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Abstract: The airway epithelium is exposed to numerous external irritants including infectious
agents, environmental allergens, and atmospheric pollutants, releasing epithelial cytokines including
thymic stromal lymphopoietin (TSLP), IL-33, and IL-25 and initiating downstream type 2 (IL-4, IL-13,
and IL-5) and IgE-driven pathways. These pathways trigger the initiation and progression of allergic
airway diseases, including chronic rhinosinusitis with nasal polyps (CRSwNP), allergic rhinitis (AR),
and allergic asthma. However, the use of biological agents that target downstream cytokines, such as
IL-5, IL-4, and IL-13 receptors and IgE, might not be sufficient to manage some patients successfully.
Instead of blocking downstream cytokines, targeting upstream epithelial cytokines has been proposed
to address the complex immunologic networks associated with allergic airway diseases. Osteopontin
(OPN), an extracellular matrix glyco-phosphoprotein, is a key mediator involved in Th1-related
diseases, including systemic lupus erythematosus, multiple sclerosis, inflammatory bowel disease,
and rheumatoid arthritis. Emerging evidence, including ours, indicates that epithelial-cell-derived
OPN also plays an essential role in Th2-skewed airway diseases, including CRSwNP, AR, and allergic
asthma involving the Th17 response. Therefore, we reviewed the current knowledge of epithelial-cell-
derived OPN in the pathogenesis of three type-2-biased airway diseases and provided a direction for
its future investigation and clinical relevance.
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1. Introduction

Clinically, type-2-related airway diseases manifest as chronic rhinosinusitis with nasal
polyps (CRSwNP), allergic rhinitis (AR), and allergic asthma [1,2]. The etiology of these
disorders remains ill-defined and is influenced by multiple factors, including genetic
susceptibility, viruses, allergens, infection, and others [3,4]. CRSwNP is a common clinical
entity of the upper airway and is characterized by the infiltration of polyps by numerous
eosinophils [5]. AR and allergic asthma are caused by various inflammatory networks
related to IgE-mediated activity in response to allergens in the upper and lower airways,
respectively [6,7]. These three allergic airway diseases display Th2 cytokine responses and
involve a range of immune cells and cytokines [8]. Notably, allergic airway diseases have
been recognized as Th2/Th17 mixed diseases [9].

In response to endogenous and extrinsic airway irritants, epithelial cells are activated
and produce cytokines which, in turn, might induce downstream Th2- and IgE-related
responses [10]. The upstream epithelial cytokines, such as thymic stromal lymphopoietin
(TSLP), IL-33, and IL-25, are known to play an essential role in this process [11]. Re-
cently, various biologics have targeted the Th2 pathway and IgE, including omalizumab,
mepolizumab, benralizumab, and dupilumab [12,13], and have demonstrated significant
promise for treating patients with allergic airway diseases [14,15]. However, despite these
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promising advances, approximately 30% of patients with severe asthma who receive biolog-
ics do not exhibit significant improvement in their acute exacerbation rate, and only 50% of
patients with CRSwNP respond to these biologics [16,17]. The limitations of these biologics
might be due to blockage of the downstream immune cascade pathway, leaving other
pathways still active, and because the partial inhibition of the type 2 pathway might not
be sufficient to manage all patients [17]. Biological therapies targeting upstream cytokines
such as TSLP, IL-33, and IL-25 have greatly improved the therapeutic results for patients
with allergic airway diseases in clinical trials [18–20]. One clinical study demonstrated
that AMG157, a humanized anti-TSLP monoclonal immunoglobulin G2k, reduced bron-
chospasms and bronchial pathology in individuals with mild allergies [20]. Therefore,
an enhanced understanding of the cytokines expressed by a dysfunctional respiratory
epithelium could facilitate the development of novel clinical therapies.

OPN, an extracellular matrix phosphor-glycoprotein, has long been recognized as
a key mediator in Th1-related immunity and is involved in Th1-related diseases, includ-
ing systemic lupus erythematosus (SLE), multiple sclerosis (MS), inflammatory bowel
disease (IBD), and rheumatoid arthritis (RA) [21–25]. Findings suggest that OPN might
be a potential biomarker for monitoring the severity of SLE [25]. In RA patients, plasma
OPN levels correlate with bone inflammation and serve as a biomarker for disease sever-
ity [22]. In animal models of RA, targeting OPN with small interfering RNA (siRNA) or
neutralizing antibodies to the relevant epitopes resulted in a significant inhibition of joint in-
flammation [26,27]. Recent works, including ours, demonstrated that epithelial-cell-derived
osteopontin (OPN) plays a critical role in CRSwNP, AR, and allergic asthma [28–32].

In this review, we summarized the current knowledge about the role of epithelial-cell-
derived OPN during the development of the airway mucosal type 2 immune response. We
also discussed the clinical potential of modulating OPN to treat CRSwNP, AR, and allergic
asthma.

2. OPN Gene & Structure

The OPN gene, also called SPP1, is located on human chromosome 4q13 and mouse
chromosome 5 and has seven exons, with exon 1 being noncoding [33–35]. In humans,
SPP1 yields five OPN isoforms due to alternative splicing: OPN-a (full length); OPN-b (lack
of exon 5); OPN-c (lack of exon 4); OPN-4 (lack of exons 4 and 5); and OPN-5 (with an extra
exon located between canonical exons 3 and 4) [36]. All the isoforms have been studied in
the cancer field and confirmed to have varied expression and function in different cancer
types; only OPN-a has been investigated in non-tumor diseases [37,38]. Its molecular
weight ranges from 44 to 75 kDa, depending on alternative splicing and post-translational
modifications [39].

3. Forms of OPN

OPN is expressed by immune cells including B cells, T cells, natural killer (NK)
cells, epithelial cells, and fibroblasts [40]. Two forms of OPN have been identified [41].
Secreted OPN (sOPN) is generated by the translation of the full-length SPP1 mRNA,
whereas intracellular OPN (iOPN) is produced by translation downstream of the non-AUG
codon [42]. The two forms exhibit different expressions in various cell types: dendritic
cells (DCs) have a high expression of iOPN but low levels of sOPN, whereas the reverse is
true for activated T cells [43]. sOPN exerts its biological effects through several receptors,
while iOPN primarily acts as an adaptor or scaffolding protein involved in cytoskeletal
rearrangement and signal transduction pathways downstream of innate immune receptors,
such as Toll-like receptors (TLRs) [44,45].



J. Clin. Med. 2023, 12, 2433 3 of 16

4. OPN Receptors

OPN has two critical integrin binding sequences, including arginine-glycine-aspartic
acid (RGD) and serine-valine-valine-tyrosine-glutamate-leucine-arginine (SLAYGLR in
mice, SVVYGLR in humans) (Figure 1) [46,47]. Thrombin cleavage of OPN exposes the
latter integrin binding sequence [48]. OPN interacts with integrin receptors, includingαvβ3,
αvβ1, αvβ5, αvβ6, α5β1, and α8β1, via the RGD motif and interacts with α9β1, α4β1,
and α4β7 receptors via SVVYGLR (SLAYGLR in mice) [46–48]. These interactions have
been implicated in inflammatory disorders such as ConA-induced hepatitis and MS [49,50].
CD44 isoforms act as another critical receptor group for OPN [51]. The interaction between
CD44 and OPN regulates IL-10 production in T cells, as demonstrated in an experimental
autoimmune encephalomyelitis model [52]. This interaction enhances the survival and
proliferation of bone marrow cells and is required for the chemotaxis of T cells, endothelial
cells, fibroblasts, bone marrow cells, and DCs [53–58].

Figure 1. A schematic representation of osteopontin structure and thrombin cleavage site. OPN
interacts with two groups of receptors, integrins (in green) and CD44 (in red), to exert its biological
function. Thrombin cleavage of OPN exposes the SVVYGLR sequence. OPN might undergo post-
translational modifications, including phosphorylation, polymerizations by transglutaminase (in
black), and cleavage (thrombin). RA: rheumatoid arthritis; DCs: dendritic cells.

5. OPN Post-Translational Modifications

Phosphorylations and O-glycosylations are the primary post-translational modifica-
tions (PTMs) for OPN (Figure 1) [59]. Phosphorylation might influence the interaction
between OPN and its receptors, bone mineralization, and tumor metastasis [60,61]. O-
glycosylations modulate numerous cellular functions, such as binding interactions [62]. An-
other important post-translational modification for OPN is polymerization. OPN increases
its adhesive properties by generating polymers crosslinked by tissue transglutaminase-
2 [63]. By binding integrin α9β1, OPN polymers contribute to neutrophil recruitment [64].
Whether this polymerization affects other immune responses remains unexplored.

6. Functions of OPN

OPN is involved in a variety of physiological and pathological events [65]. How-
ever, the two forms of OPN complicate investigations of the biological functions of OPN
(Figure 2).
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Figure 2. Effect of the two forms of OPN. sOPN and iOPN trigger a functional response under
normal conditions and pathological conditions. OPN: osteopontin; sOPN: secreted osteopontin;
iOPN: intracellualr osteopotin; pDC: plasmacytoid dendritic cell; cDC: conventional dendritic cell;
TFH:T follicular helper cell.

6.1. sOPN

Under physiological conditions, sOPN is expressed in smooth muscle, bone, kidney,
brain, mammary gland, and immune organs and is involved in wound healing, bone
remodeling, and biomineralization [66,67]. DCs, lymphocytes, eosinophils, neutrophils,
and other immune cells also express sOPN [68]. Immune cells produce sOPN to promote
cell proliferation, adhesion, and migration as well as cell motility, fusion, and survival [69].

Under pathological conditions such as Th1- and Th17-related diseases, including viral
infections, SLE, MS, IBD, and RA, sOPN modulates T-helper cell phenotypes by directly
influencing macrophages, DCs, and T cells [70–74]. Through actions on macrophages, sOPN
upregulates IL-12 production and enhances Th1 development via avb3 integrin binding
and simultaneously downregulates IL-10 production through CD44 [70]. sOPN promotes
IL-12 expression in DCs, which determines the Th1-polarizing capacity of DCs [71]. sOPN
enhances CD3-mediated IFN-γ production in human T cells [72]. T-bet-mediated sOPN
expression by T cells is decisive for CD4+ T cells polarized to be Th1 cells. Elevated levels
of DC-derived OPN have been observed in encephalomyelitis and induce IL-17 expression
in T cells [73]. DCs from MS patients produce increased levels of OPN to stimulate IL-17
and IFN-γ production in CD4+ T cells [74]. These data provide robust support for the role
of sOPN in Th1- and Th17-polarized viral infections and autoimmune diseases.

6.2. iOPN

Physiologically, iOPN exhibits an important role in cell motility, cytoskeletal rearrange-
ment, and mitosis. Compared to sOPN, less information has been obtained concerning the
role of iOPN in various diseases. iOPN plays a role in viral infections and B cell develop-
ment and function [45,75–77]. Viral antigens induce iOPN through TLRs in plasmacytoid
dendritic cells (pDCs) and enhance IFN-α secretion, mediating the Th1 response, whereas
the IFN-α produced by pDCs downmodulates iOPN in conventional dendritic cells (cDCs)
and prevents an uncontrolled Th17 response [75,76]. The deletion of iOPN in NK cells
impairs the expansion of these cells following IL-15 treatment, leading to a defective antivi-
ral immune response [45]. The ICOS ligand on B cells activates ICOS on T cells, leading
to the release of p85α and a complex formation with iOPN in T cells [45]. This complex
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translocates into the nucleus and binds Bcl-6, protecting it from proteasome-mediated
degradation and thereby promoting Tfh cell differentiation [45]. Tfh cells release OPN,
sustaining the B-cell response to antigens in germinal centers [45]. Furthermore, sOPN
can promote immunoglobulins, particularly IgG3 and IgM antibody production, from B
cells [77]. Therefore, iOPN and sOPN display complex interactions in the development and
function of B cells in humoral immunity.

Earlier studies on the role of OPN were limited to Th1- and Th17-related viral and
autoimmune processes [45,77]. The first indirect evidence regarding the effect of OPN in
Th2-related diseases appeared in 2001 [78]. Researchers prepared radiolabeled cDNA from
cultured peripheral blood mononuclear cells (PBMCs) from hyper-IgE syndrome patients
and controls. The cells were stimulated for precisely 24 h with PHA (1 mg/mL) to probe
an array of 375 immunologically relevant genes, and significantly reduced OPN levels in
the hyper-IgE syndrome patients were found unexpectedly [78]. Later, recombinant OPN
(rOPN) was found to downregulate IL-4 secretion in T cells, polarizing these cells toward a
Th1 phenotype [79]. These data suggest that through its Th1 cytokine effects, OPN might
play a central role in regulating overwhelming Th2 immune reactions, reminiscent of the
mutual inhibition of Th1/Th2 during differentiation. In contact hypersensitivity, sOPN
was confirmed to attract myeloid DCs to lymph nodes draining the skin [80]. However,
sOPN inhibited pDC migration into lymph nodes upon encountering OVA [81]. There-
fore, additional research is needed to delineate the role of OPN in the Th2 response in
allergic diseases, considering that OPN affects different DC subsets and T cells that ex-
press high levels of OPN receptors but respond to OPN with opposite effects on the Th2
response [82–84]. In the past 20 years, evidence has supported an active role of OPN in
Th2-related inflammation in allergic airway diseases, including CRSwNP, AR, and allergic
asthma.

7. The Role and Regulation of OPN in CRSwNP

OPN has been identified by DNA microarray analysis as one of the 19 upregulated
genes in polyp tissues [31]. OPN expression was higher in NP tissues than in controls based
on immunohistochemical and qPCR analysis [31]. Positive immunohistochemical staining
for OPN has been demonstrated in epithelial cells, infiltrating cells, submucosal glands, and
the extracellular matrix. The main sources of OPN expression are the epithelial cells in polyp
tissues [31,32]. NP tissues exhibit more OPN-positive cells than controls, and the number of
OPN-positive cells is correlated with the number of tissue eosinophils. In vitro studies in a
dispersed NP cell (DNPC) culture system revealed that OPN protein significantly promotes
eosinophil migration and the production of eosinophil cationic protein (ECP) [31]. These
findings substantiate the role of OPN in the eosinophilic inflammation in NP (Figure 3).

Our team discovered that the production of the Th1 signature cytokine IFN-γ, Th2
signature cytokines such as IL-4, IL-13, IL-5, and pro-inflammatory cytokines TNF-α and
IL-1β is induced by rOPN in sinonasal mucosa explants [32]. This suggests that OPN might
play a pivotal pro-inflammatory role during inflammation in the nasal mucosa, confirming
that OPN might carry out a range of functions in NPs [32]. Recently, Du et al. demonstrated
OPN-induced vascular endothelial growth factor (VEGF) expression by DNPCs through
the phosphatidylinositol 3-kinase-protein kinase B (PI3K/AKT) and extracellular signal-
regulated kinase 1/2 signaling pathways [85]. VEGF is significantly increased in NP tissues
and might participate in the appearance of NPs and the substantial tissue edema occurring
in NPs [85]. These results suggest that the OPN–VEGF axis promotes remodeling and
edema in NPs (Figure 3).

As the epithelium constitutes the first line of defense against exogenous irritants,
epithelial-cell-derived OPN regulation in various inflammatory environments was also
investigated. As expected, a qPCR analysis by Liu et al. revealed that the TLR3 agonist Poly
I:C significantly increased OPN mRNA production in polyp epithelial cells and normal
nasal epithelial cells in vitro [31] and was the strongest stimulus for OPN mRNA expression.
These results indicate that viral infections can induce OPN expression in NPs. Notably,
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cytokines such as IL-6, TNF-α, IL-17A, IFN-γ, and TGF-β can synergistically increase TLR3-
mediated OPN production in epithelial cells ex vivo [31]. However, Liu et al. observed
that IL-4 did not significantly affect OPN expression in epithelial cells [31]. In contrast,
IL-4 significantly inhibited OPN expression in epithelial cells pre-conditioned by Poly
I:C [31]. These data might indicate that IL-4 inhibits the viral response by regulating
OPN in the nasal polyp immune network. Interestingly, we found that the expression of
OPN decreased significantly following IL-4 treatment in cultured nasal mucosa [32]. This
discrepancy might result from differences in the study models. We generated sinonasal
mucosa explants, while Liu et al. utilized polyp epithelial cells. Furthermore, our data
are in accordance with the fact that Th2 signature cytokines such as IL-4 inhibit OPN
production in cDCs. Meanwhile, VEGF was found to induce OPN expression in DNPC,
which could form a positive feedback loop between VEGF and OPN [85].

Figure 3. Epithelial-derived OPN is released in the setting of epithelial allergen or pathogenic
challenge. OPN exerts an effect on diverse cells to stir up the production of IFN-γ, IL-1β, IL-4, IL-5,
IL-13, TNF-α, ECP, and VEGF in the nasal mucosa, leading to the inflammation of CRSwNP and AR.
In addition, OPN also promotes eosinophil adhesion, migration, and activation by enhancing ECP
production but inhibits eosinophil apoptosis, enhancing the inflammation of CRSwNP and AR. OPN:
osteopontin; VEGF: vascular endothelial growth factor; ECP: eosinophil cationic protein.

8. The Role and Regulation of OPN in AR

Limited information is available on the role of OPN in AR (Figure 3). We determined
that OPN is significantly upregulated in the nasal mucosa of AR adults compared to
controls [29]. In support of this observation, OPN expression was primarily expressed
by epithelial cells and some inflammatory cells in the lamina propria [29]. In children
with AR, increased serum and nasal OPN expression were positively correlated with
eosinophilia and ECP levels [86]. Mechanistically, OPN can inhibit eosinophil apoptosis and
promote eosinophil adhesion in vitro. Furthermore, OPN mediates eosinophil migration
and activation through the PI3K pathway [87]. Recent studies have demonstrated that
an elevated serum OPN is correlated with circulating IL-17 and Th2 cytokines [87,88].
A study utilizing house-dust-mite-stimulated PBMCs from children with AR revealed
that OPN could enhance the expression of Th2 signature cytokines and increase Th17
responses [87,88]. However, these results contradict the evidence that OPN downregulates
Th2 responses, as discussed in previous paragraphs. These discrepancies might be due
to OPN’s influence on different cell types. This possibility is supported by the fact that
OPN promotes Th2 effector responses by regulating pDCs when administered during the
allergen-sensitization phase in an asthma model [82]. The precise mechanism by which
OPN modulates the Th2 reaction in AR requires additional in-depth investigation.



J. Clin. Med. 2023, 12, 2433 7 of 16

Our team provided the earliest data regarding OPN regulation in AR. We found that
Clara cell 10-kDa protein (CC10), an anti-inflammatory cytokine, markedly suppresses
OPN mRNA expression in the local nasal mucosa in a CC10 knockout murine model of
AR [29]. Our study further demonstrated that CC10 could regulate OPN expression in
OVA-stimulated mononuclear cells isolated from spleens and decrease the OPN-induced
production of Th2-related cytokines in a BEAS-2B cell line [29]. These studies suggest
that CC10 might exert its inhibitory biological function by regulating OPN in AR. Later,
O’Neil et al. found that natural exposure to pollen does not influence OPN expression in
AR patients [89]. Also, treating AR patients locally with a potent nasal glucocorticoid did
not alter mucosal OPN expression during natural exposure to pollen [89]. However, we
should interpret these results cautiously because only the local iOPN of AR patients was
assessed using immunochemistry in that study. It must be emphasized that although there
were no differences in iOPN production, this might not be true for sOPN. It is necessary
to test sOPN in nasal lavage fluid (NLF) to determine how natural pollen exposure or
glucocorticoids influence its expression. Thus, the roles of iOPN and sOPN in AR require
additional investigation.

With the high prevalence of allergic diseases and obesity among schoolchildren in the
world, the research investigating the relationship between obesity and AR has received
increased attention. Zeng et al. found higher OPN levels in the nasal turbinates of obese
AR mice compared to nonobese or control mice, suggesting that obesity can regulate OPN
expression [88]. They also reported that leptin, an adipose-derived, energy-regulating
hormone, might interact with OPN to promote Th17 responses in AR [88], further sup-
porting the role of obesity in OPN regulation. Immunotherapy has recently become a
promising treatment for AR, and numerous potential treatment biomarkers have been
studied. Similarly, the role of OPN has been investigated, and findings suggested that
OPN expression decreased after one year of immunotherapy [90]. Furthermore, OPN
expression is positively correlated with Th2-related cytokines and negatively correlated
with TGF-β and IL-10 expression [90]. Thus, these findings suggest that OPN behaves
more like a pro-inflammatory cytokine in AR and could be a valuable biomarker for AR
immunotherapy. In contrast to this study, however, an increase in OPN and a decrease in
bee-venom-specific IgE and IgG, especially IgG4, were confirmed after five to six years
of bee-venom-specific immunotherapy [91]. These opposite results might be attributed to
the specific environment of allergen contact in the period of immunotherapy or possibly
reflect various mechanisms of immune tolerance induced by immunotherapy over time or
even underlying differences in the ethnicity of the subjects. Similarly, increased IL-4 levels
with unchanged Th1 and Th2 cell ratios after grass immunotherapy have been described,
and IL-4 production and the Th2 population increased significantly after one year of bee
venom immunotherapy, contradicting the commonly accepted Th2–Th1 switch described
previously [92,93]. Therefore, the mechanisms of OPN in different immunotherapies re-
quire further study and exploration. Recently, our team found that mice treated with
let-7a miRNA exhibited significantly enhanced OPN levels in the nasal mucosa compared
to control mice, suggesting that let-7a stimulates AR development by modulating OPN
expression [94]. However, this finding also needs further validation.

The two forms of OPN complicate investigations of the biological functions of OPN in
AR, and the modulatory role of OPN in AR calls for more detailed investigation. Questions
such as how OPN balances different cytokine patterns to influence allergic inflammation in
AR could serve as a central focus for future studies.

9. The Role and Regulation of OPN in Allergic Asthma

Of the three allergic airway diseases, the earliest data on OPN came from allergic
asthma. Asthma is caused by genetic and environmental factors [95]. OPN is located on
human chromosome 4q13 (mouse chromosome 5), and single-nucleotide genetic polymor-
phisms of the gene have been confirmed to be associated with body infection, autoimmune
diseases, asthma, and cancer susceptibility [96–99]. One study reported an association
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between OPN gene polymorphisms and asthma or allergies in a Japanese population [99].
Individuals in this Japanese population carry the C allele at position 5891 in exon 6, which
is more common in patients with MS, a Th1-biased disease. This population exhibits signif-
icantly decreased total serum IgE levels compared with noncarriers [99]. MS patients show
significantly reduced allergen sensitization, fewer allergy symptoms, and a reduced risk
of asthma compared with individuals without MS [99]. These results indicate a potential
relationship between the OPN gene and allergic disorders. However, it is not clear whether
the same polymorphism also implies a risk of MS, which would decrease the risk for
asthma. Therefore, additional study is needed to explore the relationship between OPN
gene polymorphisms and asthma in different populations. Investigation of this relationship
also should be extended to upper airway diseases.

Recent studies on OPN expression in airways have confirmed that OPN demonstrates
a high expression in asthma patients [100,101]. OPN is mainly expressed in bronchial
epithelial cells, followed by airway glandular endothelial cells and inflammatory cells,
including macrophages, eosinophils, mast cells, and lymphocytes [100,101]. Clinical studies
showed that OPN levels in bronchoalveolar lavage fluid (BALF) and sputum from asthmatic
patients were significantly higher than in healthy controls [102]. Other studies found higher
serum OPN levels in adult asthma patients than in healthy controls [103]. Akelma et al.
also obtained consistent results in a study of serum OPN levels in asthmatic children
older than five years [104]. Similarly, in a study of mouse models of allergic inflammation
initiated by OVA treatment, the OPN levels increased in BALF and lung tissue [105]. These
results firmly support the essential role of OPN in asthma. Delimpoura et al. showed that
OPN levels in the sputum from several asthma patients were significantly higher than in
patients with mild and moderate asthma and were associated with inflammatory mediators
involved in airway inflammation and remodeling [106]. Meanwhile, the level of OPN in
smoking patients is higher than in non-smoking patients, and smoking asthma patients
typically exhibit more severe symptoms than non-smoking asthma patients [107]. Thus,
the level of OPN is clearly correlated with asthma severity.

Airway remodeling is a prominent pathophysiological feature of asthma, mainly man-
ifested as thickening of the basement membrane, collagen deposition, angiogenesis, and
increased numbers of myofibroblasts [108,109]. IL-4, IL-5, IL-13, TNF-α, and IL-1β play
critical roles in airway remodeling [108,109]. OPN contributes directly or indirectly to this
pathology. The thickness of the airway basement membrane in human asthma patients was
positively correlated with OPN expression levels [110]. In addition, the upregulation of
OPN in lung tissue and BALF was related to collagen content and smooth muscle prolif-
eration in an OVA-induced mouse model [111]. Kohan et al. and Simoes et al. reported
that, compared with wild-type mice, OVA-induced OPN knockout asthma mice displayed
reduced subcutaneous fibrosis, airway migration, inflammatory cell infiltration, TGF-β1
and VEGF production, collagen deposition, and smooth muscle actin expression [111–113].
In addition, the administration of rOPN in the remodeling stage when acute lung inflam-
mation has receded and structural changes become the prominent features, increased the
production of IL-13 and MMP9 in the lung and induced basement membrane thickening
in a mouse model of chronic disease [113]. Furthermore, OPN induces lung fibroblasts
to switch to a pro-fibrogenic myofibroblast phenotype [114]. In a previous study by Xan-
thou et al., rOPN exerted anti-inflammatory effects when administered in the acute state
of the disease [114]. The different effects of rOPN are primarily attributed to the use of
different disease models and the timing of the administration of rOPN (Table 1). As a
matter of fact, the findings of the two studies complement each other, indicating the dual
role of OPN in different stages of the disease. Initially, OPN inhibits Th2 inflammation
and subsequently mediates the airway repair response, resulting in airway remodeling.
Therefore, OPN contributes to airway remodeling and fibrosis in allergic asthma.

Allergic asthma involves Th2 cells and Th2 effectors, including eosinophils and mast
cells [115,116]. Paradoxically, on one side, osteopontin inhibits Th2-related inflamma-
tion; on the other side, it promotes eosinophil accumulation, a key element for the TH2-
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mediated immune response [81]. sOPN promotes the chemotaxis of eosinophils via a4b1-
integrin [117]. A blocking antibody, 2K1, consistently recognizes OPN’s integrin-binding
domain and inhibits eosinophil migration in vitro [117]. These results confirm the ability
of OPN to recruit eosinophils into asthmatic airways. OPN levels are correlated with
eosinophil accumulation in BALF in asthmatic patients in vivo, supporting these observa-
tions [118]. Regarding the effect of OPN on mast cells in asthma, FceRI-aggregation-induced
mast cell degranulation is enhanced by OPN through avb3 integrin ex vivo [119]. Further-
more, OPN promotes mast cell migration, which substantiates its effect on mast cells in
allergic asthma [120,121].

Until now, contradictory results on the role of OPN in the Th2 response of allergic
asthma have been observed (Table 1). Xanthou et al. found that OPN has dual effects in
acute asthmatic mouse models [81]. The administration of an anti-OPN-specific antibody
before the initial sensitization stage significantly reduced airway inflammation, suggesting
that OPN plays a pro-inflammatory role at this stage [81]. However, treatment with an
anti-OPN antibody before the OVA challenge revealed a magnified inflammatory response,
suggesting that OPN played an anti-inflammatory role in this phase [81]. Therefore,
it was proposed that OPN plays different roles in different stages of the OVA-induced
inflammatory process in mice. Furthermore, the dual effect of OPN was attributed to
different DC subpopulation recruitment [81]. The inhibition of OPN led to increased
numbers of pDC in draining lymph nodes before sensitization. In contrast, a substantial
increase in the recruitment of cDCs to lymph nodes draining the lungs was noted following
anti-OPN antibody treatment at the challenge stage [81]. These data are consistent with
previous investigations in which pDCs were confirmed to prevent Th2 responses [122].
However, treatment with rOPN during the sensitization stage inhibited OVA-specific
IgE production in a chronic asthma mouse model [113]. It is challenging to reconcile
these discrepancies, which may be due, in part, to the multi-functional properties of OPN
in regulating cytokine production and inflammatory cell recruitment via the different
functional domains in OPN. This was confirmed in a tolerance induction model where
the SLAYGLR motif of sOPN enhanced the regulatory action exhibited in the tolerogenic
context [123]. Whether similar effects can be demonstrated in human systems necessitates
additional investigation. Furthermore, whether this holds true for upper airway diseases
should be elucidated. The results obtained for upper airway diseases indicated that OPN
has a pro-inflammatory effect in ex vivo explants, as discussed above [32], underscoring
the urgent need to investigate OPN functions in animal models of CRSwNP and AR. In
humans, asthma has been shown to be aggravated through multiple complex mechanisms
and steps, ultimately leading to irreversible airway damage. Therefore, OPN exhibits
different effects in the development of these allergic airway diseases that require additional
investigation.

Table 1. Effects of osteopontin in different murine allergic asthma models.

Asthma Model Modalities Findings References

An acute model
Anti-OPN antibodies
at sensitization and

challenge stage

Different DC subpopulation
recruitment [81]

An acute model rOPN at challenge
stage

Inhibited OVA-specific IgE
production [81]

A tolerance induction
model

rOPN at sensitization
stage

Induced accumulation of
IFN-β-producing plasmacytoid
dendritic cells and regulatory T

cells in mediastinal lymph
nodes

[123]

A chronic disease
model

rOPN at challenge
stage Enhanced remodeling [113]

rOPN—recombinant osteopontin; DC—dendritic cells.
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Although OPN has been investigated in some detail in allergic asthma, information
concerning the regulation of OPN in asthma remains scarce. Corticosteroids, the first-line
treatment in asthma, similar to AR, also inhibit OPN production in mice with allergic
asthma [124]. It is well-documented that smoking or exposure to secondhand smoke
among asthmatics increases asthma-related morbidity and disease severity [125]. OPN
levels are significantly higher in smoking asthmatics compared to non-smoking asthmatics,
suggesting that smoking might contribute to disease severity in asthma by regulating OPN
expression [126].

To elucidate whether aging or viral infections influence the pathology of asthma,
six-week or twelve-week-old BALB/c mice were sensitized to OVA with or without
poly(I:C) [127]. The twelve-week-old mice showed elevated levels of OPN in BALF and
OPN mRNA expression in the lungs compared to the six-week-old mice [127]. Poly(I:C)
induced remarkably elevated OPN levels in BALF and OPN mRNA expression [127]. There-
fore, OPN expression in asthma is modulated by aging and viral infections. Whether other
factors affect OPN production in asthma should be investigated further.

10. Clinical Relevance

Much has been learned concerning the role and regulation of OPN in disease pathology
in allergic airway diseases over the past 20 years (Table 2). We now consider how to
integrate this knowledge into clinical applications. Local or systemic OPN has been used
as a diagnostic and prognostic biomarker in asthma (Table 3). However, whether we can
use plasma or local OPN as a novel marker of disease severity and treatment efficacy for
upper airway diseases requires additional detailed investigation.

Table 2. The regulation of OPN in allergic airway diseases.

Regulatory Factors Effect on OPN

IL-1β, TNF-α, IFN-γ, IL-6, IL-17A, IL-13, TGF-β

Upregulation

Leptin
MicroRNA let-7a

Smoking
Aging

Viral infection
IL-4

DownregulationClara cell 10-kDa protein
Corticosteroids

OPN, osteopontin.

Table 3. Possible clinical relevance of OPN in current diseases.

OPN Manipulation Function Application

Local or systemic OPN A diagnostic and prognostic
biomarker

Asthma [103], cancers [37],
hepatitis [37]

Anti-OPN antibodies
Promoting or inhibiting

inflammation in different
setting of diseases

Asthma [37], cancers [37],
hepatitis [37],

collagen-induced arthritis [26]

OPN siRNA Inhibiting Th1-related
inflammation Cancers [37], hepatitis [37]

Recombinant OPN

Enhancing remodeling in
airways and inhibiting

Th1/Th17-related
inflammation

Asthma [113],
collagn-induced arthritis [22]

ASK8007 Blocking the function of OPN Rheumatoid arthritis [20]
OPN, osteopontin; siRNA, small interfering RNA.



J. Clin. Med. 2023, 12, 2433 11 of 16

The modulation of OPN may offer new treatment options for these allergic airway dis-
eases, but additional research is required (Table 3). Researchers agree that neutralizing OPN
effects can mediate the migration of eosinophils and mast cells, mast cell degranulation,
and airway remodeling in vivo and in vitro [119–121]. However, the exploitation of rOPN
or anti-OPN antibodies has pleiotropic effects on different immune cells and on a range
of allergic reactions in vivo, and the data, such as the effect on Th2 response, have been
contradictory [81,113]. Therefore, a more physiologically relevant mouse asthma model is
urgently needed to evaluate the potential effect of the two methods. Furthermore, different
anti-OPN antibodies might be exploited in different allergic airway diseases. These differ-
ent antibodies could recognize different functional domains of the OPN molecule, resulting
in various possible influences in the different disease processes.

11. Summary and Opinions

In this review article, we discussed the role of epithelial-cell-derived OPN in the
pathogenesis of allergic airway diseases and summarized its clinical applications in those
diseases. Data from human and animal models strongly support that epithelial-cell-derived
OPN is a critical effector cytokine involved in Th2-biased airway inflammation. The distur-
bance of the highly controlled release of OPN may be an essential mechanism underlying
CRSwNP, AR, and allergic asthma epithelial pathophysiology. As such, the research on the
role of OPN in CRSwNP, AR, and asthma is still in its early stages. Several questions still
need to be answered. 1. How do different OPN isoforms regulate eosinophilic inflammation
by binding distinct OPN receptors in CRSwNP, AR, and asthma? 2. In CRSwNP, AR, and
asthma, the detailed mechanisms of iOPN and sOPN-mediated functional activities need
additional clarification. 3. The contradictory effects of epithelial-cell-derived OPN on Th2
responses require further investigation in CRSwNP, AR, and asthma. 4. OPN is a biomarker
for the evaluation of disease treatment in clinical trials in cancers and autoimmune diseases.
It must be elucidated whether OPN can be used as a biomarker for CRSwNP, AR, and
asthma. 5. Although OPN can be used as a biomarker in immunotherapy, its precise
function and mechanism require additional study. 6. Concerning the imbalanced investi-
gations of OPN in upper and lower airway diseases, more attention should be afforded
to CRSwNP and AR. In addition, OPN lacks preclinical investigation in upper airway
diseases. Therefore, OPN urgently needs to be investigated as a target in mouse models of
inflammatory upper airway disease.
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