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Abstract: Tangier disease (TD) is a rare autosomal recessive disorder caused by a variant in the ABCA1
gene, characterized by significantly reduced levels of plasma high-density lipoprotein cholesterol
(HDL-C) and apolipoprotein A-1 (ApoA-I). TD typically leads to accumulation of cholesterol in the
peripheral tissues and early coronary disease but with highly variable clinical expression. Herein,
we describe a case study of a 59-year-old male patient with features typical of TD, in whom a likely
pathogenic variant in the ABCA1 gene was identified by whole-exome sequencing (WES), identified
for the first time as homozygous (NM_005502.4: c.4799A>G (p. His1600Arg)). In silico analysis
including MutationTaster and DANN score were used to predict the pathogenicity of the variant and
a protein model generated by SWISS-MODEL was built to determine how the homozygous variant
detected in our patient may change the protein structure and impact on its function. This case study
describes a homozygous variant of the ABCA1 gene, which is responsible for a severe form of TD and
underlines the importance of using bioinformatics and genomics for linking genotype to phenotype
and better understanding and accounting for the functional impact of genetic variations.
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1. Introduction

Tangier disease (TD) is a rare autosomal recessive disorder caused by homozygous or
compound heterozygous variants in the ABCA1 gene which encodes a cell plasma mem-
brane cholesterol transporter. The ATP-binding cassette (ABC) transporter superfamily is
a class of transmembrane proteins that bind ATP and use its energy for the influx/efflux
transport of several substrates across cell membranes, including lipids, cytotoxins, and
metabolites [1–3]. The member of the subfamily ABCA1 (ATP-binding cassette, subfamily A,
member 1) encodes a protein that functions as a key gatekeeper of intracellular cholesterol
transport allowing the regulation of cellular cholesterol and phospholipid efflux, which
will then bind to apolipoprotein A-I (ApoA-I) for high-density lipoprotein (HDL) biosyn-
thesis, transport of apolipoprotein E (ApoE), interleukins −1β, and molecule drugs [4–7].
ABCA1 is highly expressed in several tissues such as placenta, pancreas, liver, intestine,
heart, and lung [8–13]. It also participates in physiological and pathological processes
such as dysregulation of lipid metabolism, cardiovascular diseases, inflammation, and
cancer development [14–17]. Several models have proposed the special role of ABCA1 in
cholesterol efflux; however, the detailed mechanism by which ABCA1 transports choles-
terol to ApoA-1 is not yet fully understood [18]. So far, it is known that intracellular free
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cholesterol and phospholipids cross the plasma membrane to combine with apoproteins
(mainly ApoA-I), forming HDL. This is the first step of reverse cholesterol transport, a
process by which cholesterol excess is removed from peripheral tissues and distributed
through the liver and other tissues and removed through the gallbladder (REF) [19]. TD
is mainly characterized by accumulation of cholesterol in cells, particularly in the reticu-
loendothelial system, by high-density lipoprotein cholesterol (HDL-C) levels < 25 mg/dL
and apolipoprotein A-1 (ApoA-I) < 20 mg/dL [20]. Classic ABCA1 pathogenic variants are
associated with most severe phenotypic presentations while heterozygous carriers may
result in mitigated phenotypes with reduced HDL-C levels that are intermediate between
Tangier disease and normal, so it is believed that it may be underdiagnosed [21]. Reduced
reverse cholesterol transport leads to accumulation of cholesterol in the peripheral tissues,
and to the major physical examination findings: hyperplastic yellow-orange tonsils, corneal
opacities, enlarged liver, spleen, and lymph nodes, and peripheral neuropathy (sensory,
motor, or mixed, temporary or permanent, mild or severe).

Typical laboratory findings in Tangier disease include low blood platelet count, and al-
most undetectable plasma levels of low-density lipoprotein cholesterol (LDL-C) but normal
or high plasma triglycerides [22]. The differential diagnosis includes LCAT (lecithin–
cholesterol-acyltransferase) or ApoA-I deficiency (hypoalphalipoproteinemia) and hypo-
HDL-cholesterolemia secondary to pharmacological treatment (probucol, fibrates). Cur-
rently, there is no curative treatment available. In this article, we sought to describe the
pathogenicity of a homozygous variant in ABCA1 in a patient with suspected Tangier
disease for an accurate characterization of the disease-causing variant. In TD, is important
to control cardiovascular risk factors in order to prevent the development of atherosclerosis
and early coronary disease [23,24]. Regular screening for atherosclerotic coronary artery
disease by stress echocardiography is recommended [25].

2. Experimental Section
2.1. Clinical Profile

A recently retired 59-year-old Spanish male with sedentary lifestyle and current
smoking habit was referred to our institution because of unexplained hepatosplenomegaly.
He did not drink alcohol. At that time, there was history of monoclonal gammopathy of
undetermined significance (MGUS) involving IgG kappa and IgA lambda monoclonal cell
populations not showing disease progression. Medical history also included chest trauma
at 21 years old suffering multiple injuries, including pneumothorax and T11 burst fracture.
The only medication he was taking was Escitalopram 10 mg. Patient provided written
informed consent for the publication of the results.

As regards family background, the patient’s parents both died at an elderly age,
and three brothers had died as a result of premature cardiovascular death. They had
also been diagnosed with demyelinating neuropathy, probably related to leprosy (but
neither granuloma nor stains for acid-fast bacilli (AFB) were observed, just “bacillary
degeneration”). They also showed altered lipid profile (low concentrations of ApoA-I
and ApoB), thrombocytopenia, and splenomegaly (one of them underwent emergency
splenectomy due to spontaneous splenic rupture and the histological examination revealed
numerous foamy macrophages in the immunohistochemical analysis of splenic lymph
nodes). One other sibling died of laryngeal cancer and the fifth one is still alive, diagnosed
with the same variants in homozygous state and with a similar clinical presentation of
low high-density lipoprotein cholesterol (HDL-C). The patient was admitted due to acute
deterioration of liver function and splenectomy was performed to achieve prolonged
normalization of his platelet count. He is currently fully recovered, and he is actually being
monitored for presence of subclinical atherosclerotic lesions and under lipid-lowering
agents (statins and omega-3 fatty acid formulations).

Physical examination: mild blood pressure elevation, BMI within the normal range,
yellowing of sclera, orange-colored tonsils (Figure 1—left), red-colored and intensely
itchy nodules on the nape of the neck (diagnosed as prurigo nodularis of Hyde), aortic
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and mitral stenosis murmurs, distended abdomen with massive hepatosplenomegaly
(Figure 1—middle), umbilical hernia, vascular murmurs at both femoral arteries, clubbing
(Figure 1—right) and absence of both Achilles tendon reflexes. The patient did not show
any physical sign of dyslipidemia such as tendon xanthomas, xanthelasma palpebrarum,
or corneal arcus.
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Figure 1. (Left): Orange tonsils. (Middle): Massive hepatosplenomegaly. (Right): Clubbing.

The laboratory data were as follows: total cholesterol (TC): 48 mg/dL (NR: 120–255),
low-density lipoprotein cholesterol (LDL-C): 3 mg/dL (NR: 55–125), high-density lipopro-
tein cholesterol (HDL-C): 2 mg/dL (NR: 34–91), very-low-density lipoprotein cholesterol
(VLDL-C): 42 mg/dL, triglycerides (TGC): 211 mg/dL (NR: 27–150), lipoprotein A 1 mg/dL,
apolipoprotein A (ApoA-I): 0 mg/dL and apolipoprotein B (ApoB): 51 mg/dL. Further labo-
ratory investigations of blood evidenced mild low red cell and platelet counts and elevation
of transaminases, prolonged partial thromboplastin time (PTT), with high bilirubin and
low albumin reflected liver dysfunction. The flow cytometric analysis and electrophoretic
proteinogram were consistent with his condition of monoclonal gammopathy of unknown
significance. Bone marrow biopsy extracted from the femur reflected foamy histiocytic infil-
trates without fibrosis. Autoimmune and viral serologies and tumor markers were negative.

In the electrophysiological study, an amplitude asymmetry of the sensory response
in both sural nerves was observed as well as bilateral L5/S1 fasciculations without any
evidence of denervation.

Chest X-ray, electrocardiogram, ambulatory blood pressure monitoring, stress echocar-
diogram, and urine albumin/creatinine ratio tests were also performed, and results were
unremarkable. An echocardiogram revealed mild tricuspid and mitral valve regurgitation
with preserved left ventricular ejection fraction.

Abdominal ultrasound and ulterior computed tomography (Figure 2—left) showed
liver enlargement 17 cm (mainly caudate lobe and left lobe lateral segments). Contours
were irregular suggesting chronic liver injury without any space-occupying lesion. Liver
biopsy showed aggregates of histiocytes with foamy PAS-negative cytoplasm, diffusely
distributed throughout the lobule, portal spaces, and centrilobular region (Figure 2—right).
Some regenerative nodules surrounded by fibrosis were also reported. Upper GI endoscopy
and antral biopsies evidenced chronic inflammation, but foamy histiocytes were absent
(images not shown).
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Secondary causes of hyperlipidemia were ruled out and we focused on assessing for
rare hereditary metabolic disorders of lipid metabolism.

2.2. Targeted Next-Generation Sequencing

Patient’s DNA was isolated from 400 µL of blood collected in EDTA following stan-
dard procedures and whole-exome sequencing (WES) was performed. Genomic DNA
was enriched for exome sequencing using the Human Core Exome kit by Twist Bioscience
(Sophia Genetics SA, Lausanne, Switzerland) following the manufacturer’s recommenda-
tions. Enriched libraries were sequenced on the NextSeq platform (Illumina Inc., San Diego,
CA, USA) using a multiplex system with 16 samples per run with the NextSeq 500/550 Mid
Output V2 kit (Illumina Inc., San Diego, CA, USA). Both variant annotation and filtering
were performed using SOPHiA DDM® software, version 4.7.5 (Sophia Genetics SA). The
genetic variant calls were performed against the reference sequence of GRCh37/hg19 from
the University of California Santa Cruz (UCSC) Genome Browser.

To ensure a reliable clinical interpretation of the variants detected, and to predict
their pathogenicity, we considered prioritization criteria according to American College of
Medical Genetics and Genomics (AMCG) guidelines [26]. We considered allele frequency
using the Exome Aggregation Consortium database (ExAC) [27], 1000 Genomes Project
database [28], and GnomAD [28]. Several pathogenicity algorithms were used such as
MutationTaster, FATHMM (Functional Analysis through Hidden Markov Models), and
DANN (Deleterious Annotation of genetic variants using Neural Networks) scores. Ge-
nomic Evolutionary Rate Profiling (GERP), PhyloP, and phastCons, were applied to assess
variants located in highly conserved regions.

2.3. Protein Modeling

The ABCA1 gene encodes 254 kDa protein composed of 2261 amino acids. The ABCA1
(UniProt AC: A5D8U6; ID: A5D8U6_HUMAN) protein FASTA sequence was used to build
a protein model with SWISS-MODEL. The SWISS-MODEL template library (SMTL version
28 February 2022, PDB released 28 February 2022 [29]) was searched with BLAST (Basic
Local Alignment Search Tool) [30] and HHBlits (hidden Markov model (HMMs)-based
lightning-fast iterative sequence search) [31] for evolutionary-related structures matching
the target sequence. This homology model was used in order to investigate how the
homozygous variant detected in our patient could alter the protein structure, potentially
resulting in conformational changes with a significant impact on function (most likely loss
of function).

3. Results
3.1. Molecular Genetics and In Silico Analysis of the ABCA1 Variant

The NGS analysis allowed the identification of a homozygous missense variant,
c.4799A>G (p. His1600Arg) in ABCA1 gene (NM_005502.4). The identified ABCA1 variant
was analyzed in silico to predict pathogenicity and the functional consequences, as well as
determine the degree of evolutionary conservation and minor allele frequency (Table S1).
Pathogenicity was predicted using MutationTaster (disease-causing) and by calculating
the DANN score (score: 0.9984) which corresponded to “damaging”. According to GERP,
PhyloP, and phastCons, the variant c.4799A>G is placed in a highly conserved region
of the ABCA1 protein. It was not cited on ClinVar, nor was it referenced in population
databases such as GnomAD (exome and genome) or correlated with patient’s phenotype,
and so it was, therefore, classified as “likely pathogenic” according to the following ACMG
criteria: PM2, PM5, PP3, and PP4 [25]. The definitive diagnosis of Tangier disease was
made considering the Koseki criteria [24].

3.2. AGK Protein Modeling

The ABCA1 protein contains 2261 amino acids and comprises two transmembrane
domains (TMD), two nucleotide-binding domains in the cytoplasm (NBD1 and NBD2),
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and two extracellular domains that are implicated in regulatory roles (R1 and R2). In
addition, distinct from all the other ATP-binding cassette (ABC) transporters, the ABCA1
protein has two large extracellular domains, ECD1 and ECD2 (Figure 3A). The protein
modelling of wild-type and mutated ABCA1 showed predicted changes in spatial protein
structure (Figure 3B) affecting the structural conformation of ECD1 and ECD2 in the
extracellular region.
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Figure 3. (A): Graphical model of the protein domains of ABCA1 along with the ABCA1 gene repre-
sentation with the variants identified in ClinVar. (B): Predicted dimensional model of the wild-type
ABCA1 protein without the variant and the ABCA1 variant c.4799A>G (p. His1600Arg), highlighted
with a red arrow, reflecting the functional consequences of single-point mutation by substitution
of the polar amino acid histidine to the positively charged arginine. ECD—extracellular domain;
TMD—transmembrane domains; NBD—nucleotide-binding domains; R1 and R2: regulatory domains.

4. Discussion

We report the case of a patient referred to our clinic presenting features typical of Tang-
ier disease with a likely pathogenic ABCA1 variant, c.4799A>G, identified for the first time
as homozygous. Several types of variants in ABCA1 have been identified, with missense
and frameshift variants being the most often described [32]. In ClinVar, there are 37 likely
pathogenic/pathogenic variants in ABCA1, of which 14 are associated with TD. It is worth
noting the high number of functional single nucleotide polymorphisms (SNPs) identified
through genome-wide association studies (GWAS) associated either with disease risk or
protective role. Several SNPs in ABCA1 have shown a strong association between plasma
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lipid levels and coronary heart disease susceptibility, while others were associated with a
protective role [33,34]. Since the efflux of free cholesterol and phospholipids to ApoA-I is
defective, TD patients usually have free-cholesterol (foam cells) overload in macrophages
and other cells, which in turn are involved in the pathogenesis of atherosclerosis and
coronary heart diseases (CHD). However, while CHD can develop at any age, reduced
low-density lipoprotein cholesterol (LDL-C) in TD patients seems to provide cardiovascular
protection, but those patients with normal LDL-C levels are likely to develop premature
CHD [35].

According to a recent review from Mercan et al. [36], the patient presented the most
usual clinical features of TD including splenomegaly (40.7%), the characteristic orange ton-
sils (33%), and thrombocytopenia (27.8%), in addition to very low concentrations of HDL-C.
Less frequent findings such as hepatomegaly (13%), valve disease (13%), and anemia (9.3%)
were also present. Regarding prurigo nodularis of Hyde, initially considered idiopathic,
it has been also reported to be a manifestation of this disease in 14.8% of patients [9].
Regarding ocular manifestations of TD, corneal stromal opacities are commonly observed,
peripheral and finely stippled, usually asymptomatic [37]. The slit-lamp examination of
the patient here reported revealed crystalline powdery opacities affecting both eyes, which
can be considered an atypical manifestation.

Histological lipid deposits in clusters of foamy histiocytes, such as those found in the
liver of this patient, have been commonly reported in multiple tissues including tonsils,
bone marrow, skin, and jejunal submucosa; Schwann cells in peripheral nerves and in non-
vascular smooth muscle cells cannot be considered pathognomonic since they can be seen
in a variety of different storage diseases [38–40]. The history of a sibling with reported spon-
taneous splenic rupture and numerous foamy macrophages in the immunohistochemical
analysis of splenic lymph nodes is remarkable.

Considering the patient’s positive family history of coronary heart disease, thrombo-
cytopenia, splenomegaly, and peripheral polyneuropathy, it seems reasonable to conclude
those three siblings with unexpected sudden death could be also affected by TD, although
this cannot be confirmed due to the lack of genetic testing. Premature coronary artery dis-
ease is frequently observed (up to 25% of patients with TD) [41]. Increased cardiovascular
risk may be due to accelerated atherogenicity, increased intima–media thickness, or poor
response to lipid-lowering therapies [42,43].

Neuropathic manifestations are very heterogeneous among individuals with TD, with
distal symmetric polyneuropathy predominance but with no further reproducible patterns
of functional alterations, age of onset, or a clear genotype–phenotype correlation [36].
Di Pasquale et al. suggest possible subtle abnormalities that escape quantitative high-
resolution ultrasonography detection [44]. In this case study, three siblings were diagnosed
with demyelinating neuropathy, probably related to leprosy, but in the case of this study, it
might probably be a misdiagnosis. Both sural sensory nerves’ action potential amplitude
asymmetry in this reported patient cannot be definitely linked to neuropathic manifestation
of Tangier disease since he also suffers from lumbar degenerative disc disease. ABCA1
is a key transporter that mediates cholesterol efflux from cells and comprises two trans-
membrane domains (TMD) [45], two nucleotide-binding domains in the cytoplasm (NBD1
and NBD2), and two extracellular domains (R1 and R2). In addition, the ABCA1 protein
has two large extracellular domains, ECD1 and ECD2 [46,47]. Disulfide bonds have been
described within the ECD1 and ECD2 domains and both are essential for accommodating
ApoA-I and generation of high-density lipoproteins [48]. Fasano et al. [38] reported a
patient who was compound heterozygous for a nucleotide substitution of c.4799A>G (p.
His1600Arg) which was considered probably damaging based on predictive in silico analy-
sis. The patient here reported is found to be homozygous for the same variant, resulting in
the conversion of the polar histidine amino acid to the positively charged arginine. The
three-dimensional model generated with a SWISS-MODEL reinforces the pathogenic nature
of the genetic variant identified since it may cause significant structural changes in the
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quaternary structure of ABCA1, leading to poor or inappropriate protein function and,
therefore, increasing susceptibility to disease.

Activity of histidine residues can be modulated depending on protein interactions
and it is a significant catalytic residue in many enzymes by shuttling protons and enhanc-
ing catalysis. ABCA1 mediates the delivery of phospholipids and cholesterol from the
membrane to ApoA-I and p.His1600Arg is precisely located on the ECD2 domain which is
responsible for binding to ApoA-II [49]. The patient here reported displayed undetectable
plasma levels of ApoA-I.

In ABCA1 molecular defects, the genotype–phenotype severity correlation is not often
clear, since adult TD patients with homozygous or compound heterozygous variants do
not always show all the clinical manifestations expected in TD. Some adult patients with
nonsense variants can present CHD with yellow-orange tonsils or show peripheral sensory
neuropathy with absent CHD [11]. According to this, it is reasonable to expect that besides
the molecular defects in ABCA1, the clinical presentation of TD patients is also influenced
by other factors such as transcriptional or posttranscriptional elements, other genes that
participate in cholesterol efflux, nutritional factors, and age.

Indeed, ABCA1 plays a critical role in maintaining cholesterol metabolism and HDL
biosynthesis. Although the exact molecular mechanism is not yet fully understood, it
is important to uncover the molecular defects to understand their mechanistic effects
and develop new therapies. The findings from the present study expand the mutational
spectrum of the ABCA1 gene in Tangier disease and emphasize the important complement
of whole-exome sequencing (WES) studies in establishing precise clinical diagnosis of this
rare condition. Additionally, these results might shed light in the management of TD and
develop targeted drugs that specifically regulate ABCA1 expression.

Supplementary Materials: The following supporting information can be downloaded at: https:
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