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Abstract: Background: Barrett’s esophagus and esophageal adenocarcinoma cases are increasing
as gastroesophageal reflux disease increases. Using artificial intelligence (AI) and linked color
imaging (LCI), our aim was to establish a method of diagnosis for short-segment Barrett’s esopha-
gus (SSBE). Methods: We retrospectively selected 624 consecutive patients in total at our hospital,
treated between May 2017 and March 2020, who experienced an esophagogastroduodenoscopy with
white light imaging (WLI) and LCI. Images were randomly chosen as data for learning from WLI:
542 (SSBE+/− 348/194) of 696 (SSBE+/− 444/252); and LCI: 643 (SSBE+/− 446/197) of
805 (SSBE+/− 543/262). Using a Vision Transformer (Vit-B/16-384) to diagnose SSBE, we established
two AI systems for WLI and LCI. Finally, 126 WLI (SSBE+/− 77/49) and 137 LCI (SSBE+/− 81/56)
images were used for verification purposes. The accuracy of six endoscopists in making diagnoses
was compared to that of AI. Results: Study participants were 68.2 ± 12.3 years, M/F 330/294,
SSBE+/− 409/215. The accuracy/sensitivity/specificity (%) of AI were 84.1/89.6/75.5 for WLI and
90.5/90.1/91.1/for LCI, and those of experts and trainees were 88.6/88.7/88.4, 85.7/87.0/83.7 for
WLI and 93.4/92.6/94.6, 84.7/88.1/79.8 for LCI, respectively. Conclusions: Using AI to diagnose
SSBE was similar in accuracy to using a specialist. Our finding may aid the diagnosis of SSBE in
the clinic.

Keywords: artificial intelligence; Barrett’s esophagus; computer-aided diagnosis; linked color
imaging; Vision Transformer

1. Introduction

The frequency of Barrett’s esophagus (BE) and esophageal adenocarcinoma is increas-
ing as the prevalence of gastroesophageal reflux disease (GERD) increases [1]. In Japan,
besides the increasing prevalence of GERD, the incidence of BE and esophageal adeno-
carcinoma is feared to also increase due to an increase in obesity, lifestyle changes, and a
decrease in Helicobacter pylori infections among the young [2]. In contrast to a diagnosis
of long-segment Barrett’s esophagus (LSBE) using white light imaging (WLI), a diagnosis
of short-segment Barrett’s esophagus (SSBE) is sometimes more troublesome. Western
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countries show a high frequency of LSBE. However, in Japan, LSBE is less prevalent than
SSBE. After esophagogastroduodenoscopy during health checks, the frequency of SSBE
was determined to be from 12.0 to 42.6% on endoscopic screening in Asia [3]. Patients
showing LSBE are at higher risk of developing Barrett’s carcinoma; however, patients with
SSBE are also susceptible [4]. In Japan, the occurrence of esophageal adenocarcinoma has
increased to 6.5% in patients who undergo surgical resections and to 7.5% in those with
various types of esophageal cancers, including those who had not undergone a surgical
resection [5]. Consequently, an accurate diagnosis of BE is required.

Recently, in a BE diagnosis, esophageal metaplasia (ESEM), as observed by endoscopy,
was recognized in the absence of a biopsy [6]. Although magnifying endoscopy was used
for a precise diagnosis in several reports [7,8], daily clinical practice requires a diagnosis that
is easy to make and accurate. Linked color imaging (LCI) in image-enhanced endoscopy
(IEE) allows differences in mucosal color to be easily recognized. As a color-enhancing
technology, images from LCI show improved color separation in the red areas of mucosal
blood vessels. Such regions are more distinguishable subsequent to the overlap of exposure
by narrow-band laser light on a white light laser that maintains the screen’s brightness.
As a result, red and discolored lesions are more easily identified, as well as differences
in mucosal color. We previously described the usefulness of a diagnosis of BE and reflux
esophagitis using LCI [9,10]. Others have described the utility of LCI to aid in the diagnosis
of Barrett’s neoplasia and BE [11–14]; the prevalence of BE using LCI in patients who
visited a health center for a detailed medical check-up in Japan was 56.2% [14]. Moreover,
as another IEE, the value of texture and color enhancement imaging in evaluating BE has
been described [15,16]. It is hoped that IEE will improve the diagnostic capability of BE.

In recent years, artificial intelligence (AI)–based endoscopic diagnostics have been
developed and shown to be effective in the field of BE and Barrett’s neoplasia [17–22]. The
usefulness of using LCI to diagnose H. pylori gastritis [23–25] and colon polyps [26] was also
described. It was noted that adding LCI to AI could improve diagnostic accuracy. However,
reports of the diagnosis of BE with LCI using AI are non-existent, and an improvement in
the diagnostic performance of BE combining LCI with AI remains unknown. Therefore, we
aimed to develop a diagnostic system for BE using AI and LCI.

2. Materials and Methods
2.1. Preparation of Training and Test Image Sets

Our aim was to develop a diagnostic system for SSBE using an AI system and LCI at a
single center in a retrospective clinical study. A total of 624 consecutive patients, treated
with esophagogastroduodenoscopy using WLI and LCI (WLI: 696 [SSBE+/− 444/252]
and LCI: 805 [SSBE+/− 543/262]) between May 2017 and March 2020 at Juntendo Tokyo
Koto Geriatric Medical Center, were retrospectively selected. Equipment used included
endoscopic systems (EG-L590WR, EG-L600WR7 or EG-L600ZW; Fujifilm Co., Tokyo, Japan),
a light source (LASEREO LL-4450; Fujifilm Co.), and a video processor (AdvanciaHD
VP-4450HD; Fujifilm Co.; Structure Emphasis: B6, Color Emphasis: C1). Most study
participants were outpatients who were conscious during their endoscopic examination.
Endoscopies were carried out for varied reasons: GERD symptoms, a medical check-up,
abdominal pain, anemia, and to follow up gastric ulcers. Inclusion criteria of this study
were as follows: (1) more than 20 years of age and diagnosed endoscopically as SSBE (SSBE
group), or patients who did not have SSBE (control group) and had undergone WLI and
LCI; (2) imaging of the gastroesophageal junction (GE-J) occurred during the inspiration of
air phase; (3) circumferential images were acquired close to the squamocolumnar junction
(SC-J). Exclusion criteria included patients who previously underwent esophageal surgery
or a gastrectomy, or who had LSBE, dysplasia, or cancer in SSBE, or advanced esophageal
or gastric cancer. Patients were also excluded if it was difficult to perform an endoscopic
examination on them due to serious hepatic, respiratory, or heart diseases. In addition, if
the GE-J was not fully extended, a patient was also excluded. Obtained images were in
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JPEG format of acceptable quality. Each image was approximately 100 Kb in size and had a
pixel array of 640 × 510 and 24-bit color.

We used expert endoscopists who had each conducted more than 10,000 esophagogas-
troduodenoscopies (TT1, DA1, MS, YI). An ESEM diagnosis was based on a criterion of BE
on endoscopy based on histological confirmation. The GE-J is considered to be at the distal
end of the lower esophageal palisade vessels in Japan [27], while the medical establishment
in Western countries considers it to be at the proximal end of the gastric folds (Prague C
& M criteria) [28]; we used the former definition of GE-J. However, when we could not
detect palisade vessels, the GE-J was considered to be at the proximal end of gastric folds.
The ESEM was considered to be between the GE-J and SC-J [6]. Two expert endoscopists
(TT1, DA1) evaluated WLI endoscopic images until a consensus was reached for each
image. Reflux esophagitis was classified according to the Los Angeles (LA) classification
system [29], and non-erosive reflux esophagitis was classified according to a modified LA
classification system [30,31].

2.2. Development of an Endoscopic Diagnosis Support System for Esophageal Barrett’s Mucosa

Images from 528 patients using WLI: 542 (SSBE+/− 348/194) of 696 (SSBE+/−
444/252) or LCI: 643 (SSBE+/− 446/197) of 805 (SSBE+/− 543/262) were used randomly
to learn from. A Vision Transformer (Vit-B/16-384, optimizer: “sam”, learning rate: 0.03,
batchsize = 64) that diagnosed SSBE was used for two AI systems using WLI and LCI. A Vi-
sion Transformer is a neural network that does not use a convolution layer like conventional
convolutional neural networks (CNNs) but consists of the encoder part of the transformer
(a model that does not use CNNs or recurrent neural networks, but only attention).

2.3. Verification of AI Diagnostic Accuracy with Test Data

To assess the accuracy of diagnoses (diagnosis of SSBE or not), a separate test dataset
from 96 patients with WLI: 126/LCI: 137 images (SSBE: WLI: 77/LCI: 81, non-SSBE images:
WLI: 49/LCI:56) was applied to AI systems. The test dataset used was not augmented. For
each test, trained AI systems created a continuous number between 0 and 1 for SSBE or not
that corresponded to the probability of a specific condition being represented by an image.
The cut-off value of 0.5 was used for a final diagnosis of each condition (SSBE/non-SSBE).
Moreover, the area under the receiver-operating characteristic curve (AUC) was calculated
in order to assess how accurate the AI-assisted Vision Transformer system was. Accuracy,
sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV)
were determined, respectively. The overall test speed was the period from the beginning to
the end of an evaluation of test images as measured by the AI-assisted Vision Transformer
system. How the AI-assisted Vision Transformer system recognized input images was
assessed using a gradient-weighted class activation map (Grad-CAM) to decide the most
important area of each image for classification. The Grad-CAM makes a coarse localization
map that highlights pivotal regions in an image to predict a target concept such as SSBE. A
heatmap image was created from localization map data.

2.4. AI Diagnostic Accuracy Compared to Three Experts and Three Non-Experts

Six endoscopists (three experts, raters A–C: HU1, YA, KM, and three trainees, raters A–C:
HU2, TI, MY) assessed whether SSBE was present or not using 263 images (126 WLI and
137 LCI). Accuracy, sensitivity, specificity, PPV, and NPV were determined, respectively. The
averages of the three experts and three trainees were evaluated for each value. The images
(WLI or LCI) were displayed to each of the endoscopists in a random order independently at
a size of 10.3 × 12.9 cm against a black background on a screen (Microsoft Office PowerPoint
2019, Microsoft Inc., Redmond, WA, USA). All images were made anonymous to raters,
with no clinical data or dates of images shown.
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2.5. Statistical Analysis

We undertook statistical analyses using SPSS version 28.0 (SPSS, Inc., Chicago, IL,
USA). Continuous data were compared using Student’s t-test. Categorical analysis of
variables was performed using a Chi-square test or Fisher’s exact test. p values < 0.05 were
considered significant.

3. Results
3.1. Patient Characteristics in Training and Validation Datasets

The characteristics of the 624 participants of the study are shown in Table 1: mean
age (y): 68.7; M/F 330/294; SSBE+/− 409/215. For SSBE, C0M1: 257; C0M2: 38; C1M1:
45; C1M2: 53; C1M3: 5; C2M2: 9; and C2M3: 2 were observed according to Prague C & M
criteria. For reflux esophagitis, Grade M: 218; Grade A: 40; Grade B: 13; Grade C: 1; and
Grade D: 0 were observed according to a modified LA classification system. Significant
differences were not observed in patient characteristics between training and validation
data. Figure 1 shows representative cases of non-SSBE and SSBE groups. Short-segment
Barrett’s esophagus was emphasized in a purple color using LCI compared to WLI with
palisade vessels (Figure 1e). In LCI, SSBE was emphasized in a purple color even when
palisade vessels were not noted (Figure 1f).

Table 1. Baseline characteristics of study patients.

Characteristics Training Data (n = 528) Validation Data (n = 96) p Value

Male/female, n 276/252 54/42 0.47
Age, mean (SD), years 68.7 (11.8) 68.6 (11.5) 0.91
SSBE, n present/none 345/183 64/32 0.80
Palisade vessels, n present/none 194/334 35/61 0.96
Reflux esophagitis, n present/none 233/295 39/57 0.52

SD, standard deviation; SSBE, short-segment Barrett’s esophagus.
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SSBE group. Palisade vessels were observed in SSBE. (c) WLI. SSBE group. Palisade vessels were not 
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Figure 1. Educational endoscopic images for artificial intelligence diagnostic system using WLI and
LCI. (a) White light imaging (WLI). Non-short segment Barrett’s esophagus (SSBE) group. (b) WLI.
SSBE group. Palisade vessels were observed in SSBE. (c) WLI. SSBE group. Palisade vessels were not
observed in SSBE. (d) Linked color imaging (LCI). Non-SSBE group. (e) LCI. SSBE group. Yellow
arrows indicate SSBE emphasized in a purple color with palisade vessels. (f) LCI. SSBE group. Yellow
arrows show SSBE emphasized in a purple color without palisade vessels.
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3.2. Accuracy of AI-Assisted Computer-Aided Diagnostic System

Table 2 shows the accuracy of the AI-assisted computer-aided SSBE diagnostic system
with WLI and LCI. The scoring of the AI systems with regard to accuracy/sensitivity/
specificity/PPV/NPV (%) was 84.1/89.6/75.5/85.2/82.2 for WLI and 90.5/90.1/91.1/93.6/86.4
for LCI. Figure 2 shows heatmap images of the AI system using WLI or LCI. Images that
the AI system determined to be SSBE were shown in red. However, images that the AI
system judged to not be SSBE were not highlighted in red on the heatmap. Figure 3 shows
receiver operating characteristic (ROC) curves of AI, experts, and trainees for WLI and LCI.
The area under the curve (AUC) for AI was 0.882 when using WLI and 0.937 when using
LCI. Artificial intelligence diagnostic results, with and without palisade vessels or reflux
esophagitis, for test data for WLI and LCI are shown in Tables S1 and S2. False negatives
were observed in twelve cases when using WLI and in five cases when using LCI. False
positives were observed in eight cases when using WLI and in eight cases when using LCI.
A significant difference was not observed in terms of accuracy in the presence or absence of
palisade vessels and reflux esophagitis when using WLI or LCI. Figure S1 shows heatmap
images of false negative and false positive cases.

Table 2. Diagnostic accuracy of an AI–assisted computer-aided diagnostic system for SSBE.

Accuracy Sensitivity Specificity PPV NPV

WLI 84.1%
(106/126)

89.6%
(69/77)

75.5%
(37/49)

85.2%
(69/81)

82.2%
(37/45)

LCI 90.5%
(124/137)

90.1%
(73/81)

91.1%
(51/56)

93.6%
(73/78)

86.4%
(51/59)

AI, artificial intelligence; LCI, linked color imaging; NPV, negative predictive value; PPV, positive predictive value;
SSBE: short-segment Barrett’s esophagus; WLI, white light imaging.
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Figure 2. Endoscopic images using WLI and LCI with heatmap images. (a) White light imaging (WLI).
Non-short segment Barrett’s esophagus (SSBE) group. (b) Linked color imaging (LCI). Non-SSBE
group. (c) WLI. SSBE group. (d) LCI. SSBE group. (e) WLI. No heatmap was observed. An artificial
intelligence (AI) system diagnosed a non-SSBE group. (f) LCI. No heatmap was observed. An AI
system diagnosed a non-SSBE group. (g) WLI. A heatmap was observed. An AI system diagnosed an
SSBE group. (h) LCI. A heatmap was observed. An AI system diagnosed an SSBE group.
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3.3. Diagnostic Accuracy of Endoscopists

Table 3 shows the diagnostic accuracy of trainees and experts when using WLI or
LCI. Results for the diagnostic accuracy of experts and trainees with respect to accu-
racy/sensitivity/specificity/PPV/NPV (%) were 85.7/87.0/83.7/89.3/80.4 for trainees
using WLI; 88.6/88.7/88.4/92.3/83.3 for experts using WLI; 84.7/88.1/79.8/86.3/82.2 for
trainees using LCI; and 93.4/92.6/94.6/96.2/89.8 for experts using LCI, respectively.

Table 3. Diagnostic accuracy of endoscopists for SSBE (%).

Accuracy Sensitivity Specificity PPV NPV

All endoscopists WLI 86.3 88.2 83.3 89.1 83.2
LCI 90.0 91.0 88.6 92.6 88.2

Trainees
WLI 85.7 87.0 83.7 89.3 80.4
LCI 84.7 88.1 79.8 86.3 82.2

Experts WLI 88.6 88.7 88.4 92.3 83.3
LCI 93.4 92.6 94.6 96.2 89.8

LCI, linked color imaging; NPV, negative predictive value; PPV, positive predictive value; SSBE: short-segment
Barrett’s esophagus; WLI, white light imaging.

4. Discussion

In this study, the development of two AI systems using WLI and LCI rested on a Vision
Transformer (Vit-B/16-384) that could diagnose SSBE. Respective findings with regard to
the diagnostic accuracy of the AI systems were 84.1% using WLI and 90.5% using LCI. The
AI diagnostic system using LCI for SSBE was more accurate compared to using WLI and
showed the same accuracy as that of a specialist. For LCI users, adding AI systems to LCI
screening may contribute to routine diagnoses. To the best of our knowledge, this is the
first study to establish AI systems and the use of LCI for the diagnosis of SSBE.

Linked color imaging is a new technique of IEE and can enhance colors. The exposure
of two types of light (short-wavelength narrow-band and white light lasers) is well balanced,
which means that data on blood vessels and mucosal surface structures are acquired, as
well as information from conventional WLI, simultaneously. The utility of LCI was shown
with regard to a marked improved visibility of chronic gastritis [32,33] and the detection of
neoplasms in the upper gastrointestinal tract [34] in upper gastrointestinal endoscopy. In
recent years, AI systems for the diagnosis of gastritis and early gastric cancer have been
developed [35–38]. In addition, AI systems using LCI have been described. Nakashima
et al. reported that an AI diagnostic system for H. pylori infection using LCI achieved a
sensitivity of 96.7% and a specificity of 83.3% compared to a sensitivity of 66.7% and a
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specificity of 60.0% using WLI [23]. The diagnostic accuracy for H. pylori infection using
an LCI–computer-aided diagnostic system was 84.2% for uninfected, 82.5% for currently
infected, and 79.2% for post-eradication. An LCI–AI system showed superior diagnostic
accuracy compared to that based on a WLI–AI system [25]. Yasuda et al. found that an AI
diagnostic system using LCI for the diagnosis of H. pylori infection showed an accuracy
of 87.6%, a sensitivity of 90.4%, and a specificity of 85.7% [24]. However, regarding BE,
the use of LCI in the diagnosis of BE has not been described. A strength of our study is
showing the usefulness of an AI system using LCI for SSBE.

This study investigated the accuracy of an AI-assisted and computer-aided SSBE
diagnostic system using WLI and LCI. An AI system using LCI showed higher accuracy,
sensitivity, specificity, PPV, and NPV than WLI. The usefulness of LCI was also demon-
strated by the AI system. This result is similar to that of a previous study on the diagnosis
of H. pylori infection [23]; the accuracy of an AI system using LCI was higher than that
when using WLI. In our previous report [9], SSBE was distinguishable by its purple–red
color on LCI and showed improved visibility compared to WLI. An objective evaluation of
the color difference (∆E*) indicated significant differences between the gastric, esophageal,
and Barrett’s mucosae. Therefore, when an AI system learns, SSBE is emphasized. This
led to an improvement in the diagnosis, even when palisade vessels under WLI were hard
to distinguish. Initially, we expected that the accuracy would decrease in the absence of
palisade vessels or the presence of reflux esophagitis; however, no significant difference in
accuracy was noted between these. An AI system using LCI may have been better because
the AI system may have made judgements according to the color of the SSBE, regardless of
the presence or absence of palisade vessels. This is considered to be highly useful in clinical
practice under various conditions. However, in the evaluation of AI diagnostic results for
test data, misdiagnosed cases were observed for both WLI and LCI. According to heatmaps,
the locations of the oral or anal sides of the SC-J were not constant in false positive cases
(Figure S1). These areas are considered to be areas of interest for AI even if they are not
areas that endoscopists would normally diagnose as SSBE. These are characteristics of the
AI system, and a further improvement in accuracy, such as by increasing the number of
cases studied, is necessary.

The diagnostic accuracy of trainees and experts for SSBE using an AI system and WLI
or LCI was also evaluated. Accuracy, sensitivity, specificity, PPV, and NPV were all higher
using LCI than when using WLI for both trainees and experts. We previously reported the
improved visibility of SSBE using LCI compared to WLI [9]; the higher accuracy for SSBE
found with LCI in this current study supports this. Comparing the results of the AI system
with those of trainees and experts, the AI system was inferior to experts using WLI but
comparable to specialists using LCI. This result is similar to that of a previous report [24] of
an AI diagnostic system using LCI for the diagnosis of H. pylori infection. A diagnostic AI
system for Barrett’s adenocarcinoma has also been reported [17,20,39–41]. Better accuracy
is expected with the addition of IEEs such as LCI. An AI system using LCI is at about the
same level as that of specialists and is expected to have the added effect of equalizing test
accuracy and diagnostic accuracy. The use of this system may have a useful impact on
improving the quality of clinical endoscopy and SSBE screening in high-risk patients.

Several limitations were apparent in our study. The study was undertaken retrospec-
tively and used a small number of patients from a single center. Second, the AI system that
we evaluated did not use video images but only still images, so it could not be applied to a
real-time diagnosis. In addition, the AI system does not detect the area of an SSBE but only
whether it exists or not. In future, it is necessary to develop AI for an area by annotation.
Third, SSBE was not always histologically confirmed, and findings of SSBE by AI were not
related to any histological diagnosis since the aim of this investigation was a diagnosis of
ESEM only. Furthermore, the study’s Vision Transformer model might have overfit the
training set, which would have prevented it from generalizing to previously undiscovered
scenarios. To lessen this risk, strategies like regularization and cross-validation could be ap-
plied [42]. Therefore, a prospective multi-center study using a bigger cohort with real-time
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video images and with annotation will be required to further develop our findings. The
creation of AI models for the detection of additional esophageal diseases (such as LSBE,
dysplasia, or cancer) is recommended for the future.

5. Conclusions

We found that an AI diagnostic system using LCI to detect SSBE was as accurate as
when using a specialist. Using such an AI system may be useful for making a diagnosis in
the esophageal junction area for LCI users in the clinic.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/jcm13071990/s1, Figure S1: Endoscopic images diagnosed as false positive
and negative by an AI system using white WLI and LCI with heatmap images; Table S1: Evaluation
of AI diagnostic results for test data using WLI; Table S2: Evaluation of AI diagnostic results for test
data using LCI.
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