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Abstract: (1) Background: Although the diagnostic criteria for massive hemorrhage with organ
dysfunction, such as disseminated intravascular coagulation associated with delivery, have been
empirically established based on clinical findings, strict logic has yet to be used to establish numerical
criteria. (2) Methods: A dataset of 107 deliveries with >2000 mL of blood loss, among 13,368 deliver-
ies, was obtained from nine national perinatal centers in Japan between 2020 and 2023. Twenty-three
patients had fibrinogen levels <170 mg/dL, which is the initiation of coagulation system failure,
according to our previous reports. Three of these patients had hematuria. We used six machine
learning methods to identify the borderline criteria dividing the fibrinogen/fibrin/fibrinogen degra-
dation product (FDP) planes, using 15 coagulation fibrinolytic factors. (3) Results: The boundaries
of hematuria development on a two-dimensional plane of fibrinogen and FDP were obtained. A
positive FDP–fibrinogen/3–60 (mg/dL) value indicates hematuria; otherwise, the case is nonhema-
turia, as demonstrated by the support vector machine method that seemed the most appropriate.
(4) Conclusions: Using artificial intelligence, the borderline criterion was obtained, which divides
the fibrinogen/FDP plane for patients with hematuria that could be considered organ dysfunction in
massive hemorrhage during delivery; this method appears to be useful.
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1. Introduction

Massive hemorrhage continues to be one of the most severe complications for preg-
nant women. Massive hemorrhage during delivery can be classified into consumption
coagulopathy with coagulation abnormalities, such as disseminated intravascular coag-
ulation (DIC) resulting from abruptio placentae, and dilutional coagulopathy without
coagulation abnormalities, such as atonic bleeding [1]. DIC is a systemic disease affecting
the coagulation system, simultaneously causing procoagulant factor activation, fibrinolytic
activation, and consumptive coagulopathy, which can ultimately lead to organ dysfunction
and death [2]. As DIC is a cause of maternal mortality, the pathogenesis of the disease needs
to be understood. DIC should be appropriately diagnosed because massive hemorrhage
during delivery due to consumption coagulopathy may require treatment for correction of
coagulation abnormalities. DIC during pregnancy is one of the chief causes of maternal
mortality worldwide [3,4], with a frequency of 0.03% [5] to 0.35% [6]. DIC can originate
from and cause damage to the microvasculature; this, if sufficiently severe, can lead to
organ dysfunction [7]. However, although the numerical diagnostic criteria for DIC asso-
ciated with delivery have been empirically established based on clinical findings such as
the presence or absence of organ dysfunction and laboratory findings of coagulation and
fibrinolysis factors, strict logic has yet to be used to establish numerical criteria.

Fibrin/fibrinogen degradation products (FDPs) represent a key factor concerning
DIC. An excessive FDP level with diminished or normal systemic fibrinolytic activity
suggests that local intravascular fibrin deposition and fibrinolysis occur in normal partu-
rition and bleeding complications in pregnancy [8]. We previously reported the criterion
values for coagulation and fibrinolytic system collapse based on FDPs, focusing on the
fibrinogen behavior, using mathematical methods such as data distribution function evalu-
ation and differential equations, in massive hemorrhage during delivery without organ
dysfunction [9]. When the fibrinogen level fell below 237 mg/dL, the FDP distribution
became abnormal, which began the abnormal coagulation/fibrinolysis system. When the
fibrinogen level fell below 170 mg/dL, the coagulation/fibrinolysis system failed (p < 0.05).
The borderline FDP value in organ dysfunction cases was expected to be higher. This
classification showed good agreement with the clinical status [10].

Artificial intelligence (AI) has recently become a more common and easily applied
tool in medical science. Some AI applications involve medical imaging [11–15], though
some do not [16–19]. Machine learning is part of the concept of AI and can be used to
acquire rules for judging unknown data by learning the latent patterns in the data. Machine
learning enables the learning and classification of observed data. An optimal method can
be chosen from among various machine learning algorithms. Machine learning can be used
to computationally classify data, thereby determining the data boundaries.

This was a retrospective study in which we collected cases of massive hemorrhage
during delivery with hematuria that could be assumed to be organ dysfunction, and we
developed a method to mathematically determine the FDP boundaries for hematuria.

We used the method to analyze 15 coagulation/fibrinolysis-related factors, selecting
factors that correlate with fibrinogen and FDP, facilitate rapid clinical results, and prevent
multicollinearity with each other. Then, after performing supervised learning using ma-
chine learning, we determined the criterion line dividing the plane of fibrinogen and FDP.
We used the same selected factors to create a discriminant analysis function [20] to obtain
the boundaries, which we compared with the boundaries created by machine learning.

2. Materials and Methods

This multicenter retrospective case series study, including human subjects, was ap-
proved by the National Hospital Organization (NHO) Central Research Ethics Committee
(R1-1009002). The participants were women who gave birth at any of the nine NHO perina-
tal centers (NHO Okayama Medical Center, NHO Saga Hospital, NHO Nagasaki Medical
Center, NHO Mie Chuo Medical Center, NHO Higashihiroshima Medical Center, NHO
Kure Medical Center, NHO Kyoto Medical Center, NHO Shikoku Medical Center for Chil-
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dren and Adults, and NHO Kokura Medical Center) in Japan between August 2020 and
September 2023. The inclusion criteria for the study were as follows: (1) women with
>2000 mL of blood loss within 24 h of delivery; (2) any mode of delivery, either vaginal or
cesarean; (2) singleton or multiple pregnancies; and (3) delivery after 22 weeks of gestation.
The rationale for inclusion criteria (1) and (2) was as follows: coagulopathy rarely develops
when blood loss is ≤2000 mL [21]. Furthermore, women who had bleeding of > 2000 mL
at delivery, regardless of mode of delivery, are defined by the Royal College of Obstetrics
and Gynaecologists as having severe PPH [22]. The exclusion criteria included (1) women
with medical complications that could cause coagulopathy and (2) women taking aspirin
or other medications that affect the coagulation system.

Blood loss was evaluated using different methods. During vaginal delivery, blood loss
was weighed by subtracting the dry weight of the absorbent pad from the weight of the
blood-soaked pad and/or from direct blood collection. All blood lost was contained in a
collector bag, which was placed under the woman’s buttocks. During cesarean delivery,
dry and blood-soaked surgical pads were weighed before and after surgery, and/or blood
volume aspirated from the surgical field with a suction tube was determined in milliliters.
The units of measured blood loss were standardized to milliliters, as grams are known to
be almost equivalent to milliliters in weight.

The attending physicians obtained blood samples when deemed clinically necessary,
regardless of blood loss. Activated partial thromboplastin time (APTT), D-dimer, FDP,
fibrinogen, hematocrit (Hct), hemoglobin (Hgb), platelet (Plt), prothrombin time (PT-sec) [6],
and prothrombin time-international normalized ratio (PT-INR) were measured in each
center’s laboratory for clinical management. Antiplasmin (AP), antithrombin (AT), fibrin
monomer complex (FMC), α2 plasmin inhibitor plasmin complex (PIC) [23], and thrombin
antithrombin complex (TAT) [23] levels were also measured in the laboratories of SRL INC.
(Tokyo, Japan) for this study. These 14 blood test indicators analyzed in the study were
used as factors for the complete data. We used fully deidentified data in this study.

Obstetric management, blood product transfusion, and determining the cause of
bleeding were performed at the attending physicians’ discretion at each center. All nine
centers participating in the study were perinatal centers in Japan, which routinely managed
high-risk pregnancies, including those with severe PPH, which would have allowed for
management without substantial differences. Data from the first measurement for each
patient were used for analysis.

All procedures were performed in accordance with the ethical standards of the commit-
tees responsible for human experimentation (institutional and national) and the Declaration
of Helsinki of 1964 and its later amendments. Written informed consent was obtained from
all patients for whom identifying information is included in this article.

Based on the results of our previous study [9], we used data for fibrinogen <170 mg/dL
only, which was a criterion for coagulation system failure. In this study, we defined the
appearance of hematuria as organ dysfunction [24].

Let the set of factors of the complete data obtained be {α, β, γ, . . .}. Let {α, β, γ, . . .}
be the set of factors of the complete data obtained. Let A and B be the sets of factors
significantly related to element α and another element β, respectively. A contribution
rate > 0.49 is used as the criterion. The elements of the A ∪ B set are classified into the
following sets: P, Q, and R.

P = { x|x ∈ A , x /∈ B, x /∈ Φ} (1)

Q = {y|y /∈ A , y ∈ B, y /∈ Φ} (2)

R = { z|z ∈ A , z ∈ B, z /∈ Φ} (3)

where cr(v, w) is the contribution rate between v and w. Then,

cr(xs, xt) < CR; s ̸= t, ∀xs ∈ P, ∀xt ∈ P (4)
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cr(ys, yt) < CR; s ̸= t, ∀ys ∈ Q, ∀yt ∈ Q (5)

cr(zs, zt) < CR; s ̸= t, ∀zs ∈ R, ∀zt ∈ R (6)

Here, CR = 0.64. When N(P), N(Q), and N(R) are the number of elements in P, Q, and
R, respectively, we have the following vectors:

α, β, x1, x2, . . . , xN(P), y1, y2, . . . , yN(Q), z1, z2, . . . , zN(R) (7)

The classifiers were created by labeling cases with and without organ dysfunction and
performing supervised machine learning. As machine learning methods, we used logistic
regression, which is a widely used method for predicting binary outcomes and can be used
for multiple outcomes [25,26]; random forest, which is a popular supervised method in
which an ensemble approach is employed by combining multiple decision trees through
the bagging technique to increase the accuracy and robustness of the model [26,27]; nearest
neighbors, which is a nonparametric supervised learning method that produces the output
classified by a plurality vote of its neighbors, with the object being assigned to the class
most common among its nearest neighbors [28,29]; naïve Bayes, which is optimal when
attributes are independent given the class [30,31]; neural network, which is a branch of
machine learning models inspired by the neuronal organization found in the biological
neural networks in animal brains [32,33]; and support vector machine, which is a machine
learning algorithm that can be used for both linear and nonlinear classification tasks and
constructing hyperplanes in a high dimensional space [26,34].

When the regression functions are f, g, and h,

∼
x i = fi(α); i = {1, 2, . . . , N(P)} (8)

∼
y j = gj(β); j = {1, 2, . . . , N(Q)} (9)

∼
z k = hk(α, β); k = {1, 2, . . . , N(R)} (10)

α, β,
∼
x1,

∼
x2, . . . ,

∼
xN(P),

∼
y1,

∼
y2, . . . ,

∼
yN(Q),

∼
z1,

∼
z2, . . . ,

∼
z N(R) (11)

This vector was substituted into the classifier to obtain the classification in {α, β}. In
this study, α and β were calculated as fibrinogen and FDP, respectively. Next, a discriminant
analysis was performed using this vector. Then, a single regression function

∼
α = f (β)

was obtained using the same method, with fibrinogen as the dependent variable and FDP
as the independent variable. The organ dysfunction criterion values for FDP alone were
then determined.

We examined the performance of each machine learning method, and we comprehen-
sively determined the optimal boundary criterion.

Development environment for analysis and statistics:
The computing environment comprised a Mac Pro running OS X 13.1 (Apple Inc.;

Cupertino, CA, USA) and Mathematica 13.0 (Wolfram Research; Champaign, IL, USA).
The data distribution analysis, discriminant analysis, linear regression analysis, machine
learning, Mann–Whitney test, and t-test were conducted with this setup.

3. Results

During the study period, 322 women fulfilled the inclusion criteria from among
13,368 deliveries at all participating centers. Of these women, 190 were unable to send
blood samples to SRL INC. For the study, 132 were enrolled, and 25 were excluded because
some required data were missing. In this study’s final sample of 107 women, 14 (13%)
had already been administered red blood cell concentrate (RCC) and/or fresh–frozen
plasma (FFP) (8 of both, 5 of RCC only, and 1 of FFP only) at the time of first blood
sampling. Of the 107 women, 23 had a fibrinogen level < 170 mg/dL, and 8 (35%) were
administered RCC and/or FFP (7 of both and 1 of FFP only). In 23 of the women with a
fibrinogen level < 170 mg/dL, 3 were classified as organ dysfunction cases because they
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had hematuria corresponding to marked activation of the coagulation–fibrinolytic system,
whereas the remaining 20 women were non-organ-dysfunction cases. The 15 factors, that
is, the 14 blood test parameters described in the Methods section plus the Hgb/fibrinogen
ratio, were obtained as factors for the complete data. Among these 15 factors, those with
a significant difference between patients with and without organ dysfunction were FDP,
D-dimer, TAT, Hgb/fibrinogen, fibrinogen, PT-sec, and PT-INR in the t-test, and FDP,
D-dimer, TAT, Hgb/fibrinogen, fibrinogen, PT-INR, PT-sec, and PIC in the Mann–Whitney
test in descending order of p-value from the t-test (Table 1). In both tests, FDP was the most
statistically significantly different.

Among the 13 factors other than fibrinogen and FDP, Hgb/fibrinogen, PT-sec, and
PT-INR strongly correlated with fibrinogen, whereas D-dimer and PIC strongly corre-
lated with FDP. To avoid multicollinearity, regression functions were created to obtain
Hgb/fibrinogen and PT-sec from fibrinogen and D-dimer from FDP (Table 2).

Figure 1 shows the hematuria boundaries that, based on machine learning, were recog-
nized as organ dysfunction in massive hemorrhage during delivery. In a previous study [9],
the reference values for fibrinogen were 237 and 170 mg/dL for the onset and breakdown
of coagulopathy, respectively. Machine learning was used to perform supervised learning
on cases with fibrinogen levels < 170 mg/dL. The patient was considered to have hematuria
if the estimated probability of developing hematuria by each machine learning method
was >0.5. The crude areas where organ dysfunction occurs were as follows for the different
models: logistic regression: FDP > 75 mg/dL; naïve Bayes: fibrinogen < 100 mg/dL and
FDP > 30 mg/dL; nearest neighbors: fibrinogen < 120 mg/dL and FDP > 80 mg/dL; neu-
ral network: FDP > 50 mg/dL; random forest: fibrinogen < 150 mg/dL and FDP > 40 mg/dL.
For the support vector machine, a positive FDP–fibrinogen/3–60 (mg/dL) value indicates
hematuria; otherwise, the case is nonhematuria because FDP decreases from 100 to 60 mg/dL
as the fibrinogen level decreases from 120 to 0 mg/dL.

In Figure 1 (left), for each method, the black areas indicate areas of organ dysfunction.
The green, yellow, red, and black dots indicate cases without coagulopathy, with coagulopathy,
with disrupted coagulopathy, and with organ dysfunction, respectively. In our previous study,
we used fibrinogen criteria values of 237 and 170 mg/dL for the development and disruption
of coagulopathy, respectively [9]. The machine learning classifier was trained on red and black
cases with fibrinogen levels < 170 mg/dL. The crude areas where organ dysfunction occurred
for each method were as follows: logistic regression, FDP > 75 mg/dL; naïve Bayes, fibrino-
gen < 100 mg/dL and FDP > 30 mg/dL; nearest neighbors, fibrinogen < 120 mg/dL and
FDP > 80 mg/dL; neural network, FDP > 50 mg/dL; random forest, fibrinogen < 150 mg/dL
and FDP > 40 mg/dL. For the support vector machine, FDP–fibrinogen/3–60 (mg/dL) is
positive because FDP decreases from 100 to 60 mg/dL as the fibrinogen level decreases from
120 to 0 mg/dL.

In the contour graph in Figure 1 (right) for each method, as shown in the legend bar,
the darker the color, the higher the probability of hematuria. If the estimated probability of
developing hematuria was >0.5, the patient was considered to have hematuria in the left
figure. As coagulopathy is generally accompanied by a fibrinogen decrease and an FDP
increase, support vector machines, neural networks, and naïve Bayes, the contour lines of
which change stepwise, seemed to be good fits.

The boundary determined using the support vector machine method that does not
include the fibrinogen 170 mg boundary seemed most appropriate for clinical use.

Table 3 shows the classification performance on the boundaries in the fibrinogen
and FDP planes of hematuria occurrence by the different machine learning methods. All
methods were highly accurate (>0.91). The area under the characteristic curve (AUC) was
high for all methods (>0.95). Class mean class entropy [35,36] was smaller for the logistic
regression, naïve Bayes, and neural network methods.
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Table 1. Comparison of factors for organ- and non-organ-dysfunction cases in data with fibrinogen <170 mg/dL. Factors are listed in order of decreasing p-value
on t-test.

Organ Dysfunction (Hematuria) Non-Organ Dysfunction t-Test Mann–Whitney
Test

Factor Mean ± SD Min Max Median 0.25
Quantile

0.75
Quantile Mean ± SD Min Max Median 0.25

Quantile
0.75

Quantile p-Value p-Value

FDP 95.58 ± 0.73 94.73 96 96 94.73 96 17.52 ± 16.8 0.72 61.64 17.31 3.01 24.16 1.03 × 10−7 0.0053
DD 350.63 ± 189.25 135.4 491 425.5 135.4 491 47.77 ± 54.65 3 219 34.05 10.61 47.9 3.32 × 10−6 0.0092
TAT 120 ± 0.0 120 120 120 120 120 67.53 ± 42.88 15.4 120 63.25 19.9 113 2.80 × 10−5 0.0319

Hgb/fbg 139.08 ± 73.17 56.96 197.37 162.9 56.96 197.37 61.42 ± 24.9 30.18 112 53.96 42.64 66.67 0.0009 0.0399
fbg 59.67 ± 20.6 38 79 62 38 79 122.82 ± 34.2 50 169 127.5 103 143.8 0.0057 0.0198

PT-sec 17.3 ± 2.14 15.6 19.7 16.6 15.6 19.7 13.62 ± 2.24 10.1 18.2 13.2 12 14.4 0.0145 0.0318
PT-INR 1.61 ± 0.2 1.46 1.84 1.53 1.46 1.84 1.22 ± 0.25 0.96 2 1.11 1.06 1.22 0.0174 0.0317

PIC 38.13 ± 26.67 17.7 68.3 28.4 17.7 68.3 8.87 ± 8.02 0.3 27.3 6.45 2 14.6 0.1962 0.0121
AP 45.33 ± 11.93 32 55 49 32 55 53.7 ± 14.28 34 93 52.5 42 56 0.3479 0.4107
AT 52.67 ± 19.01 34 72 52 34 72 45.2 ± 13.15 27 82 43 39 49 0.3925 0.4364

APTT 54.3 ± 19.54 39.3 76.4 47.2 39.3 76.4 46.28 ± 17.05 29.7 93.6 40.65 32.5 51.8 0.4624 0.3858
FMC 166.33 ± 121.48 27 250 222 27 250 184.12 ± 83.87 19.2 250 250 124 250 0.7477 0.6223
Hgb 7.37 ± 2.8 4.5 10.1 7.5 4.5 10.1 6.82 ± 1.26 5 10.2 6.85 5.6 7.3 0.7692 0.6809
Plt 105.33 ± 34.95 76 144 96 76 144 99.65 ± 33.7 39 183 88 78 119 0.7887 0.8190
Hct 21.8 ± 8.02 13.5 29.5 22.4 13.5 29.5 20.78 ± 3.74 15 30.6 20.7 17.3 22.5 0.8473 0.7492

AP—antiplasmin; APTT—activated partial thromboplastin time; AT—antithrombin; DD—D-dimer; fbg—fibrinogen; FDP—fibrin/fibrinogen degradation product; FMC—fibrin
monomer complex; Hgb—hemoglobin; Hct—hematocrit; PIC—α2 plasmin inhibitor/plasmin complex; Plt—platelet; PT—prothrombin time; PT-INR—prothrombin time–international
normalized ratio; SD—standard deviation; TAT—thrombin antithrombin III complex.
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Table 2. Regression functions from fibrinogen to Hgb/fbg and PT-sec and from fibrin/fibrinogen
degradation products to D-dimer while avoiding multicollinearity.

Formula Estimate ± SE p-Value AIC R-Squared

Hgb/fbg = β0 + β1 fbg β0, 174.41 ± 15.277;
β1, −0.898 ± 0.126

β0, 1.81 × 10−10;
β1, 5.31 × 10−7 213.79 0.7057

PT-sec = β0 + β1 fbg β0, 19.681 ± 1.118;
β1, −0.048 ± 0.009

β0, 4.80 × 10−14;
β1, 3.30 × 10−5 93.54 0.5679

D-dimer = β0 + β1 FDP β0, −9.535 ± 20.235;
β1, 3.4946 ± 0.492

β0, 0.642;
β1; 5.24 × 10−7 265.83 0.7061

AIC—Akaike’s information criterion; fbg—fibrinogen; FDP—fibrin/fibrinogen degradation product; Hgb—hemoglobin;
PT—prothrombin time; SE—standard error.
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Figure 1. Boundary of hematuria occurrence in heavy bleeding during delivery determined using
machine learning, i.e., the boundary of organ dysfunction occurrence. The results of each machine
learning method are shown in two sets of figures. The left figure of the set shows the scatterplot
of the data and the boundaries of the hematuria occurrence. The black areas indicate areas of
organ dysfunction. The green, yellow, red, and black dots indicate cases without coagulopathy, with
coagulopathy, with disrupted coagulopathy, and with organ dysfunction, respectively. In our previous
study, we used fibrinogen criteria values of 237 and 170 mg/dL for the development and disruption
of coagulopathy, respectively [9]. The machine learning classifier was trained on red and black cases
with fibrinogen levels < 170 mg/dL. The crude areas where organ dysfunction occurred for each
method were as follows: logistic regression, FDP > 75 mg/dL; naïve Bayes, fibrinogen < 100 mg/dL
and FDP > 30 mg/dL; nearest neighbors, fibrinogen < 120 mg/dL and FDP > 80 mg/dL; neural
network, FDP > 50 mg/dL; random forest, fibrinogen < 150 mg/dL and FDP > 40 mg/dL. For the
support vector machine, FDP–fibrinogen/3–60 (mg/dL) is positive because FDP decreases from
100 to 60 mg/dL as the fibrinogen level decreases from 120 to 0 mg/dL. The right figure shows the
contours of the estimated probability of hematuria occurrence, divided into 10 segments from 0% to
100%. as shown in the legend bar presenting that the darker the color, the higher the probability of
hematuria. If the estimated probability of developing hematuria was >0.5, the patient was considered
to have hematuria in the left figure. As coagulopathy is generally accompanied by a fibrinogen
decrease and an FDP increase, support vector machines, neural networks, and naïve Bayes, the
contour lines of which change stepwise, seemed to be good fits. The boundary determined using the
support vector machine method that does not include the fibrinogen 170 mg boundary seemed most
appropriate for clinical use.
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Table 3. Comparison of the performance of the classifiers on the boundaries in the fibrinogen and
fibrin/fibrinogen degradation product planes of hematuria occurrence in parturient hemorrhage
for different machine learning methods. All methods were highly accurate (>0.91). All methods
demonstrated high AUC values of >0.95. Class mean class entropy was smaller for the logistic
regression, naïve Bayes, and neural network methods.

Accuracy ± SD AUC Class Mean Class
Entropy

Cohen’s
Kappa

F1
Score

PPV,
Precision

Sensitivity,
Recall Specificity

Logistic regression 1.000 ± 0.22 1.000 1.417 × 10−4 1.000 1.000 1.000 1.000 1.000
Naïve Bayes 0.9565 ± 0.04 0.9583 5.097 × 10−5 0.8321 0.8571 0.7500 1.000 0.950

Nearest neighbors 1.000 ± 0.22 1.000 0.3285 1.000 1.000 1.000 1.000 1.000
Neural network 1.000 ± 0.22 1.000 2.253 × 10−5 1.000 1.000 1.000 1.000 1.000
Random forest 0.9130 ± 0.06 1.000 0.2407 0.7013 0.7500 0.6000 1.000 0.9000

Support vector machine 0.9565 ± 0.04 1.000 0.4967 0.7767 0.8000 1.000 0.6667 1.000

AUC—area under the characteristic curve; SD—standard deviation.

Figure 2 shows the boundaries of hematuria occurrence in massive hemorrhage during
delivery, according to discriminant analysis. The boundary was a straight line connecting
(0, 50) and (170, 68) in the fibrinogen–FDP coordinates. The discriminant function was
50.693 − 0.00106 × fibrinogen − 0.52723 × FDP − 0.04314 × Hgb/fibrinogen − 0.6978 ×
PT-sec − 0.02844 × D-dimer; the η2 of 0.775 indicated a moderate fit (p = 3.37 × 10−9), with
an error probability of 0.4186%.
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Figure 2. Boundary of hematuria occurrence in major hemorrhage at parturition according to
discriminant analysis, i.e., the boundary of organ dysfunction occurrence. Black areas indicate areas
of organ dysfunction. The green, yellow, red, and black dots indicate cases without coagulopathy,
with coagulopathy, with disrupted coagulopathy, and with organ dysfunction, respectively. In our
previous study, we used fibrinogen criteria values of 237 and 170 mg/dL for the development and
disruption of coagulopathy, respectively [9]. The boundary was a straight line connecting (0, 50)
and (170, 68) in the fibrinogen–FDP coordinates. The discriminant function was 50.693 − 0.00106 ×
fibrinogen − 0.52723 × FDP − 0.04314 × Hgb/fibrinogen − 0.6978 × PT-sec − 0.02844 × D-dimer;
η2 = 0.775, which indicates a moderate fit (p = 3.37 × 10−9); error probability = 0.4186%.
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The FDP criterion value for hematuria development was determined from the FDP
value alone, independent of fibrinogen. The relationship between fibrinogen and FDP
is

∼
y = β0 + β1x; x; FDP, y; f ibrinogen, β0 = 132.905 ± 9.571

(
P = 4.719 × 10−12), β1;

−0.6613 ± 0.2327
(

P = 9.760 × 10−3), R2 = 0.278. Table 4 compares the performance of the
classifiers among the machine learning methods. The FDP criteria were 84.96, 101.16, 73.38,
86.94, 92.23, and 79.67 for logistic regression, random forest, nearest neighbors, naïve Bayes,
neural network, and support vector machine, respectively. All AUC values, except for that
of random forest, were >0.958, and the positive diagnostic rate was excellent, at ≥0.956.

Table 4. Comparison of the performance of classifiers on the boundaries of fibrin/fibrinogen degra-
dation products (FDPs) for hematuria occurrence in parturient hemorrhage by different machine
learning methods. Class mean entropy was smaller for the logistic regression, naïve Bayes, and neural
network methods. The classifiers by the logistic regression, naïve Bayes, and neural network methods
were equally superior.

FDP Criteria
(mg/dL) Accuracy ± SD AUC Class Mean

Entropy
Cohen’s
Kappa

F1
Score

PPV,
Precision

Sensitivity,
Recall Specificity

Logistic regression 84.96 1.000 ± 0.22 1.000 1.417 × 10−5 1.000 1.000 1.000 1.000 1.000
Naïve Bayes 86.94 0.9565 ± 0.04 0.958 5.097 × 10−5 0.832 0.857 0.750 1.000 0.950

Nearest neighbors 73.38 1.000 ± 0.22 1.000 0.3285 1.000 1.000 1.000 1.000 1.000
Neural network 92.23 1.000 ± 0.22 1.000 3.569 × 10−4 1.000 1.000 1.000 1.000 1.000
Random forest 101.16 0.9130 ± 0.06 1.000 0.2407 0.701 0.750 0.600 1.000 0.900
Support vector

machine 79.67 0.9565 ± 0.04 1.000 0.4967 0.7767 0.800 1.000 0.6667 1.000

AUC—area under the characteristic curve; SD—standard deviation.

4. Discussion

We developed a method for determining the boundaries of hematuria development
associated with massive hemorrhage during delivery on a two-dimensional plane con-
sisting of fibrinogen and FDP in this retrospective study presented with reference to
the STROBE statement that was used for cohort studies, case–control studies, and cross-
sectional studies [37]. Each machine learning method and discriminant analysis produced
a variety of candidate boundaries. As shown in Table 3, the performance of the machine
learning classifier and the fit of the discriminant analysis function were both generally
excellent. The different methods produced various boundaries and criteria; however,
as they are all mathematically correct, simply determining a single boundary or a crite-
rion statistically was undesirable, as was adopting an average of the values. Boundaries
should be comprehensively determined based on clinical judgment, though data analysis
should eliminate subjective judgments to the largest possible extent. As coagulopathy is
generally accompanied by decreased fibrinogen and increased FDP levels, the support
vector machine, neural network, and naïve Bayes methods are well suited for the task
at hand because the contour lines change in a stepwise manner. Additionally, none of
these three methods produced a fibrinogen 170 mg/dL boundary. Based on these findings,
the support vector machine and naïve Bayes methods appeared suitable for predicting
hematuria in patients with massive hemorrhage during delivery. The boundary of whether
FDP–fibrinogen/3–60 (mg/dL) is positive according to the support vector machine method
seemed the most appropriate for clinical use, though naïve Bayes, for which the class mean
class entropy was low, may be optimal (Figure 1, Table 3). Erez et al. [38] reported that the
definition of DIC by the Scientific and Standardization Committee on DIC of the Interna-
tional Society on Thrombosis and Haemostasis indicated that (1) DIC is always secondary
to other causes, one being obstetric-related, such as abruption placentae [39]; (2) DIC
represents the systemic pathological activation of coagulation; and (3) DIC is a process
that originates in the microvasculature, or the vascular endothelium, resulting in organ
damage from microthrombi [40]. As hematuria alone does not necessarily indicate organ
dysfunction, yet is almost always considered to be nearly a state of organ dysfunction,
and as biopsying microthrombi in the kidneys of pregnant women in delivery who are
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hemorrhaging is impractical, we need to define the onset of hematuria associated with
massive hemorrhage during delivery as a type of clinical DIC and analyze and apply the
findings in clinical practice.

Although many coagulation and fibrinolytic factors exist in addition to, for example,
complete blood counts and platelets, in a massive hemorrhage under the urgent circum-
stances of delivery, factors should be selected so that only those for which test results
are available as quickly as possible are used to predict organ dysfunction and initiate
preventive treatment. We, therefore, sought a criterion for determining organ dysfunction
based solely on fibrinogen and FDP, factors for which results are obtained relatively quickly.
As information on related factors such as Hgb/fibrinogen ratio, PT-sec, and D-dimer also
contribute to these factors, five-dimensional factors were projected onto a two-dimensional
plane using a regression function; boundaries were not simply determined from fibrinogen
and FDP information alone. We also obtained the boundaries of the FDP only in one
dimension (Table 4). Clinicians would find the boundaries created from fibrinogen and
FDP in a two-dimensional plane (Figures 1 and 2) more clinically convincing than the
one-dimensional FDP boundaries because the fibrinogen estimates from the FDP are less
precise. This is because, even at fibrinogen levels of <170 mg/dL, consumption coag-
ulopathy with FDP elevation and dilutional coagulopathy without FDP elevation were
mixed; thus, the correlation between fibrinogen and FDP is no longer accurate (R2 = 0.278).
Therefore, boundaries in a two-dimensional plane are more realistic and suitable for clinical
applications than a one-dimensional criterion. Although a boundary surface in a higher-
dimensional space would be more accurate, recognizing and handling a boundary surface
that divides a space of more than three dimensions is challenging; therefore, a boundary in
a two-dimensional plane appears to be the most appropriate. The recognition of boundary
surfaces in three-dimensional space and beyond will become easier to understand if the
space is subdivided, that is, if the dimension is lowered by dividing the space into cases
under certain conditions.

In this case, the boundary values are obtained in a two-dimensional plane from
multidimensional factors, but by extending the above-described method, boundary surfaces
can be obtained in a three-dimensional or larger space. This can be not only applied to
the analysis of the coagulation–fibrinolytic system in massive hemorrhage but also further
generalized to other research areas. Care must be taken, however, when combining selected
factors to avoid multicollinearity. No set rules exist for combining these factors; these
must be handled on a case-by-case basis, which complicates the creation of the regression
function. The discriminant analysis showed results comparable with those of machine
learning, though this method only provides a linear combination of factors. However,
because each factor is supposedly related to the others, AI classifiers are generally more
suitable and will be especially so in the future. If more cases (e.g., more than 1000) can
be accumulated, including many organ dysfunction cases, AI using deep learning [41,42]
should provide more reliable boundaries than machine learning or discriminant analysis.

In this study, we sought the boundary between the two classifications of the presence
or absence of organ dysfunction, but more than three classifications are obtainable by ex-
tending the above-described method. Our analysis was limited to fibrinogen < 170 mg/dL,
where the coagulation system is disrupted, in accordance with our previous report [9], but
boundaries can be created between three or more regions, including normal conditions.

The most statistically significant difference in FDP was between organ-dysfunctional
and non-organ-dysfunctional cases with a fibrinogen level of <170 mg/dL. This suggests
that FDP is the most important factor in determining organ dysfunction. Regarding hemor-
rhage, we suggest the validity of using FDP to predict severe organ dysfunction, focusing
on the dynamics of fibrinogen, which is involved in both coagulation and fibrinolysis.

This study had some limitations. First, the number of organ dysfunction cases (three)
was low. The results were acceptable despite having only three cases of organ dysfunction
because the cases’ laboratory values were widely different and extremely abnormal. How-
ever, the frequency of detection of hematuria was 2.27% (3/132) for the cases for whom
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the amount of bleeding was >2000 mL at delivery and only 0.0244% (3/13, 368) of all
deliveries; thus, accumulating cases of organ dysfunction such as hematuria is challenging.
Ideally, more data from more organ dysfunction cases would be added to the analysis.
Second, although fibrinogen and FDP were selected as the two items for which rapid
test results were clinically obtainable, the ability to obtain rapid results for both at the
same time depends on medical institutions’ facilities and testing methods’ advances. In
facilities where only fibrinogen or FDP results are available, fibrinogen levels < 100 mg/dL
or FDP levels > 60 mg/dL should be considered as an indication of organ dysfunction.
Furthermore, although this is not our contention, some factors other than fibrinogen and
FDP may be better suited for predicting organ dysfunction. Finally, although no deaths
occurred in this study and hematuria was used as organ dysfunction, a fixed definition
does not exist for organ dysfunction. Data should be analyzed with other indicators, such
as death, renal dysfunction, postpartum sequelae, and histopathological abnormalities. The
use of these severe cases would lead to different results.

5. Conclusions

Although each machine learning method proposed various boundaries, the results of
naïve Bayes, support vector machines, and discriminant analysis seem clinically acceptable.
The boundary for whether FDP–fibrinogen/3–60 (mg/dL) is positive according to the
support vector machine seemed the most appropriate for clinical use. In the future, a more
reliable region will be available if more types of organ dysfunction or data on cases of organ
dysfunction can be added. Even if the definition of organ dysfunction is changed or if many
factors, including unknown ones, are added to the definition of organ dysfunction, the
method developed in this study, which is based on AI using multiple factors correlated with
fibrinogen and FDP and avoiding multicollinearity to obtain the boundary line dividing
the plane of fibrinogen and FDP, can be expected to be a useful criterion for identifying
organ dysfunction occurrence.
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