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Abstract: Extremely low birth weight (ELBW) premature infants are particularly susceptible to
hypocarbia and hypercarbia, which are associated with brain and lung morbidities. Transcutaneous
CO2 (TcCO2) monitoring allows for continuous non-invasive CO2 monitoring during invasive and
non-invasive ventilation and is becoming more popular in the NICU. We aimed to evaluate the
correlation and agreement between CO2 levels measured by a TcCO2 monitor and blood gas CO2

(bgCO2) among ELBW infants. This was a prospective observational multicenter study. All in-
fants < 1000 g admitted to the participating NICUs during the study period were monitored by a
TcCO2 monitor, if available. For each bgCO2 measured, a simultaneous TcCO2 measurement was
documented. In total, 1828 pairs of TcCO2–bgCO2 values of 94 infants were collected, with a median
(IQR) gestational age of 26.4 (26.0, 28.3) weeks and birth weight of 800 (702, 900) g. A moderate
correlation (Pearson: r = 0.64) and good agreement (bias (95% limits of agreement)):(2.9 [−11.8, 17.6]
mmHg) were found between the TcCO2 and bgCO2 values in the 25–70 mmHg TcCO2 range. The
correlation between the TcCO2 and bgCO2 trends was moderate. CO2 measurements by TcCO2 are
in good agreement (bias < 5 mmHg) with bgCO2 among premature infants < 1000 g during the
first week of life, regardless of day of life, ventilation mode (invasive/non-invasive), and sampling
method (arterial/capillary/venous). However, wide limits of agreement and moderate correlation
dictate the use of TcCO2 as a complementary tool to blood gas sampling, to assess CO2 levels and
trends in individual patients.

Keywords: non-invasive CO2 monitoring; premature infant; transcutaneous CO2 monitoring

1. Introduction

Extremely premature infants are susceptible to hyper- or hypocapnia and rapid fluc-
tuations in PaCO2, especially during the first week of life [1]. While monitoring PaCO2
in a blood sample is the “gold standard”, it only allows for interval monitoring and not
continuous monitoring. Thus, periods of abnormally high or low PaCO2 may be missed,
and corrective ventilation measurements may be delayed.

Two methods that allow for non-invasive, continuous CO2 monitoring in the NICU
are End-tidal CO2 (EtCO2) monitoring and Transcutaneous CO2 (TcCO2) monitoring. In
EtCO2 monitoring, the capnograph sensor is connected to the endotracheal tube and allows
for mainstream or side-stream measurements of EtCO2 [2]. EtCO2 monitoring was found
to have a good correlation with bgCO2 among ventilated term and preterm infants [3,4],
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though the agreement was only moderate during the first day of life [5], and was negatively
influenced by the severity of lung disease [4,6,7]. Among infants receiving mechanical
ventilation in the NICU, the use of continuous EtCO2 monitoring was found to improve
the control of CO2 levels within a safe range. In a subgroup analysis of extremely low
birth weight premature infants (ELBW), the prevalence of intraventricular hemorrhage
and periventricular leukomalacia was lower in the EtCO2-monitored group; however, this
group was too small to draw firm conclusions [8]. The main clinical limitation of EtCO2
monitoring in the neonatal intensive care unit (NICU) is that it cannot be used in infants
supported by high-frequency oscillatory ventilation (HFOV) or non-invasive ventilation,
which are ventilation modes that are commonly used in this population [2].

TcCO2 is based on the ability of CO2 to diffuse through body tissues and skin and be
detected by a sensor on the surface of the skin. By warming the sensor, local hyperemia is
induced, which increases the supply of arterial blood to the dermal capillary bed below
the sensor [9]. TcCO2 monitors are currently widely used in the NICU [10,11]. Histori-
cally, neonatal studies have shown that TcCO2 correlates better with PaCO2 compared to
EtCO2 [12–14], though more recent studies revealed inconclusive results [5,15–17].

Given the importance of avoiding extreme CO2 values and fluctuations during the first
week of life among ELBW premature infants, the growing popularity of TcCO2 monitoring
in the NICU, and the inconclusive data regarding their accuracy in this population, we
conducted this study. Our aim was to evaluate the correlation and agreement between CO2
levels measured by the TcCO2 monitor and blood gas CO2 (bgCO2) among ELBW infants
during their first days of life. We hypothesized that TcCO2 monitoring will be in good
correlation and agreement with bgCO2 measurements as well as CO2 trends

2. Materials and Methods

These data were part of a prospective, observational, multicenter study studying the
impact of TcCO2 monitoring on neurologic and respiratory complications among ELBW
infants (under submission). This study was approved by the research ethics board of all
centers participating in the study. Written informed consent was obtained from the parents
of all infants prior to study entry.

2.1. Study Population

All premature infants < 1000 g admitted to the participating NICUs during the study
period and needing respiratory support during the first day of life were monitored by TcCO2
monitor (Sentec AG, Therwil, Switzerland), if available, during the first week of life or
longer as clinically indicated. Respiratory support included invasive support (Conventional
mechanical ventilation (CMV) and HFOV) and non-invasive support including nasal
intermittent positive pressure ventilation (NIPPV), continuous positive airway pressure
(CPAP), and heated humidified high flow nasal cannula (HHHNC).

Infants with severe congenital malformation, birth asphyxia, known intraventricular
hemorrhage stage III–IV in the first 24 h of life, or if active treatment was not initiated were
excluded from the study.

2.2. Study Design

TcCO2 monitoring was started during the first 12 h of life. Probe placement was in
predefined areas as per manufacturer instructions. The sensor temperature was set to
41 ◦C in accordance with the manufacturer’s instructions [18]. Calibration of the TcCO2
was automatically performed every 4 h and following any reposition of the probe. Sensor
membranes were changed every 28 days or sooner in case of any visible damage or repeated
calibration errors. Skin fixation adhesives and contact gel were used in accordance with
manufacturer guidelines.

Blood samples were taken at the discretion of the bedside care team, following metic-
ulous placement of the probe and allowing for an adequate time period to achieve equi-



J. Clin. Med. 2023, 12, 5757 3 of 10

librium. For each blood sample drawn for blood gas monitoring, a simultaneous TcCO2
measure was recorded, as well as other clinical and respiratory support data.

2.3. Statistical Analysis

Data are presented as mean ± standard deviation (SD) for normally distributed
variables, or median with interquartile range (IQR) for variables with non-parametric
distribution. The correlation between TcCO2 and bgCO2 was measured using Pearson
correlation. To determine the agreement between the two CO2 measuring methods, a
Bland–Altman analysis was performed on all matched TcCO2–bgCO2 samples, correcting
for multiple measurements per patient [19]. Data are presented as bias (mean difference)
and 95% limits of agreement (LoA) (i.e., 1.96 times the SD of the bias). The correlation
of measurement trends was assessed for all consecutive pairs of TcCO2 and bgCO2 using
Pearson correlation.

Logistic regression analysis was used to examine the relationship between different
variables examined and the likelihood that the TcCO2–bgCO2 difference will be <|5|,
which we consider clinically acceptable [3]. We incorporated into the model risk factors
with p value < 0.05.

Statistical analyses were performed with SPSS version 25 (IBM SPSS, Chicago, IL,
USA). Bland–Altman plot according to multiple measurements per subject was performed
by MedCalc® Statistical Software version 20.218 (MedCalc Software Ltd., Ostend, Belgium).

3. Results

The study was conducted between March 2018 and September 2021 in the NICU’s
in Rambam, Bnai Zion, Meir, and Carmel medical centers. A total of 1828 pairs of TcCO2
and bgCO2 of 94 ELBW premature infants were collected, with a median (IQR) GA of 26.4
(26.0, 28.3) weeks and birth weight of 800 (702, 900) g. Demographic data are presented in
Table 1.

Table 1. Demographics.

Premature Neonates n = 94

Gestational Age, weeks 26.4 (26.0, 28.3)
Birth weight, g 800 (702, 900)

Small for gestational age 8 (8)
Prenatal steroids 65 (69)

Preeclampsia 25 (27)
Multiple births 26 (28)

Male gender 40 (43)
Delivery mode—Cesarean section 72 (77)

Apgar 5’ 8 (6, 9)
Intubation at delivery room 41 (44)

Umbilical cord pH 7.27 (7.19, 7.33)
RDS requiring surfactant treatment 56 (60)

Ionotropic support during first week 5 (6)
Sepsis during the first week 5 (6)
Deceased during first week 2 (2)
Deceased during NICU stay 6 (6)

Number of samples per infant 19 (14, 23)
Values are presented as median (IQR) or n (%). IQR—interquartile range, NICU—neonatal intensive care unit,
RDS—respiratory distress syndrome.

The Bland–Altman analysis showed a mean bias of 3.6 mmHg with a 95% confidence
LoA from −14.3 to +21.4 mmHg (Figure 1A). Pearson’s correlation coefficient between
TcCO2 and bgCO2 was r = 0.64 (Figure 1B). The corrected Bland–Altman analysis according
to multiple measurements per subject showed similar results (mean bias of 3.6 mmHg with
a 95% confidence LoA from −14.1 to +21.2 mmHg).
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Figure 1. (A) Bland–Altman plot of the differences between TcCO2 and bgCO2. Orange lines
represent the bias (solid line) and 2SD (dotted lines). (B) Pearson correlation between TcCO2 and
bgCO2. bgCO2—blood gas CO2; TcCO2—transcutaneous CO2.

Similarly, moderate correlation and good agreement were demonstrated in TcCO2
values ranges of 30–60 mmHg and 25–70 mmHg (the ranges that are most frequently seen
at the bedside) (Table 2). For TcCO2 below 25 and above 70 mmHg the correlation was poor
(r = −0.41 and 0.14, respectively) as was the agreement (bias (LoA) −16.3 [−40.0, 7.4] and
20.1 [−9, 49.1] mmHg, respectively). However, the number of samples at these extremes
was small.
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Table 2. Subgroup analysis of correlation and agreement.

Parameter No. of
Samples R Bias (SD) Lower LoA,

Upper LoA

Per TcCO2 measurements range

All (20–115 mmHg) 1828 0.64 3.6 (9.1) −14.3, 21.4
30–60 mmHg 1576 0.60 2.3 (6.8) −11.1, 15.7
25–70 mmHg 1724 0.65 2.9 (7.4) −11.8, 17.6

Per age (days) at sampling *

Day of life 1 286 0.75 1 (6.8) −12.3, 14.4
Day of life 1–3 887 0.71 2.0 (6.7) −11.1, 15.1
Day of life 4+ 851 0.59 3.8 (8.1) −12.0, 19.6

Per sampling mode *

Capillary 454 0.67 3.2 (8.1) −12.6, 19.1
Arterial 1019 0.67 2.9 (7.4) −11.6, 17.6
Venous 88 0.72 1.8 (6.2) −10.3, 13.9

Per mode of ventilation *

Non-invasive ventilation ˆ 900 0.65 3.1 (7.1) −10.8, 17.1
Invasive ventilation 684 0.61 2.52 (8.1) −13.6, 18.3

HFOV 243 0.6 2.28 (9.3) −16.1, 20.6
CMV 442 0.62 2.6 (7.9) −12.7, 18.1

* Data are presented for TcCO2 measurements between 25 and 70 mmHg. ˆ Non-invasive ventilation includes
nasal intermittent positive pressure ventilation (NIPPV), continuous positive airway pressure (CPAP), and heated
humidified high-flow nasal cannula (HHHNC). CMV—Conventional mechanical ventilation; HFOV—High-
frequency oscillatory ventilation; LoA—Limit of agreement.

The CO2 range for TcCO2 was 18–120 mmHg and for bgCO2 was 20–91 mmHg.
Ninety-six percent of the samples were taken during the first week of life. Samples

taken during the first 3 days of life had a stronger correlation and lower bias but still a
wide LoA. Similar results are seen for venous samples as compared to arterial or capillary.
Samples taken during non-invasive ventilation had a similar correlation and agreement as
samples taken during the different invasive ventilation modes (HFOV and CMV) (Table 2).

In 950 out of 1724 of the samples (55%), the TcCO2 reading was within the ±5 mmHg
range as compared to bgCO2. A total of 491/1724 (29%) were within the 6–10 absolute
difference range, and in 283/1724 samples (16%), the difference was >10.

Multivariable logistic regression showed that sampling during the first 3 days of life
and venous sampling significantly increase the likelihood that the TcCO2–bgCO2 difference
will be less than or equal to five (95% CI for first 3 days of life—1.52 [1.24–1.87], p < 0.001,
and for venous sampling—1.87 [1.16–3.01], p = 0.01), while HFOV increases the likelihood
of absolute difference greater than five (95% CI 0.78 [0.59–0.97], p = 0.037).

To evaluate the trending accuracy of TcCO2, we studied samples taken during the first
3 days of life. We chose this time period because, in the first days of life, blood gas sampling
is usually more frequent and therefore we avoided, as much as possible, studying samples
taken more than 12 h apart. A moderate correlation was found between the trending of
each two successive measurements of TcCO2 vs. bgCO2- r = 0.52 (Figure 2A). However,
studying individual infants, we observed a good correlation in CO2 trends in some infants
while a poor trend in others (Figure 2B,C).

We did not observe any burns or skin breakdowns among the participating infants.
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Figure 2. Comparison of the trending of TcCO2 and bgCO2: (A) Scatter plot of the change in the
measured value between 2 consecutive measurements in bgCO2 vs. TcCO2 during the first 3 days
of life (n = 657). (B,C) Examples of the trends in individual infants. Example B demonstrates a
good agreement and trending between TcCO2 and bgCO2 measurements, while in example C, the
agreement as well as trending is changing.
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4. Discussion

In this large, prospective, multicenter study, we found a moderate correlation between
transcutaneously measured CO2 values and blood gas CO2, among ELBW premature
infants during their first week of life; a period when they are especially vulnerable to the
harms of both hypocarbia and hypercarbia. The agreement between the two measuring
methods was good; however, a wide limit of agreement exists.

The accuracy of TcCO2 monitoring among premature infants was previously studied
in the NICU in various clinical situations. Mukhopadhyay et al. [20] analyzed 1338 paired
samples of TcCO2 and bgCO2, of mostly premature infants (mean ± SD GA 28.6 ± 4.3), in
two different time periods, and found a bias ± SD of 5.2 ± 8.6 mmHg. Aliwalas et al. [5]
studied 81 pairs of samples of intubated preterm infants ≤ 28 weeks gestation with RDS at
4, 12, and 24 h of age and showed bias ± SD of 2.2 ± 2.3, 4.4 ± 1.2, and 2.6 ± 1.8 mmHg,
respectively. Van Weteringen reported a bias of 4.7 mmHg (95% LoA −7.8 to 17.1 mmHg) in
216 paired samples of premature infants (median (IQR) GA 26.4 [25.3–27.5]) with a similar
agreement in subgroup analysis based on birth weight (below or above 1000 g), week of life
(during or after the first week of life), and sepsis status (no sepsis, suspected and proven
sepsis) [21]. A good correlation and agreement were also demonstrated when using a
reduced temperature probe [18,22]. A poor correlation was found by Janaillac et al. [23];
however, these results should be addressed with caution as the average time lag between
the pairs of samples was 4 min.

In our study, we focused on a homogenous group of ELBW premature infants during
their first week of life, when they are most vulnerable to both hypocarbia and hypercar-
bia [24]. Studying 1828 paired samples, we found a bias of 3.6 mmHg, which is considered
acceptable (<5 mmHg), with LoA from −14.3 to +21.4 mmHg. These results are comparable
to previous studies and highlight the advantages of this CO2 monitoring method—it is
reliable, and it allows the continuous non-invasive monitoring of CO2 in ELBW infants
supported by all modes of invasive or non-invasive ventilation. Our study also demon-
strates the disadvantage of this method, which is the wide LoA, also reported by others
who have studied TcCO2 monitoring [18,20,21]. A wide LoA was found also for EtCO2
monitoring [3,4,6,7]. This emphasizes the importance of combining these methods with
blood gas sampling, as these two non-invasive methods, TcCO2 and EtCO2, cannot be used
as independent indicators of CO2 levels.

Studying the impact of hemodynamic stability including blood pressure, oxygenation,
arterial pH, and medications on TcCO2, Bhat et al. found that the major factors affecting the
TcCO2 to bgCO2 agreement were hypoxia and acidosis [25]. We were able to demonstrate
similar agreement during the first days of life when the hemodynamic stability and oxy-
genation of ELBW infants are a concern, and it is reassuring that TcCO2 is indeed a reliable
method for CO2 monitoring in this population.

In our study, we chose to focus on measurements between 25 and 70 mmHg as
measurements above 70 mmHg and below 25 mmHg were found to have poor correlation
and agreement. Poor correlation in the hypercarbia range was also demonstrated by Uslu
et al. [26] and is suggested to result from impaired capillary blood flow and gas diffusion
to the skin when the pH decreases. Interestingly, in the hypocapnia range, the bias was
inverted, showing TcCO2 measurements lower than bgCO2 measurements. Low TcCO2
readings that fall below the bgCO2 value may indicate a technical problem as TcCO2 values
are generally higher than PaCO2 values due to a local increase in CO2 by the elevated
temperature and by CO2 production of epidermal cells [9]. This is also demonstrated by a
mean bias > 0 mmHg. It is possible that the small number of measurements in the extreme
values of CO2 is the reason for the poor correlation and agreement in these ranges. We
suggest, in any case, to exercise caution when interpreting TcCO2 measurements in the
extreme ranges.

Other studies found that the sampling method or mode of ventilation could affect the
accuracy of TcCO2 measurements. For example, Mukhopadhyay et al. found that HFOV
support significantly increases the odds of increased bias [20], and others found that tcCO2
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was more accurate for capillary blood samples than for arterial blood samples [16,20,27]. In
our study, 84% of the samples were within an absolute range of ±10 mmHg. We found a
slight improvement in correlation and reduced bias in venous samples, and samples taken
during the first 3 days of life. No statistical differences were found in samples collected
while infants were on CMV or HFOV (Table 2). In multivariate analysis, venous sampling
was associated with bias < 5 mmHg and HFOV with bias > 5 mmHg. However, these small
differences are purely statistical and have no clinical significance.

As expected, TcCO2 was also accurate during non-invasive ventilation. These results
are reassuring as one of the main advantages of monitoring CO2 transcutaneously is the
ability to use it during non-invasive ventilation and during HFOV, which is technically
challenging with other modes of non-invasive CO2 monitoring [2].

TcCO2 monitoring is suggested to be used as a complementary tool to blood gas
sampling to allow trending of CO2 levels. TcCO2 trends have been successfully used to
identify optimal lung volume during HFOV in neonates [28] and are proposed to allow
early diagnosis of pneumothorax [29]. During the first 3 days of life, we found a moderate
correlation between the TcCO2 trends and bgCO2 trends. We noticed excellent trending
in some infants while poor trending in others. This observation reinforces the need to
ascertain the trending in each individual patient, and a high index of suspicion whenever
the TcCO2 measurement does not fit the clinical scenario.

The main limitation of our study is that the samples were taken according to clinical
need and not at a predetermined interval, which could have better delineated the trend-
monitoring ability of this monitoring method. Another limitation is that the number of
measurements per infant varies, but this was corrected by Bland–Altman analysis according
to multiple measurements per subject. Furthermore, we did not record the sensor location
and time from the last calibration. This prevented us from further studying the sensor
location effect on the accuracy of the measurements as well as assessing the technical
challenges associated with sensor positioning in the high-humidity environment required
for ELBW during the first weeks of life. However, sensor location and calibration were
performed as per the manufacturer’s instructions; therefore, it represents the standard
practice. The large number of samples most probably compensates for any false samples, if
any. Due to the small number of infants with active sepsis or ionotropic support, we could
not perform a multifactorial analysis to isolate parameters that could affect perfusion, as
reported by others [30]. The advantages of our study are the large number of samples, the
prospective nature of the study, and the focus on ELBW infants during their first week of life;
the most vulnerable population during the most critical time period for CO2 fluctuations.

5. Conclusions

CO2 measurements by TcCO2 have a moderate correlation with bgCO2 among pre-
mature infants < 1000 g during the first week of life. While agreement between the TcCO2
and bgCO2 measurements is good, the wide LoA, as well as the moderate correlation of
trends, dictate the use of this continuous non-invasive method as a complementary tool
along with blood gas sampling to assess CO2 levels and trending.
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