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Abstract: In this opinion article, there is an analysis and discussion regarding the effects of growth
on the spinal and rib cage deformities, the role of the rib cage in scoliogeny, the lateral spinal profile
in adolescent idiopathic scoliosis (AIS), the genetics and epigenetics of AIS, and the interesting
and novel field investigating the sleep impact at nighttime on AIS in relation to the sequence of
the scoliogenetic changes in scoliotics. The expressed opinions are mainly based on the published
peer-reviewed research of the author and his team of co-authors. Based on the analysis noted above,
it can be postulated that the vertebral growth changes in the spine during initial idiopathic scoliosis
(IS) development are not primary-intrinsic but secondary changes. The primary cause starting the
deformity is not located within the vertebral bodies. Instead, the deformations seen in the vertebral
bodies are the secondary effects of asymmetrical loads exerted upon them, due to muscular loads,
growth, and gravity.

Keywords: idiopathic scoliosis; vertebral spine; rib cage; genetics; epigenetics; sleep

1. Introduction

An unanswered question in the scoliogeny is whether the growth changes in the spine
in initial idiopathic scoliosis development and mild similar cases are primary/inherent
or secondary. There is no clear answer, and there is limited information on this issue in
the literature. Some state that pathology begins within the spine [1], while others argue
that changes in the spine are secondary [2]. The research approach to shed some light on
this issue is multidimensional, with the study of the various anatomical components of the
deformity, such as the thoracic cage, the lateral spinal profile, the intervertebral discs, the
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genetics and epigenetics in idiopathic scoliosis, and the impact of sleep period of time on
idiopathic scoliosis.

It was reported that in the rib cage in adolescent idiopathic scoliosis, the rib length
asymmetry in the apical region is a secondary event to the scoliosis deformity and not a
protagonistic feature in the aetiopathogenesis [3,4]. The opponents of this view claim that
in the chain of pathological deformations leading to scoliosis, the ribs deform first and then
the spine follows [5,6].

In humans, it is a recognized axiom that anatomy and physiology are interdepen-
dent, as one determines the other. In an attempt to answer the question “Are the scoli-
ogenetic changes in the spine primary or secondary?” it will be helpful and suitable to
use this formerly described concept as the morphology–anatomy expresses–reflects and
deciphers–decodes the physiology and pathology and vice versa.

The knowledge of normality is necessary for the study of abnormality. The proper
way to study the mechanisms of a deformity development is when this is initiating and
mild or even moderate and not when it is progressed. The question arises as to how
to find sufferers from mild or even moderate forms of idiopathic scoliosis, as well as
a normal peer group population. The answer may be found by analyzing the children
involved in the school scoliosis screening program, which, beyond its original aim, which
is prevention, is a human evidence-based clinical research tool of IS scoliogeny established
on the concept mentioned above, which is as follows: morphology expresses–reflects and
deciphers–decodes the physiology and pathology. This school scoliosis screening program
will help to find sufferers from mild, or even moderate, forms of scoliosis and at the same
time identify a plethora of normal peers for comparison.

During the twenty-five years of school scoliosis screening program implementation,
from 1997 to 2021, 24.223 school children and adolescents, 5–18 years of age, were examined
and the collected data was analyzed. A special feature of our program was that a wide age
range of children was examined, which is a strategy that was not reported to be applied in
other school scoliosis screening programs. The analysis of the thesaurus of all these data
resulted in some very interesting findings. It was discovered that the younger children
with truncal asymmetry who were referred to the scoliosis clinic often times had a perfectly
straight spine with no vertebral rotation, despite the presence of a thoracic hump [7]. The
scoliotic spine first deforms at the level of the intervertebral disc, not the vertebrae [8,9].

The thoracic cage develops asymmetrically first; consequently, we suggested the
“Double Rib Contour Sign” in the lateral radiographs [10], and the “rib index” [11,12], for
the assessment of the thoracic cage deformity in the transverse plane. The lateral spinal
profile of mild idiopathic scoliosis of 10◦–20◦ Cobb angle, is not a predisposing factor for
the initiation of IS curves; it is rather a compensatory mechanism [13].

The analysis and discussion of the effect of growth on spinal and rib cage deformity, of
intervertebral discs in adolescent idiopathic scoliosis, of the role of the thorax in scoliogeny,
of the lateral spinal profile in adolescent idiopathic scoliosis, and the genetics and epigenet-
ics and the interesting “new” field of study of the sleep impact at night-time on adolescent
idiopathic scoliosis are presented in this opinion report in relation to the sequence of the
scoliogenetic changes in scoliotics.

2. Effect of Growth on Spinal and Rib Cage Deformity

It was discovered that the younger children with truncal asymmetry who were referred
to the scoliosis clinic often times had a perfectly straight spine with no vertebral rotation,
despite the presence of a thoracic hump. Approximately 30% of younger referred SSS
girls, less than 13 years of age with an angle of trunk rotation equal to or more than
seven degrees, were found to have either a straight spine or a spinal curve with a Cobb
angle less than 10 degrees. In this age group, the correlation between clinical deformity in
terms of truncal/thoracic asymmetry assessed using the rib index [12] and radiographic
measurement, in terms of Cobb angle, is not statistically significant, while in older school
scoliosis screening referred girls, aged 14–18 yrs. old, it is [7]. Furthermore, it was reported
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that whilst adolescent idiopathic scoliosis features both vertebral body rotation and torso
asymmetry, they are poorly related to each other [14].

3. Intervertebral Disc and Adolescent Idiopathic Scoliosis

The study of the radiographical assessment of our referred school scoliosis screening
children suffering mild IS showed that the deformity starts at the level of the intervertebral
disc, then the vertebra body, as a result of the plasticity of the intervertebral disc [8,9].
Three years later, this finding was confirmed in another report [15]. In pertinent published
research, histological abnormalities in the intervertebral discs of adolescent idiopathic
scoliosis cases were discovered, and it was concluded that these abnormalities are secondary
to a changed mechanical environment [16–20].

It was shown using computer tomography technology that, for the anterior length of
the spine, the intervertebral discs contribute more compared to the vertebral body [21]. It
was also supported that this finding suggests that the curve is getting worse due to changed
mechanical loading and not a primary vertebral growth abnormality [21].

As far as the role of the IVDs with scoliogeny, a comprehensive model of IS progression,
based on the patho-biomechanics of the deforming “three joint complex” was presented [22].
The “three joint complex” concept was introduced by Dr. WH Kirkadly Willis in 1983.
A “three-joint complex” was coined the intervertebral disc anteriorly and the two facet
joints posteriorly in the intervertebral articulation [23], Figure 1.
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Figure 1. The three-joint complex.

It is suggested that the patho-biomechanics of the deforming “three joint complex”
are due to asymmetrical concentrated cyclical loads to the apical and adjacent immature
vertebral end plates and posterior elements of the spine due to water diurnal variation in
intervertebral disc leading to asymmetrical vertebral growth.

In idiopathic scoliosis, the intervertebral disc is very deformed. At the concavity of
the idiopathic scoliosis curve, the intervertebral disc height is significantly reduced. On the
contrary, at the convexity, the intervertebral disc height is increased. Consequently, much of
the deformity of idiopathic scoliosis belongs to this alteration in the intervertebral disc [24].
In idiopathic scoliosis, the nucleus pulposus, mainly at the apical but progressively less so
at the adjacent intervertebral discs, is shifted to the convexity of the curve [25], Figure 2,
and it is also reported that the worsening of IS is related to this phenomenon [26,27].

Aggrecan, a proteoglycan that aggregates by binding to hyaluronan, is one of the nu-
cleus pulposus molecules. Glycosaminoglycans are attached to each aggrecan molecule [28].
Glycosaminoglycans in the nucleus pulposus function osmotically, causing a change in
the amount of intervertebral disc water. The glycosaminoglycans imbibe water when they
are unloaded and expel it when the intervertebral disc is loaded. The swelling of the
intervertebral disc correlates directly with glycosaminoglycan content [29–31].
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Human height varies throughout the 24 h period, lengthening when a subject lies
down and shortening while in a standing position. This is called diurnal variation [32]. The
diurnal variation phenomenon relates to the spine. This diurnal variation was reported to
be due to fluctuation in the water content of the intervertebral disc [33,34]. Glycosamino-
glycans imbibe water when the intervertebral discs are unloaded during sleep at night
and expel the water when they are loaded in the upright position during the day. In
idiopathic scoliosis, the imbibed water mainly in the apical but also in the neighboring
intervertebral discs of the curve is more on the convex side than on the concave side due
to convex-wise asymmetrical distribution of glycosaminoglycans in the nucleus pulposus
collagen network type II.

This diurnal variation and asymmetrical amount of water distribution in the apical and
adjacent intervertebral discs results in asymmetrical, convex-wise, concentrated cyclical
loads to the intervertebral disc during the 24 h cycle. The convex side of the wedged inter-
vertebral disc sustains a greater amount of expansion, due to nucleus pulposus swelling,
than the concave side.

On the convex vertebral side due to water diurnal variation, intermittent forces are
transmitted to the developing vertebral endplates of chondrocytes in the hypertrophic zone
according to the laws of Pauwels and Wolff. The concave side of the curve is practically
continuously loaded with compressive forces and the growth slows down accordingly in
the hypertrophic zone of the endplates according to the Hueter–Volkmann law, Figure 3.
Consequently, the imposed convex-wise, asymmetrically concentrated cyclical loads on the
adjacent immature vertebral end plates lead to asymmetrical further vertebral body growth,
as an effect of Pauwels law. As far as the posterior elements of the spine, the loading on the
two facet joints asymmetrically increases during the day, as the wedged disc space narrows
due to expelled water, and it asymmetrically decreases during the night, because the disc
space swells due to reabsorbed water; consequently, these posterior elements of the spine
grow asymmetrically too. It is well described that the pedicles are different between the
concave and the convex side, as well as the facet joint and the lamina [35–37].

This suggested comprehensive model of IS progression describes the vertebral body
deformation that, however, assumes the wedge-shaped deformation of the intervertebral
disc a fact that occurs first before any deformation of the vertebra in scoliogenesis, as it was
shown [8].

The above-described patho-mechanism of spinal progression in idiopathic scoliosis has
been coined the “accordion-like phenomenon” [38], Figure 4. The comprehensive model of
idiopathic scoliosis progression, based on the patho-biomechanics of the deforming “three
joint complex”, may help to explain the beneficial effects of physiotherapeutic scoliosis
specific exercise bracing and of fusion-less surgery for progressive early onset scoliosis [22].
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4. The Role of the Thoracic Cage in IS Scoliogeny [39]

The normal rib cage includes the thoracic spine, thoracic spinal cord, heart, lungs,
diaphragm, respiratory muscles, and sternum. The rib cage’s main function is in respi-
ration as it acts as a respiratory pump and protects the enclosed organs. Similarly, the
ribs support the thoracic vertebrae. They also serve as levers through which the forces
exerted by the attached muscles and ligaments to the vertebrae through their costovertebral
articulations [40].

In idiopathic scoliosis, the rib cage seems to develop asymmetrically first before the
spinal deformation. Consequently, we suggested the “double rib contour sign” in the
standing lateral full-body radiographs and introduced the “rib index” for the assessment of
the thoracic cage deformity in the transverse plane [10,12]. In the standing lateral full-body
radiographs of all asymmetric children with a rib hump deformity, the radiologic sign
of a double rib contour, which was termed “double rib contour sign”, is seen [10]. The
quantification of the “rib index” in a lateral radiograph is measured following the steps as
earlier reported [12], see also Figure 5: the rib index is the quotient of d1/d2.
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5. Segmental Rib Index, Spinal Deformity, and the Scoliogenic Implications [41]

The rib index calculation was originally implemented at the apex of the double rib
contour sign in the lateral standing spinal radiographs. We noticed that in mild and moder-
ate idiopathic scoliosis lateral spinal standing radiographs, the more prominent/distant
point of the double rib contour sign is at a variable thoracic vertebral level in the different
types of idiopathic scoliosis. Therefore, we studied the rib index segmentally at all thoracic
vertebral levels (T1–T12) to evaluate the association of the Cobb angle of the type of the
idiopathic scoliosis curve with the thoracic level of the deformity of the rib hump. The
segmental rib index is calculated the same way at the upper and lower thoracic levels from
T1 toT12, Figure 6 [41].
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In mild and moderate idiopathic scoliosis curves, the vertebral rotation is minimal.
Thus, rib cage deformity can generally be attributed to the asymmetric rib growth and to
their deformation and not to the vertebral rotation, as the rotation at this stage is minimal.
Therefore, at any level from T1 to T12, a value of segmental RI equal to or greater than
1.45–1.50 mainly reflects a significantly asymmetrical double rib contour, which is a fact
indicating a remarkable asymmetrical growth of a pair of ribs at this spinal level. Therefore,
this value of RI represents an increasing and progressive rib cage deformity. Consequently,
the assessment of the correlation of the 12 rib pairs’ rib index to the spinal deformity helps
to validate the impact of thoracic asymmetry on the spinal deformity and on its curve type.

The term “pattern of segmental rib index asymmetry” is used to indicate the number of
rib levels, from T1 to T12, with a high rib index score that is equal to or greater than 1.45–1.50.
In female patients with thoracic curves, the pattern of segmental rib index asymmetry was
present in eight levels from T3 to T10, and in male patients with thoracolumbar curves,
remarkably, a significant pattern of segmental rib index asymmetry was present in nine
levels, from T3 to T5 and T7 to T12. Additionally, comparing the segmental rib index of the
asymmetric but not scoliotic children to the scoliotic peers by curve type for boys and girls,
interestingly, no significant difference between groups was found (non-scoliotic to thoracic,
non-scoliotic to thoracolumbar, non-scoliotic to lumbar) [41]. These findings suggest that in
mild and moderate idiopathic scoliosis, the link of the surface with radiological deformity
shows the significant impact of the rib cage on the spinal deformity. The rib cage seems to
play a protagonistic role in the scoliogeny of mild and moderate thoracic and thoracolumbar
idiopathic scoliosis.

These findings are in line with the findings published earlier. It was stated that hump
size was found to be the most powerful predictor of scoliosis [42]. Large humps were
more prevalent among those children that subsequently developed IS. The predictive
significance of baseline truncal asymmetry was independent of all the other determinants
entered in the multifactorial logistic model, (sitting height, kyphosis, lordosis, arm length
inequality, pelvic tilt). Boys with humps of 6 mm had approximately a fivefold risk of
developing IS as compared with boys having a symmetric trunk (hump = 0 mm) at the
age of 10.8 years. Additionally, it was reported that the asymmetric children with a hump
deformity, but without radiographically diagnosed scoliosis, during a follow-up of three
years, will develop IS with an odds ratio of 1.72 in boys and 1.55 in girls [43]. It was also
reported that, on the moiré photographs with the children standing in the erect position,
12% of the girls and 9% of the boys with clinically observed asymmetries in the forward
bending position had very small shadow asymmetries, using the moiré topography method.
Also, in former Malmo studies, these small asymmetries of the trunk were not related to a
lateral deviation of the spine, seen roentgenographically, exceeding nine degrees of Cobb
angle [44–46].

As far as the lumbar curves were concerned, it was found that there was asymmetrical
growth of the 12th rib pair. The following hypotheses were suggested: (a) relatively
increased activity of the right quadratus lumborum muscle, which is a muscle that is
related both to respiration and gait, causes the lateral lumbar curves (first hypothesis); or,
(b) it counteracts the lumbar curvature as part of the body’s attempt to compensate for the
curvature (second hypothesis). It was also suggested that mechanotransduction leads to a
relatively increased length of the right 12th rib in accordance with Wolff’s and Pauwel’s
Laws, ref. [47].

A review of the literature dealing with the postoperative correction of rib hump after
spinal operations for adolescent idiopathic scoliosis shows that surgery on the spine cannot
correct the asymmetry of the ribs of the rib cage or stop the mechanism that causes their
asymmetrical growth in idiopathic scoliosis. Not only is the hump incompletely corrected
but it recurs and worsens during the follow-up and even more intensively in skeletally
immature operated scoliosis children. These results presented in all the relevant reviewed
articles support the important protagonistic role of rib hump deformity on scoliogenesis,
which precedes the subsequent formed spinal deformity [48], as was also previously noted
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in this opinion article [7]. Characteristically, Lofti et al., 2020, stated that “vertebral body
rotation and torso asymmetry are poorly related to each other” and “surgical de-rotation of
the spine does not fully address the rib hump as other factors”. Additionally, these authors
“raised the question of whether or not current surgical methods involving de-rotation of
the vertebral column actually address the problem that can affect the patient–namely the
thoracic rib hump. If surgery is going to reduce the size of the rib hump through spinal
de-rotation, then it would be important to demonstrate that vertebral body rotation is
associated with thorax asymmetry and rotation” [14].

Using the segmental rib vertebra angle [49], and the segmental thoracic ratios methods [50],
in posteroanterior thoracic radiographs both of early- and of late-onset scoliotic children
with mild curves, it was shown that they have an underdeveloped thoracic cage compared
to nonscoliotic counterparts [51–54].

It was suggested the hypothesis that rib vertebral angles are influenced by the central
nervous system through its influence on trunk muscle activity. Rib vertebra angle asym-
metries or rib vertebral angle differences are related to age and sex; their pattern reflects
the common age, sex, and laterality patterns of idiopathic scoliosis [49]. Additionally, as
the rib cage role in idiopathic scoliosis scoliogeny, it was suggested that extremes of such
asymmetries may be an aetiological factor for both infantile and adolescent IS [49].

The authors’ opinion on the role of the rib cage in the IS scoliogeny is in line with Prof.
Sevastik’s research work, pertinent to scoliosis aetiology. These reports emphasize the im-
portant role of the rib cage in scoliosis development and support a physiological approach
to the surgical treatment of progressive early idiopathic scoliosis [55–67]. Segmental rib
index research may likewise shed more light on the theory of asymmetric function of the
autonomous nervous system, reported by Prof. Sevastik and his team [5].

6. Lateral Spinal Profile and Adolescent Idiopathic Scoliosis

While studying the lateral spinal profile, in school screening referrals with and without
late-onset idiopathic scoliosis with mild curves 10◦–20◦ Cobb angle, it was shown that it is
not statistically different in children with straight spines, with spinal curvature having a
Cobb angle less than 10◦ and children with thoracic, thoracolumbar, and lumbar curves
of 10◦–20◦ [13]. These findings on lateral spinal profiles relate to aetiological importance
in idiopathic scoliosis pathobio-mechanics and show that in mild idiopathic scoliosis, hy-
pokyphosis is not a predisposing factor for the initiation of these curves, as it is not different
from the lateral spinal profile of their healthy controls. The lateral spinal profile is rather
a compensatory than an aetiological factor for scoliogeny [13]. Therefore, hypokyphosis
is not a primary causal factor for the commencing of mild or moderate scoliotic curves,
but it could be considered a permissive factor in the scoliogeny of AIS. These findings
also indicate that the growth potential in the sagittal plane in mild and moderate IS is
similar to that of peers having normal spines, in both vertebral bodies and the intervertebral
discs [13,68].

7. Genetics and Epigenetics

Recent research has focused on idiopathic scoliosis-related genes. Several types of
pathogenic gene mutations have been identified in idiopathic scoliosis through genetic
studies; however, no single gene responsible for idiopathic scoliosis has been found so
far [69–73].

A significant body of research indicates the presence of diverse morphological fea-
tures, clinical presentations, and prognoses among adolescent idiopathic scoliosis patients.
Complexity and heterogeneity are key characteristics of adolescent idiopathic scoliosis
aetiology and phenotype, suggesting that adolescent idiopathic scoliosis can be considered
a relatively complex group of diseases [74–76]. Consequently, it is clear and reported in the
literature that several genes are involved in the creation of this deformity. This raises the
question of whether adolescent idiopathic scoliosis deformity/disease is a single one or
multiple diseases.
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When discussing adolescent idiopathic scoliosis genetics, it is very important to in-
clude some more details on epigenetics related to this deformity. Epigenetics is generally
accepted now to play a significant role in the formation of the final phenotype; see sev-
eral pertinent epigenetic factors and reasons reported in pertinent publications on the
role of epigenetics:

• Monozygotic twins and spinal radiology in adolescent idiopathic scoliosis [77–91];
• A food and growth connection [92–104];
• Relative osteopenia and lifestyle factors [75,105,106];
• Physical activities of patients with adolescent idiopathic scoliosis [107–109];
• Geographic latitude and the prevalence of adolescent idiopathic scoliosis [110,111];
• Maternal age and socio-economic status [112–117];
• Heated indoor swimming pools infants and delayed epigenetic effects [108,109,118];
• Hypothesis of developmental instability for scoliosis [99,101,119–121];
• Sleeping period of time and sleeping position [38,122].

The genetic and epigenetic factors creating the various types of idiopathic scoliosis
phenotype seem to be due to a “long” spectrum of causes. The one end of this spectrum
seems to be the rib cage, while the other end of the spectrum seems to be the vertebral
column. Therefore, the authors’ opinions on the patho-biomechanics of mild and moderate
IS support the “rib cage end” of the spectrum of genetic and epigenetic factors responsible
for initial ribcage asymmetry as triggering the idiopathic scoliosis deformity, rather than
the “spine end” of these factors of the spectrum.

Viroli et al. [123] report “the presence of a more severe pedicle dysplasia in the prox-
imal, nonstructural, thoracic curves compared to the main, structural, thoracic curves”.
There is no doubt that pedicle dysplasia is a crucial aspect nowadays since the widespread
of all-pedicle-screw constructs for posterior scoliosis correction. However, we declare in
our report that “the proper way to study the mechanisms of a deformity development is
when this is initiating and mild or even moderate and not when it is progressed”. Our
opinion was based on the study of initiating mild and moderated scoliosis cases and not
progressing. In this interesting article [123], the studied cohort of patients is preoperative, in
other words, very much progressed scoliosis. Therefore, the population is not comparable
with ours on which our opinion was based.

The used methods of imaging, the ethics based on describing the requested imaging,
their reliability study, the ages of children, and the degree of deformity are analyzed in
detail in our earlier publications, refs. [7–10,12,13,22,38,41,47–52,110].

A limitation of the described opinion of this report may be considered that the thoracic
and spinal data segmental thoracic ratios [50], rib vertebral angle and rib vertebral angle
differences [124], segmental rib vertebral angle [49], rib index [11,12] and segmental rib
index [41], double rib couture sign [10], and a lateral spinal profile study [13]), which were
used at the first author’s peer review publications cited in the literature, were based on
radiographs that provide two-dimensional imaging and information. However, recently,
the assessment of the thoracic and spinal deformity evaluation by the use of 3-D evaluation
methods [125–129] certainly offers interesting possibilities, but it requires special equipment.
From a practical point of view, the studies based on postero-anterior radiographs may have
a valuable contribution. The most important and frequently used radiological parameters
are designed and measured on postero-anterior radiographs (Mehta [124], Cobb [130],
Perdriolle [131–133], Nash Moe grade of rotation [134]). Lateral radiographs are not
systematically made for children with scoliosis. In the majority of hospitals, the material
accessible for retrospective studies contains almost exclusively frontal plane radiographs.
Moreover, the plain chest radiographs of children and adolescents, being easily available at
medical archives, can effectively serve this study, without the need for any other special
radiographs and exposure to additional radiation. One additional benefit of these methods
is their implementation, not only in prospective but also in retrospective studies, using
the existing initially obtained chest or spinal radiographs of IS patients, provided that the
radiography is performed in a standard way.
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Future research based on the clinical and imaging long-term follow-up of children and
adolescents, screened at school and found with asymmetric rib index but without scoliosis,
may be very helpful as they will confirm, support, and maybe refine this reported opinion.
Additionally, the knowledge of the driving scoliogenetic risk factors for severe idiopathic
scoliosis based on rib cage deformity will be very helpful for their management.

8. Conclusions

Based on the analysis presented above, it can be postulated that the vertebral growth
changes in the spine during initial IS development are not primary-intrinsic but secondary
changes. The primary cause starting the deformity is not based on the vertebral bodies,
which subsequently deform due to asymmetrical loads exerted upon them, due to muscular
loads, growth, and gravity.
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