
effectors of all the regulation mechanisms acting at the coronary level. They are expressed
by endothelial cells and vascular smooth muscle cells (VSMCs). In particular, K-ATP
channels, Kv channels, and voltage-gated Na+ (Nav) channels regulate the concentration of
calcium in both coronary smooth muscle and endothelial cells, allowing the rapid response
of both the endothelium and vascular smooth muscle layer to the continuously changing
demands of the myocardium [28]. Thus, because of their role in repolarization in coronary
vascular cells, vascular tone abnormalities are strictly connected to the imbalance of ion
channel activity and expression [29]. Ion channels have a central role in the continuous
cross-talk between coronary circulation and the myocardium, and their abnormalities
contribute to CMD and IHD.

2.2. MINOCA and Pathophysiological Mechanisms

MINOCA can be classified by distinguishing different underlying pathophysiolog-
ical mechanisms, which can be divided into atherosclerotic and non-atherosclerotic, as
illustrated in Figure 1.
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Figure 1. Summary of the pathophysiological mechanisms of MINOCA. Underlying pathophysiolog-
ical mechanisms of MINOCA can be divided into atherosclerotic and non-atherosclerotic. MINOCA:
Myocardial infarction with non-obstructive coronary artery disease.



J. Clin. Med. 2023, 12, 3586 4 of 17

Atherosclerotic causes essentially concern plaque disruption. This term encompasses
plaque rupture, plaque erosion, and calcific nodules, which can then lead to thrombus
formation, laying the ground for myocardial infarction, whose presence can be confirmed
by intracoronary imaging. Approximately one-third of patients affected by MINOCA are
found to have a plaque disruption detected on intravascular ultrasound (IVUS) [7].

The non-atherosclerotic causes most notably include epicardial coronary vasospasm,
CMD, coronary embolism/thrombosis, spontaneous coronary artery dissection, and sup-
ply/demand mismatch [6]. Coronary artery spasm is due to vascular smooth muscle
hyperreactivity in response to endogenous or exogenous (e.g., cocaine) vasospastic sub-
stances [5]. It has been reported that over a quarter of patients with MINOCA undergoing
provocative testing are shown to have inducible spasm [17]. CMD can also contribute to
the development of MINOCA. As a matter of fact, if epicardial coronary arteries can be
easily visualized by coronary angiography and readily revascularized in case of obstructive
atherosclerotic plaque presence, they constitute only the tip of the iceberg for what relates
to coronary resistance when myocardial ischemia is present in the absence of CAD. Indeed,
70% of coronary resistance is provided by the coronary microcirculation [30]. Coronary
thrombosis or embolism may be involved in the genesis of MINOCA as well, mostly by
affecting the coronary circulation at the microvascular level. Embolism at the level of the
branches of the epicardial coronary arteries may also represent the causative mechanism.
Thrombosis may be due to inherited or acquired thrombotic disorders, whereas embolism
may be due to coronary or systemic embolization, eventually lodging at coronary micro-
circulation [30]. Spontaneous coronary dissection usually causes MINOCA by means of
luminal obstruction. However, particularly when occurring at the level of the coronary
microcirculation, obstruction may not always be evident upon coronary angiography,
hence leading to the diagnosis of MINOCA. This subtype tends to occur more frequently
in younger and female subjects, and a link between hormones, pregnancy and delivery
leading to changes in intima-media composition has been identified [5,30]. Interestingly,
most of the dissections have been shown to occur in absence of atherosclerotic disease [5,30].
Supply/demand mismatch, the pathophysiological ground of the so-called type II my-
ocardial infarction, is most commonly due to arrhythmias, hypotension, and hypoxia. As
approximately half of patients experiencing such a mismatch are not shown to have a
significant CAD, they may be classified as MINOCA [31].

In addition to these mechanisms, it is also worth mentioning Takotsubo syndrome
(TTS) because it is still controversial if it should be classified within MINOCA or not.
Its clinical presentation, indeed, is characterized by acute, reversible heart failure (HF)
with myocardial stunning in the absence of occlusive CAD [32]. Its pathophysiological
mechanism seems to depend on dysregulation in the sympathetic neurohormonal axis. This
is usually consequent to a stressful event, which plays a vital role, leading to endothelial
dysfunction and vasospasm [33]. Moreover, TTS shows clear differences from the rest of the
MINOCA group: it presents a more aggressive clinical presentation and worse in-hospital
outcomes with better long-term cardiovascular prognosis [34].

Moreover, it is worth mentioning that an increased prevalence of MINOCA has been
found, compared to CAD-related myocardial infarction, in patients with active cancer. The
neoplasm itself and the antineoplastic treatment may lead to coronary spasm, endothelium
damage, and acute thrombosis, and the risk of myocardial infarction is higher when
chemotherapy drugs of different groups are administered together. Interestingly, it has also
been shown that patients with MINOCA are affected by myocardial injury on a lesser scale
due to the prevalence of edema with small foci of necrosis [35].

Considering the high incidence of MINOCA/INOCA, whose detection is becoming
increasingly feasible thanks to better awareness and diagnostic advancements in the field,
there is an expanding interest in the pathophysiological basis of this complex entity. Such
an interest is particularly powered by the willingness to more precisely outline its less
evident and more underhanded mechanisms, which constitute a promising field of research
yet to be fully elucidated.
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3. Coronary Microvascular Dysfunction in MINOCA

Coronary microcirculation consists of blood vessels smaller than 4–5 mm in diameter
(i.e., pre-arterioles, arterioles, and capillaries), whose main function is the regulation of
coronary vascular resistance. Of the total resistance, 70% is provided by the coronary micro-
circulation [7,36,37]. Coronary microcirculation is also a reservoir of myocardial blood; in
fact, it contains almost 90% of total myocardial blood volume [38]. Coronary pre-arterioles
have a diameter ranging from 500–400 µm to 100 µm, and their function is to maintain
constant the pressure at the origin of arterioles into a limited range, despite variations in the
epicardial coronary perfusion pressure and flow [36]. Coronary arterioles have a diameter
ranging from 100 µm to 20–10 µm, and their function is to provide myocardial blood supply
according to myocardial oxygen consumption; this is the reason why they are the main
site of regulation of coronary vascular resistance [7,17,36–38]. Capillaries are made up of a
single endothelial layer and a basal lamina with a diameter of approximately 10–12 µm,
whose function is to ensure metabolic and respiratory exchanges [17]. The endothelium has
a crucial role in cardiovascular homeostasis, in particular myocardial capillaries [39,40].

CMD could be defined as a set of dysfunctions affecting both the structure and function
of coronary microcirculation, resulting in inadequate coronary blood supply [17,39–41].
CMD is a leading factor in the pathophysiology and prognosis of patients with INOCA
and MINOCA. CMD is present in up to 50% of patients declaring one or more episodes of
chest pain but without obstructive CAD on angiography, a condition that more commonly
affects women and patients with multiple cardiovascular risk factors [42]. Recently, it has
been estimated that approximately half of patients with non-obstructive CAD have CMD,
especially females [43].

The prognostic significance of CMD has been evaluated by a coronary angiography-
derived index of microvascular resistance (IMR). Patients with higher IMR had a higher
rate of MACE (36.4%) as compared to patients with lower IMR (13%) [44]. Coronary
angiography-derived IMR is a strong predictor of the clinical outcome in patients with
MINOCA [44]. Severe CMD is demonstrated in patients with INOCA, and they have a
higher risk of MACE [45]. CMD finds its roots in a variable combination of functional and
structural mechanisms affecting coronary microcirculation [41]. According to literature
data, the best-known factors are the following:

• Structural mechanisms, such as abnormal vascular remodeling [38,41,46], capillary
rarefaction [47,48], luminal obstruction [5,40,49–51], vascular wall infiltration [41],
and extrinsic vascular compression (e.g., edema, fat infiltration, amyloidosis, and
perivascular fibrosis) [41,47,48].

• Functional mechanisms, such as endothelial dysfunction [40,49,52,53] and vascular
smooth muscle cell hyperreactivity [17,41].

All these mechanisms lead to impaired vasodilatation and/or enhanced vasoconstriction.
The impact of every single factor in determining CMD is not clearly defined. However,

it is known that the combination of structural and functional mechanisms is interconnected,
and it can result in inadequate CBF and myocardial damage [41]. The functional and
structural mechanisms of CMD are summarized in Figure 2.

Abnormal vascular remodeling is mostly a chronic alteration of microcirculation vessel
composition, characterized by changes in diameter and thickness, both with regard to the
cellular compartment (VMSCs and endothelial cells) and the extracellular component [41].
Vascular remodeling is mostly caused by the thickening of the medial wall due to prolifer-
ated smooth muscle cells and perivascular fibrosis [46]. It generally induces a reduction in
luminal size, which has a negative effect on CBF [38].

Capillary rarefaction and perivascular fibrosis are usually co-present in cardiac remod-
eling following myocardial infarction, pressure overload, or myocarditis [47]. Endothelial
cells regulate vasodilatation by releasing in loco vasodilator substances, especially NO. NO
protects the integrity of the endothelium and counteracts apoptosis, inhibiting fibrosis and
platelet aggregation [39,54].
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Figure 2. Structural and functional mechanisms of coronary microvascular dysfunction.

Impaired endothelial cells decrease the production of NO, resulting in collagen de-
position, poor angiogenesis, endothelial-to-mesenchymal transition, and proliferation of
fibroblasts (which increase the production of collagen and fibronectin). All of these as-
pects lead to capillary rarefaction (i.e., loss of perfused microvessels) and perivascular
fibrosis [48]. It must be noted that fibroblast proliferation and the increasing production of
extracellular matrix proteins raise the distance between capillaries and myocytes, exposing
the myocardium to the risk of hypoxia, even more in the case of reduced blood flow. When
arteriolar remodeling co-exists with decreased capillary density, the effect on blood flow
reduction is more than additive [52].

Additionally, hormones and stress may have a role in MINOCA pathophysiology. It
has been speculated that MINOCA incidence may be connected to circadian stress. For
example, MINOCA occurs significantly less during weekends and holidays; however, this
finding did not impact long-term mortality [55].

Currently, it has been demonstrated that MINOCA can be related to the luminal
obliteration of coronary microcirculation due to thromboembolic mechanisms [5,49]. Coro-
nary thromboembolism starting directly from the left heart is typically caused by atrial
fibrillation, valvular disease, intraventricular thrombi, and cardiac tumors (e.g., myxoma
and papillary fibroelastoma) [5,40]. Another relevant possibility is debris from non-critical
epicardial atherosclerotic plaque following spontaneous or iatrogenic rupture. The release
of debris and thrombogenic substances from atherosclerotic plaques may also be a chronic
phenomenon, resulting in progressive CMD [50]. On the other hand, coronary thromboem-
bolism can also be paradoxical in the presence of right–left shunt, such as in the instance of
patent foramen ovale, atrial septal defect, and, rarely, arteriovenous fistula [5].

It is not uncommon that these patients have co-occurring thrombophilic disorders.
Indeed, routine thrombophilic screening performed on patients with MINOCA showed
a prevalence of about 14% of these disorders, either of inherited type or of acquired type,
which is higher than in the general population [51–54,56]. Inherited thrombophilia mainly
includes factor V Leiden (prevalent in 5% of general population), elevated factor VIII/von
Willebrand factor (prevalent in 25% of general population), protein C deficiency, protein S
deficiency, antithrombin III deficiency, and mutation of prothrombin G20210A [7]. Acquired
thrombophilia mainly includes autoimmune antiphospholipid syndrome, heparin-induced
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thrombocytopenia, thrombotic thrombocytopenic purpura, and myeloproliferative dis-
orders, such as polycythemia vera (PV) and essential thrombocythemia (ET) [7]. In a
systematic review on the use of thrombophilia testing in patients with MINOCA, factor V
Leiden was observed in 12% of these patients, and protein C or S deficiency was observed
in 3% of them [51]. Autoimmune antiphospholipid syndrome has been found in almost
7.5% of patients presenting a generic coronary embolism [57]. Instead, thrombotic thrombo-
cytopenic purpura is an infrequent cause of MINOCA, even if its actual weight has not yet
been defined [7]. The higher prevalence of thrombophilia in patients with MINOCA should
make thrombophilia screening routinary, especially in young fertile women. Furthermore,
in the case of a positive result for any thrombophilia, long-term anticoagulant treatment
should be considered [56].

Extrinsic vascular compression can be related to myocardial edema, such as in my-
ocarditis. In the acute phase of myocarditis, interstitial edema is relevant in association
with inflammatory infiltrate. It can cause considerable extrinsic vascular compression,
resulting first in hypoxia and then in myocardial ischemia, by reducing myocardial blood
flow, even with only local myocardial damage [58]. The prevalence of myocarditis among
patients with a clinical diagnosis of MINOCA is around 33% [58]. The most common cause
of biopsy-confirmed myocarditis is a viral infection, mainly sustained by adenoviruses,
parvovirus B19, human herpesvirus 6, and coxsackie viruses. In particular, parvovirus
B19-related myocarditis can mimic MINOCA [59].

Coronary endothelial dysfunction accounts for up to 60–70% of INOCA and up to
25% of MINOCA. Endothelial dysfunction among these patients is typically expressed
according to a coronary microvascular spasm [17,40,52]. To date, it is evident that MINOCA
can be linked to microvascular spasm when coronary microcirculation responds exagger-
atedly to vasoconstrictive stimuli [49]. This inadequate vasoconstrictive response can be
demonstrated by the intracoronary administration of acetylcholine, when this molecule
reproduces symptoms and electrocardiogram alterations in patients without epicardial coro-
nary artery diameter change [60]. Microvascular spasm is usually clinically associated with
angina at rest, and occasionally, it can lead up to myocardial infarction [53]. Microvascular
spasm induced by the intracoronary administration of acetylcholine was reported in almost
50% of patients with stable chest pain and non-obstructive CAD [17]. The endothelium
plays a central role in modulating smooth muscle function by releasing vasoactive sub-
stances [61,62]. All cardiovascular risk factors and the atherosclerotic process, in the long
term, render the vascular endothelium dysfunctional, and the normal vasodilator response
to pharmacological and physiological stimuli becomes attenuated both in epicardial arteries
and in the coronary microcirculation. It translates into a weak rise and/or reduction of
CBF [17,61]. Moreover, functional abnormalities of smooth muscle cells regulating vascular
tone in arterioles contribute to CMD. An attenuated vascular smooth muscle relaxation is
documented in patients with CMD due to arterial hypertension, dyslipidemia, smoking,
obesity, diabetes mellitus, or renal impairment. This has been demonstrated by the use of
vasodilator substances, such as adenosine, papaverine, and dipyridamole [17].

Microvascular functional abnormalities and structural abnormalities are not indepen-
dent of each other. For example, a persistent change in microvascular tone results in the
development of structural abnormalities: luminal narrowing due to inward remodeling
of intramyocardial arterioles, rarefaction of microvessels, and microembolization after the
spontaneous or iatrogenic atherosclerotic plaque rupture [52].

To sum up, the role of CMD in INOCA and MINOCA requires further investigations.
Unanswered questions remain the role of single factors in causing CMD and whether CMD
only causes INOCA and MINOCA or it can also be a consequence of them. Patients with
INOCA and MINOCA should also be stratified for their risk of long-term cardiovascular
events. In this scenario, the coronary angiography-derived IMR could be used to objectively
stratify these patients [44].

Additional knowledge is also crucial to achieving patient-specific treatments in INOCA
and MINOCA, which certainly include the treatment of cardiovascular risk factors and
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atherosclerosis. Recent evidence suggests that clinical outcomes will be improved by
stratifying antianginal therapies according to the assessment of CMD in these patients [63].

4. Invasive and Non-Invasive Assessment of Coronary Microvascular Dysfunction

Diagnostic methods of INOCA and MINOCA include both invasive and non-invasive
procedures; however, no current technique is able to anatomically visualize the coronary
microcirculation in vivo. However, the assessment of the coronary microcirculation can
be performed only after having excluded the presence of hemodynamically significant
stenosis of the epicardial arteries [64].

As far as the invasive evaluation of the coronary microcirculation is concerned, the
COVADIS study released international standardized diagnostic criteria for CMD [65]. Both
coronary flow reserve (CFR) and IMR are needed to perform CMD diagnosis. Abnormal
CFR is defined as <2.0, while abnormal IMR is defined as ≥25. Namely, microcircu-
lation is studied through the evaluation of the CFR, which represents the relationship
between the coronary flux during maximal hyperemia and at rest. In order to evaluate coro-
nary vasomotor dysfunction, the acetylcholine provocation test allows the assessment of
endothelial-dependent microvascular function. Intracoronary and/or systemic adenosine
infusion allows the assessment of endothelial-independent microvascular function. During
hyperemia induced by adenosine, the assessment of the fractional flow reserve (FFR) is also
possible in the case of an intermediate atherosclerotic plaque, defined as the ratio of mean
coronary pressure distal to stenosis and mean aortic pressure under maximal hyperemia
conditions [66]. Furthermore, high values of IMR (≥25), which stands for increased mi-
crovascular resistance, and CMD presence also have a prognostic value. When IMR is >40
after primary coronary angioplasty, it is associated with a higher incidence of MACE within
30 days [67], a higher risk of microvascular obstruction [68], and hypercoagulability [69]. It
has also been proven to be useful in guiding anti-anginal therapy in patients with angina
and non-obstructive CAD [70]. It is an independent predictor for non-fatal myocardial
infarction, stroke, HF, re-hospitalization due to angina, and cardiovascular death [44,71].
Moreover, angio-IMR is a new angiographic index, pressure-wire free, initially ideated
for the measurement of microcirculatory resistances in patients affected by STEMI [72].
Scarsini et al. demonstrated that it is characterized by a diagnostic accuracy similar to nor-
mal IMR, which applies to all coronary syndromes, both acute and chronic [73]. Moreover,
in patients affected by STEMI, an angio-IMR value >40 is strongly related to a higher risk
of hospitalization for HF and cardiovascular death, compared with a preserved angio-IMR
value [74].

The assessment of microvascular function during coronary angiogram may be carried
out through Doppler flow velocity and coronary bolus thermodilution [75]. CFR, for
instance, is assessed through the thermodilution method. It consists of calculating the
average mean transit time of a saline bolus injected into the coronary artery, administered
at room temperature, mixed with blood at body temperature, and dividing the hyperemic
mean transit time by resting mean transit time [76]. IMR is calculated as the product
of distal coronary pressure at maximal hyperemia, then multiplied by the hyperemic
mean transit time [77]. The Doppler method, instead, involves a Doppler crystal that
measures the average peak velocity (AVP), providing the CFR by the ratio between the
AVP value during hyperemia and under resting conditions. Both methods have different
weaknesses and technical disadvantages, with increased interobserver variability in the
Doppler method, whereas the thermodilution method is more feasible but characterized by
higher intraobserver variability [75,78].

The non-invasive evaluation of microcirculation is performed after ruling out hemody-
namically significant epicardial stenosis. It can be performed through coronary computed
tomography (CT). The non-invasive evaluation of microcirculation relies on positron emis-
sion tomography (PET), transthoracic color Doppler echocardiography, perfusion cardiac
magnetic resonance (CMR), and perfusion coronary CT. PET, whose measures have been
widely validated, represents the most accurate technique. It allows CFR assessment by



J. Clin. Med. 2023, 12, 3586 9 of 17

measuring the blood flow difference to the myocardium at rest and under pharmacological
stress [79]. The accuracy and reproducibility of PET for the quantitative measurement
of myocardial blood flow and CFR have been widely validated both in humans and in
animals. The typical protocol of evaluation consists of a rest myocardial perfusion study
and a vasodilation-stress study based on the use of a radiotracer, allowing the quantification
of both regional and global myocardial blood flow to obtain CFR [17,80].

Transthoracic color Doppler echocardiography allows studying the coronary flow
velocity reserve (CFVR) by means of the pulsed-wave Doppler technique. CFVR is the
ratio of the diastolic peak velocity of the CBF at rest and after maximal hyperemia. A
CFVR ≤ 2–2.5 defines CMD. This technique samples the anterior descending coronary
artery and uses it as a reference for the whole coronary microcirculation [81]. Schroder et al.
demonstrated that the CFVR value has a prognostic value [82]. The Doppler technique
represents a low-cost option free of ionizing radiation, even if it demands the challenging
visualization of the proximal coronary arteries.

CMR, through the injection of a gadolinium-based contrast agent and a perfusion
study, can be used to quantify myocardial perfusion because it enables the evaluation of the
regional and global myocardial perfusion reserve. Perfusion is directly proportional to T1
signal intensity, given by gadolinium diffusion from the microcirculation to the interstitial
space [83,84]. The usual imaging protocol is based on a rest myocardial perfusion study and
a vasodilator stress myocardial perfusion study, following the injection of a gadolinium-
based contrast agent; the regional and global myocardial perfusion is obtained by using
semiquantitative or quantitative models (i.e., CFR). The main advantages are great spatial
resolution, transmural characterization of blood flow, absence of radiation, and global
assessment of cardiac function and structure. Moreover, the CFR evaluation and the
myocardial perfusion reserve index have been demonstrated to predict the rate of MACE
with high prognostic power beyond the presence of late gadolinium enhancement and
ischemia [17,80,85].

Lastly, dynamic CT scanning can produce estimates of absolute myocardial flow
through models previously used for CMR, creating the chance to detect anatomical and
functional abnormalities of the myocardium and the coronary circulation during the same
examination.

5. MINOCA and Coronary Microvascular Dysfunction: The Genetic Susceptibility

The study of the genetic mechanisms underlying the pathophysiology of cardiovas-
cular diseases is obtaining increasing interest. Beyond traditional cardiovascular risk
factors, a role as primum movens for genetic susceptibility has been hypothesized in
determining IHD. It is known that more than 50% of the susceptibility to IHD depends
on genetic variants [86], mostly consisting of single-nucleotide polymorphisms (SNPs).
They have been identified through genome-wide association studies (GWAS) [87]. Genetic
variants may predispose, particularly affecting proteins involved in CBF regulation, to
CMD and, therefore to INOCA and MINOCA. This is associated with CBF imbalance
and myocardial ischemia. It is important to notice that genetics may represent not only
a predisposing but also a protective determinant for myocardial ischemia. Despite this,
several multiple gene loci associated with the development of CAD have been identified,
and few results have been obtained for understanding the genetic mechanisms underlying
microcirculatory dysfunction.

Recently, molecular pathways associated with an increased risk of CFR alterations
have been identified in intronic sequences of the vascular endothelial growth factor-A
(VEGF-A) and cyclin-dependent kinase inhibitor 2B-AS1 (CDKN2B-AS1) genes [88]. The
first GWAS [89] attributed significant relevance to a locus on chromosome 9p21, CDKN2B-
AS, a long non-coding antisense ribonucleic acid (RNA), also called antisense non-coding
RNA in the INK4 locus (ANRIL) [89]. It is expressed both in VSMCs and endothelial cells
of the coronary arteries. Its deficiency causes abnormal cell proliferation and senescence
with repercussions on the coronary microcirculation. In addition, GWAS have highlighted
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the interaction between this locus and inflammatory mediators and/or lymphoblastoid cell
growth, such as interferon γ (IFN γ). Therefore, the relevant interchanging role played by
inflammation in the pathophysiology of IHD has been confirmed [90].

VEGF-A is a chemotactic and mitogenic agent for endothelial cells. It regulates their
proliferation and migration during the process of coronary morphogenesis. Furthermore, it
constantly affects the functionality of the endothelium during vascular regeneration [91]. Its
decreased expression in some genetic variants is correlated with vascular dysfunction and
lower survival of endothelial cells, due to apoptotic processes and repairing mechanisms
abnormalities [88].

Other findings concern hemeoxygenase1 (HMOX1) promoter polymorphisms, a stress-
induced enzyme with a protective role against myocardial ischemia, including ischemic
injury. HMOX1 catalyzes the degradation of heme to iron, carbon monoxide, and biliverdin.
An association has been shown among SNPs with long HMOX1 promoter guanine-thymine
repeats, cardiovascular diseases, and a reduced left ventricular ejection fraction [92]. Fur-
thermore, how HMOX1 confers protection against ischemia injury has to be fully under-
stood in an animal study [93].

Another decisive factor in genetic predisposition to microvascular dysfunction is ET-1.
Acting as the natural counterpart of the vasodilator NO, ET-1 is a powerful vasoconstrictor.
Binding the endothelin-A (ET-A) and endothelin-B (ET-B) receptors, it affects vascular tone
and proliferation. Excess ET-1, activating the G-protein-coupled ET-A receptor in VSMCs,
induces vasoproliferative effects, endothelial dysfunction, and inflammation [94]. Recently,
it has been demonstrated that a gene locus on chromosome 6p24 (PHACTR1/EDN1)
regulates ET-1 gene expression and that the allelic variant rs9349379-G is associated with the
increased plasma concentrations of ET-1. Consequently, the risk of atherosclerotic epicardial
coronary heart disease, myocardial infarction, and CMD increases [95]. It has already been
shown that higher plasma concentrations of ET-1 in patients with microvascular angina are
related to an increase in coronary vascular resistance and impaired CBF [96]. Ex vivo studies
have confirmed that subjects with functional allele rs9349379-G respond to ET-A receptor
blockade, such as zibotentan, an orally active ET-A receptor antagonist [97]. However,
results from future trials are needed to determine whether patients with microvascular
angina represent new potential beneficiaries of ET-A antagonist therapy.

Given the known importance of the regulatory role of NO and ion channel on vascular
tone, and considering that allelic variants of eNOS, such as rs1799983_G/T, are indepen-
dent predictors of IHD, it is not surprising that genetic alterations of these predispose also
to IHD, affecting both epicardial arteries and microcirculation [98]. NO activity is medi-
ated by cyclic guanosine monophosphate (cGMP) and guanosine-5’-triphosphate (GTP),
synthesized through guanylyl cyclase soluble and resulting in the activation of K-ATP
channels. K-ATP channels consist of the subunit Kir6.1 and/or Kir6.2 and sulfonylurea-
binding subunits (SUR1, 2A, or 2B). It has been demonstrated that genetic variants of the
potassium inwardly rectifying channel subfamily J member 11 (KCNJ11) gene, coding for
Kir6.2, may produce alterations in K-ATP channel function, impacting myocardial ischemia
susceptibility [99]. Other SNPs may be protective against CMD and IHD [27,98,100]. For
example, the rs5215_G/G polymorphism of KCNJ11 has demonstrated a protective role
against IHD [100]. In addition, the co-presence of the SNPs rs5215_G/G of KCNJ11 and
rs1799983_T/T of the nitric oxide synthase 3 (NOS3) gene may play a protective role
against myocardial ischemia [101]. This allows the hypothesis of cross-talk between the
NO pathway and K-ATP in coronary circulation [101]. Additionally, other ion channels,
in particular Kv1.3 and Kv1.5, have been demonstrated as crucial mediators between CBF
and myocardial metabolism [102,103].

Gender differences in SNPs are currently under analysis. In fact, it is now recognized
that males and females are exposed, during development and aging, to different hormonal
changes and risk factors [104] and that they show different vessel diseases [105]. Male sex
is related to a higher prevalence of extensive and obstructive epicardial lesions compared
to the female gender. Female sex shows a higher prevalence of microcirculatory dysfunc-
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tion [106]. Furthermore, females with anginal symptoms and microcirculatory dysfunction
are three times more likely to experience MACE than women without symptoms and
IHD. In the male group, no differences were found between patients with microvascular
angina and asymptomatic patients without CAD. This demonstrates how microcirculatory
dysfunction affects and determines a different prognosis between men and women [107].
Currently, no association between SNPs and an increased risk of microcirculatory disease
has been identified in females, while three genetic variants involving three proteins have
been identified in men: 5’-nucleotidase ecto (NT5E), myosin heavy chain 15 (MYH15), and
VEGF-A [88]. The variant gene for NT5E is associated with reduced CFR and increased
coronary calcification [88,108]. Genetic variants of MYH15, encoding myosin heavy-chain
polypeptide and regulating vascular tone, have been associated with an increased risk
of CMD; however, their role in the pathogenesis of microcirculatory dysfunction needs
further studies.

MINOCA is also a non-rare complication in hematologic diseases based on specific
genetic mutations, particularly in chronic myeloproliferative Philadelphia-negative neo-
plasms (cMPNs) [109–111]. In these patients, thrombotic events are the leading cause of
death, with a much higher prevalence compared to the general population. Even if the
pathogenesis of endothelial dysfunction in cMPNs remains unclear, shear stress, blood
hyperviscosity, and hypoxemia seem to play a primary pathophysiological role. As far as
genetic mutations are concerned, the most explored is the Janus kinase 2 (JAK2) V617F mu-
tation. It determines an acquired gain-of-function mutation in exon 14 of the gene, present
in 75% of cMPN cases. Pósfai et al. examined this correlation both in ET and PV: JAK2
V617F mutation positivity was present in 71.4% of myocardial infarctions, among which
21.4% have been represented by MINOCA [109]. Furthermore, ET and PV are characterized
by altered levels of NO derivatives. Hydroxyurea treatment may lead to higher values of
NO derivatives, with a significant additional antithrombotic mechanism [110]. In addition,
genetic mutations, in particular the V617F mutation of JAK2 in MPN patients, may be
associated with endothelial dysfunction and coronary spasm [111].

The main genetic variants discussed in this review and associated with microvascular
dysfunction are summarized in Table 1.

Table 1. Summary table of proteins and genetic variants associated with coronary microvascular
dysfunction.

Protein Pathophysiological Mechanism Reference

VEGF-A Reduced expression→ Repairing mechanisms abnormalities and increased apoptotic process→ VSMCs
and endothelial cells dysfunction→ CMD [88]

CDKN2B-AS1 Deficiency→ abnormalities in VSMCs and endothelial cells proliferation and senescence→ CMD [88,89]

HMOX SNPs→ reduced protection against ischemic injury→ CMD [92,93]

ET-1 SNP rs9349379-G→ increased plasma concentration of ET-1→ vasomotor tone impairment and
atherosclerotic disease progression→ CAD and CMD [94–97]

eNOS
SNP rs1799983_G/T→ substitution of guanine with thymine with consequent aminoacidic change from

glutamic acid to aspartic acid→ lower mRNA levels→ reduction in eNOS expression→ endothelial
dysfunction→ CAD and CMD

[98,99]

K-ATP SNP rs5215_G/G of KCNJ11→ valine–isoleucine substitution→ K-ATP gain of function→ increased
vasodilation and shear stress reduction. [100,101]

NT5E Genetic variants→ CFR reduction and increased coronary calcification [88,108]

MYH15 Deregulation of vascular tone→ increased risk of CMD [88]

JAK2 V617F mutation→ endothelial dysfunction and coronary spasm [109–111]

VEGF-A: Vascular endothelial growth factor-A; CDKN2B-AS1: Cyclin-dependent kinase inhibitor 2B-AS1; HMOX:
Heme oxygenase; ET-1: Endothelin-1; eNOS: Endothelial nitric oxide synthase; K-ATP: ATP-sensitive potassium;
NT5E: 5′-Nucleotidase ecto; MYH15: Myosin heavy chain 15; VSMCs: Vascular smooth muscle cells; CMD:
Coronary microvascular dysfunction; CAD: Coronary artery disease; SNPs: Single-nucleotide polymorphisms;
KCNJ11: Potassium inwardly rectifying channel subfamily J member 11; CFR: Coronary flow reserve; JAK2: Janus
kinase 2.



J. Clin. Med. 2023, 12, 3586 12 of 17

Future studies are essential in order to gain a deeper understanding of the role of
multiple genetic variants, mostly still unknown, in the genesis of microcirculation dysfunc-
tion. Progress in research would allow the early identification of high-risk patients and the
development of pharmacological, patient-tailored strategies.

6. Conclusions

MINOCA represents a relevant cause of AMI, particularly common in certain groups
of patients. In myocardial infarction, due to atherosclerotic disease of epicardial arteries,
the triggering cause may be easily identified and treated with coronary revascularization.
Moreover, cardiovascular risk factors may be strictly controlled through pharmacologi-
cal therapies. Conversely, the pathophysiological mechanisms of MINOCA often remain
unidentified, and risk factors are often unknown, exposing patients to recurrences, adverse
events, and low quality of life. Moreover, the heterogeneity of MINOCA pathophysiological
mechanisms makes the clinical management of these patients particularly challenging. In
this review, we focused on the role of CMD because it has a central role in the complex
pathophysiology of MINOCA and INOCA. The assessment of coronary microcirculation
may be performed invasively and non-invasively, and it should be implemented both in
MINOCA/INOCA and in myocardial ischemia due to atherosclerotic disease, also because
of the main pathophysiological role of CMD in patients undergoing percutaneous coronary
interventions [112,113]. CMD consists of structural and functional alterations of micro-
circulation, which hamper the cross-talk between coronary circulation and myocardial
metabolism. In this scenario, genetic susceptibility may have a primary role, affecting pro-
teins involved in the regulation of vasomotor tone, endothelial function, cell proliferation,
and atherosclerotic plaque stability. Further identification of genetic variants associated
with CMD may improve the actual knowledge regarding the pathophysiology of MINOCA,
also offering possible innovative targets for the management of these patients.
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