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Abstract: Gadolinium-based contrast agents (GBCAs) have helped to improve the role of magnetic
resonance imaging (MRI) for the diagnosis and treatment of diseases. There are currently nine
different commercially available gadolinium-based contrast agents (GBCAs) that can be used for body
MRI cases, and which are classifiable according to their structures (cyclic or linear) or biodistribution
(extracellular-space agents, target/specific-agents, and blood-pool agents). The aim of this review
is to illustrate the commercially available MRI contrast agents, their effect on imaging, and adverse
reaction on the body, with the goal to lead to their proper selection in different clinical contexts. When
we have to choose between the different GBCAs, we have to consider several factors: (1) safety and
clinical impact; (2) biodistribution and diagnostic application; (3) higher relaxivity and better lesion
detection; (4) higher stability and lower tissue deposit; (5) gadolinium dose/concentration and lower
volume injection; (6) pulse sequences and protocol optimization; (7) higher contrast-to-noise ratio
at 3.0 T than at 1.5 T. Knowing the patient’s clinical information, the relevant GBCAs properties
and their effect on body MRI sequences are the key features to perform efficient and high-quality
MRI examination.

Keywords: magnetic resonance imaging; contrast medium; contrast media; gadolinium; adverse effect;
gadolinium-based contrast agents (GBCAs); imaging sequences; MR cholangiography; hepatobiliary
contrast agents; hepatobiliary imaging

1. Introduction

In magnetic resonance imaging (MRI), contrast agents are defined as drugs adminis-
tered to temporarily change regional tissue properties in order to enhance the detection
of possible abnormalities and improve anatomical depiction of organs and systems. The
majority of MRI contrast agents is represented by chelates of the rare-earth Gadolinium.
The free Gadolinium ion is highly toxic in vivo; therefore, a coordinating organic ligand is
required to make it soluble, increase its stability and ensure safety and tolerance while it is
administered [1,2]. These more complex compounds are also known as gadolinium-based
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contrast agents (GBCAs). Once administered (generally by intravenous injection) and
distributed to target tissues/lesions, GBCAs are able to produce an increase in T1-weighted
signals with an almost negligible effect on the T2-weighted signal; this property and the
consequent ability to enhance tissue contrast are at the basis of their wide application in
MRI examinations. Over time, several different types of GBCAs have been developed for
clinical use, and some of them have progressively been withdrawn from the market due to
safety issues. Conversely an ever-increasing number of new contrast media is under inves-
tigation, with particular reference to the ones intended to bind specific molecular targets
and sense specific changes in pathological tissues; however, such new emerging agents,
despite being promising, are still far from being approved for human use or implemented
in daily clinical practice.

Here, we review some clue concepts concerning different types of approved GBCAs in
order to guide the choice and optimize their use according to the specific diagnostic issue
and to patients’ characteristics. In particular, in the first part of the paper we revise key core
knowledge on gadolinium and GBCAs, required for an easier and more accessible reading
of the subsequent sections. In the second part, we describe the most common strategies for
GBCAs’ dose and contrast-enhanced imaging optimization. In the third part, we provide a
comprehensive overview of the most common allergic and secondary reactions, as well as
of the concerns related to GBCAs’ accumulation in human tissues. In the fourth part of the
paper, we describe the indications and limitations in the use of GBCAs for specific at-risk
categories, clarifying possible doubts and dispelling some myths.

2. Gadolinium and Gadolinium-Based Contrast Media: Key Concepts

The principal component of GBCAs’ structure is represented by gadolinium, a rare
earth element, heavy metal, capable of attenuating X-rays (Figure 1), with the main property
exploited for MRI being its high paramagnetic effect due to its seven unpaired electrons.
Each electron creates a magnetic dipole that generates a local magnetic field, inducing
increased relaxation in the adjacent water molecules.
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to identify a pancreatic solid mass in the body of the pancreas (arrows); the presence of the arti-
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Figure 1. (A–C) Coronal and axial CT images after iodinated contrast medium intravenous in-
jection in a patient with gadolinium accumulation in the bowel loops. Images show the streak
artifacts generated by the presence of gadolinium contrast medium in the lumen of intestinal loops.
(D–F) Please note the decreased imaging resolution of the pancreatic region. In (D,F), it is possible to
identify a pancreatic solid mass in the body of the pancreas (arrows); the presence of the artifacts
related to gadolinium in the bowel loops makes the evaluation of the pancreatic mass suboptimal.

Relaxivity is defined as the ability of a compound to increase the relaxation rates of
the surrounding protons; gadolinium thus modifies longitudinal and transverse magnetic
relaxation, shortening the T1 and T2 of the tissues where it concentrates. This T1 and T2
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shortening results in an increase in the signal intensity on T1-weighted imaging and a
reduction in T2-weighted sequences, with a prevailing T1-shortening effect at conventional
doses; in case of higher gadolinium concentrations (for example, as it happens in the urinary
bladder after contrast media kidney clearance), T2 shortening may result in a significant
decrease in signal intensity noticeable on both T1- and T2-weighted images (with a possible
“paradoxical” prevalence of T2 shortening on T1 shortening). Relaxivity and the subsequent
effect on MRI contrast enhancement is primarily influenced by external factors such as
temperature and field strength, and by molecular parameters including the hydration state
of the molecule, substance in which the contrast agent is dissolved, or molecular size [3].
Concerning temperature, GBCAs are administered at room temperature and rapidly reach
body temperature (37◦) when injected; according to package inserts, no external heating is
recommended to modify its viscosity and other molecular properties for routine clinical
applications. Concerning the magnetic field, the T1-shortening effect due to contrast media
is relatively poorly influenced by the magnetic field strength. Indeed, despite increasing the
magnetic field, the relaxivity which is T1w GBCAs-related slightly decreases; the effect is
globally compensated as the higher MRI field still offers an overall improved signal-to-noise
ratio and contrast-to-noise ratio. As a result, the contrast-enhancing effect of GBCAs seems
to be more pronounced even at 3T MRI [4,5] (Figure 2).
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(A) and 3 T (B).

This effect, resulting in a higher contrast-to-noise and signal-to-noise ratio at 3.0 T
compared to 1.5 T, find important applications in gadolinium-enhanced MR angiography, in
which satisfying the image quality can also be achieved with lower GBCAs’ doses; however,
such dose variation can be associated with a signal loss that is more pronounced in the
venous system. Therefore, this off-label reduction must be carefully evaluated according to
the specific diagnostic suspicion [6–9].

Concerning the molecular structure of gadolinium chelates, GBCAs can be classified
according to the architectural framework of the organic chelating ligands into linear and
macrocyclic; in the linear complexes, the gadolinium is attached either in the middle or at
the end of the molecule, whereas in the macrocyclic complexes the gadolinium is in the
center of a close ring structure (Figure 3).
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structure of GBCAs. Continuous lines represent single covalent bonds between atoms, while dashed
lines represent ionic bonds due to weaker electrical attraction.

The macroscopic structure influences GBCAs’ stability, with linear open-chain com-
plexes more prone to Gadolinium ion dissociation and subsequent undesired toxic effects
compared to cyclic close-chain molecules (see the paragraph “GBCA-related adverse reac-
tions and secondary effects” for a more detailed discussion) [10]; macrocyclic derivatives
are, therefore, well suited for MRI applications due to high stability in physiological media
and a relatively fast water exchange rate. Another important property of GBCAs is ionicity,
intended as the ability to dissolve into charged particles when entering a solution; this
is strictly related to osmolality (number of dissolved particles/kg of water). However,
the final osmolar effect is not determined by the contrast media concentration measured
in the vial, but by the real concentration in the blood (which is related to osmolality and
the volume administered). Indeed, in computed tomography (CT), at conventional doses,
the clinical superiority of non-ionic iodinated contrast media compared to ionic ones in
terms of renal safety and adverse reactions has been well established; conversely, in MRI,
for GBCAs such a difference between ionic and non-ionic molecules is far less relevant
or even negligible in terms of their systemic osmotic effects (a contingency mainly due
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to the small volumes usually administered for clinical purposes). The decision of which
GBCA to use is mainly determined by clinical indication to MRI. Indeed, not all GBCAs
have the same biodistribution and can be used for the same purpose. There are three
main categories of GBCAs according to how contrast media travel in the human body
and concentrates in specific tissues: extracellular space agent, hepatocyte-specific contrast
agents, and blood-pool agents.

• Extracellular space agents (ECSAs): This category includes agents rapidly distributing
within the extracellular space (vascular space plus interstitial space); these molecules
are quickly eliminated by the kidneys (about 100% renal excretion). ECSAs are widely
used for thoracic, abdominal, and/or pelvic MRI studies. This category encompasses
molecules such as gadoterate meglumine, gadobutrol, gadopentetate dimeglumine,
gadodiamide, gadoversetamide, gadoteridol, and gadopiclenol.

• Hepatocyte-specific contrast agents (HSCAs): Only two molecules are commercially
available in this class (gadoxetate disodium and gadobenate dimeglumine); once
intravenously injected, they undergo hepatocytes uptake. Their elimination is a
combination of biliary and renal clearance (in particular, 50% of godoxetate disodium
is excreted in the biliary system, thus with a shorter hepatocellular imaging window
occurring approximately 20 min after injection and with a shorter total acquisition
time compared to gadobenate dimeglumine of which just 5% is excreted in the biliary
system). Due to their properties, HSCAs are mainly used for characterizing focal liver
lesions, especially in chronic hepatopathies; off-label indications include bile duct
imaging (both pre- or post-surgical or post-traumatic), gallbladder evaluation, and
cystic duct obstructions [11–13].

• Blood-pool agents (BPAs): The only GBCA in this category is gadofosveset trisodium,
which was discontinued after commercialization due to marketing reasons [14]; this
contrast agent temporarily binds albumin, allowing the molecule to persist longer
in the blood flow providing an almost selective vascular phase for up to 1 h from
injection. This allows for a high-resolution three-dimensional MR angiography and
MR venography; this GBCA has approximately five times the relaxivity of ECSA,
which allows the first pass MR angiography to be performed with similar image
quality as ECSAs but with a lower dose. Indications encompass aortoiliac occlusive
disease, abdominal aortic aneurysm or dissection, pulmonary embolism, and vein
thrombosis [15].

Hereafter, in Table 1, a brief classification of major GBCAs according to their structure
and biodistribution is presented.

Table 1. Schematic representation of molecular structure, ionicity, and biodistribution of GBCAs, as well
as approval according to European Medicines Agency (EMA) and Food and Drug Administration (FDA).

Active Principle Commercial Manufacturer Structure Charge Distribution EMA FDA

Gadoterate
meglumine

Dotarem®

Clariscan®

Guerbet,
Aulnay-sous-Bois,

France
Cyclic Ionic ECSA Approved Approved

Gadobutrol Gadavist®

Gadovist® Bayer, Milano, Italy Cyclic Non-Ionic ECSA Approved Approved

Gadopentetate
dimeglumine Magnevist®

Bayer Pharma,
Leverkusen,

Germany
Linear Ionic ECSA Suspended Approved

Gadodiamide Omniscan® GE Healthcare,
Milano, Italy Linear Non-Ionic ECSA Suspended Approved

Gadoversetamide Optimark®
Mallinckrodt

Deutschland GmbH,
Hennef, Germany

Linear Non-Ionic ECSA Suspended Approved
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Table 1. Cont.

Active Principle Commercial Manufacturer Structure Charge Distribution EMA FDA

Gadoteridol ProHance® Bracco,
Hennef, Germany Cyclic Non-Ionic ECSA Approved Approved

Gadopiclenol Vueway®

Elucirem®
Bracco,

Raleigh, NC, USA Cyclic Non-Ionic ECSA Approved Approved

Gadoxetate
disodium

Eovist®

Primovist®
Bayer,

Milano, Italy Linear Ionic HSCA Restricted Approved

Gadobenate
diemglumine MultiHance® Bracco,

Colleretto, Italy Linear Ionic HSCA Restricted Approved

Gadofosveset
trisodium

Ablavar®

Vasovist®
Bayer Pharma,

Berlin, Germany Linear Ionic BPA Withdrawn Withdrawn

3. Gadolinium-Based Contrast Media Optimization
3.1. Dose and Concentration

As per any other drug, also for GBCAs, the basic rule is to use the minimum agent
volume required to obtain a specific diagnostic goal. The standard volume calculation
for GBCAs depends on the dose by weight (approved dose is reported in the package
insert of each different GBCA), the patient’s weight and gadolinium molar concentration
(variable and reported in the package insert of each different GBCA), according to the
following simple formula: Volume (mL) = Dose (mmol/kg) × Weight (kg)/Concentration
(mmol/mL).

It is generally allowed rounding of decimal milliliters up/down to the number closest
to the unit or rounding down to the nearest vial size in many circumstances (i.e., to
save opening a new vial); the only significant exception is represented by small GBCA
volumes (i.e., in infants and children), in which the use of decimal doses according to
the volume formula output is more strictly required to avoid over/underdose. Therefore,
knowing the differences in concentrations and doses for each GBCA is essential to ensure
the correct injection volume administration [16]; a summary of GBCAs’ concentrations and
doses approved for clinical use is reported in Table 2.

Table 2. Summary of concentration (mmol/mL), dose (mmol/kg), and T1 relaxivity at 1.5 T (L/mmol-s)
of GBCAs according to their package inserts and to EMA/FDA guidelines (see notes).

Type Active
Principle Commercial Concentration Dose

mmol/kg
Dose

mL/kg T1 rel Notes

ECSA

Gadoterate
meglumine

Dotarem®

Clariscan® 0.5 M 0.1 0.2 3.6 Adults and pediatric patients
(including term neonates).

Gadobutrol Gadavist®

Gadovist® 1 M 0.1 0.1 5.2 Adults and pediatric patients
(including term neonates).

Gadopentetate
dimeglumine Magnevist® 0.5 M 0.1 0.2 4.1

Suspended by EMA for intravenous
use. According to FDA: adults and

pediatric patients (including
term neonates).

Gadodiamide Omniscan® 0.5 M 0.1 0.2 4.3

Suspended by EMA. According to
FDA: adults and pediatric patients
aged 2 years and older; for imaging

the kidney, halving the dose
(0.05 mmol/kg) is recommended.

Gadoversetamide Optimark® 0.5 M 0.1 0.2 4.7
Suspended by EMA. According to
FDA: contraindicated up to 4w, not

recommended up to 2 y of age.
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Table 2. Cont.

Type Active
Principle Commercial Concentration Dose

mmol/kg
Dose

mL/kg T1 rel Notes

Gadoteridol ProHance® 0.5 M 0.1 0.2 4.1

Adults and pediatric patients
(including term neonates).

According to FDA: supplementary
dose (0.2 mmol/kg) may be given
up to 30 min after the first dose in
adults without renal impairment if
poorly visualized CNS lesions or

equivocal MR scan.

Gadopiclenol Vueway®

Elucirem® 0.5 M 0.05 0.1 12.8
Approved by EMA and FDA: adults

and pediatric patients aged 2 y
and older.

HSCA

Gadoxetate
disodium

Eovist®

Primovist® 0.25 M 0.025 0.1 6.9

Not recommended for use in
children below 18 y. According to
EMA: approved for hepatobiliary

imaging only; organ-specific
imaging of liver at 0.025 mmol/kg.
According to FDA: allowed up to

0.05 mmol/kg, but at present
recommended at 0.025 mmol/kg for

hepatobiliary imaging only.

Gadobenate
diemglumine MultiHance® 0.5 M 0.05–0.1 0.1 6.3

According to EMA: approved for
hepatobiliary imaging only;

organ-specific imaging of liver at
0.05 mmol/kg. According to FDA:

no restriction (i.e., also indicated for
CNS imaging and MR

angiography); recommended dose
0.1 mmol/kg in adults and pediatric
patients aged 2 y and older; halving
the dose in pediatric patients aged

less than 2 y.

BPA Gadofosveset
trisodium

Ablavar®

Vasovist® 0.25 M 0.03 0.12 19 Production discontinued due to
poor sales.

For a critical analysis, among ECSAs it can be clearly inferred that higher concentration
formulations (i.e., Gadobutrol 1 mmol/mL) result in a lower volume of GBCA administra-
tion, according to the above-mentioned formula [17]. The only significant exception to this
axiom is represented by Gadopiclenol, a recently introduced macrocyclic non-ionic GBCA
which is characterized by a much higher T1 relaxivity than other ECSAs; this allows for
a lower dosage to be used, with a potential positive impact on the issue of Gadolinium
deposition in human tissues [4]. Gadopiclenol, already approved by FDA for clinical use
in adults and pediatric patients aged 2 years and older has also recently been approved
by EMA for marketing and clinical use in Europe following the positive opinion of the
Committee for Medicinal Products for Human Use [18–20].

A somehow similar concept concerning higher T1 relaxivity and subsequently rec-
ommended dose also applies to Gadofosveset trisodium and BPAs, whose sole formal
indication was MR angiography for aortoiliac disease according to the FDA and whose
production was recently discontinued because of poor sales [21].

Also, HSCAs have slightly higher T1 relaxivity compared to other GBCAs, hence
a greater signal intensity enhancement on T1-weighted images with a relatively lower
dose [11,22]. This observation underpins the change in dose recommendation for Gadobe-
nate diemglumine provided by EMA (which approved Gadobenate diemglumine for
hepatobiliary imaging only) and justified discrepancies between EMA and FDA guidelines
(the latter do not envisage restriction in Gadobenate diemglumine clinical applications).
Conversely, no dose discrepancy between EMA and FDA is related to Gadoxetate disodium,
whose main indication is represented by hepatobiliary imaging (although with no formal
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restriction by FDA compared to EMA); in both cases, the lowest dose providing sufficient
enhancement for diagnostic purposes (in the case in point, 0.025 mmol/kg) should be used.

3.2. Choice and Timing of Post-Contrast MRI Sequences

Postcontrast T1-weighted fat-suppressed 3D gradient-echo (3D GRE) is probably
the most precious source of information among contrast-enhanced body MRI sequences.
However, in order to optimize the contrast-to-noise signal and overall image quality
for each GBCA, it is important to fully understand the proper timing for each GBCA
category [12,13,23–27]:

• When using ECSAs, in the early arterial phase, arterial structures are enhanced, while
in the late arterial phase, hypervascular tissues (including normal parenchymas such
as the pancreas, spleen, or renal cortex) are visible. The venous phase allows for the
best liver enhancement. In the delayed/equilibrium phase (occurring between 3 and 5
min from contrast injection), interstitial and extracellular spaces are finally enhanced
(Figure 4).
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Figure 4. T1-weighted Liver Acquisition Volume Acceleration (LAVA) axial (A–C) and coronal
(D) images after ECSA intravenous administration in the different phases of a complete dynamic post-
contrast RM study. (A) The early arterial phase shows the arterial structures, generally represented
by arterial vascular structures; (B) the late arterial phase shows the enhancement of hypervascular
tissues such as abdominal parenchymas: please note that it is possible to evaluate pancreas, spleen,
or renal cortex. (C) In the venous phase, the liver enhancement is optimally visualized: this phase
represent the best moment to evaluate the liver parenchyma and focal lesions, as demonstrated
by the clear visualization of a small hypointense focality in the subcapsular plane (arrow). (D) In
the delayed/equilibrium phase, interstitial and extracellular spaces are finally enhanced, and it is
possible to evaluate urinary excretion of contrast and opacification of renal collecting system.
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When using HSCAs, arterial venous and equilibrium phases can be assimilated to the
one observed in ECSAs, but due to the lower contrast dose and the early hepatocyte uptake
in the venous phase, the result is worse and ultimately sub-optimal compared to ECSAs;
conversely the most crucial information is obtained in the delayed hepatobiliary phase
(about 20 min from injection with gadoxetate disodium and about 45 min with gadobenate
dimeglumine for liver lesions depiction, or longer for bile ducts evaluation as an off-label
application). Indeed, when MRI examination is performed to exclude a bile duct leak,
further delayed images are required, and it is mandatory to wait until the contrast reaches
the duodenum (up to 3 h for gadobenate dimeglumine) (Figures 5 and 6).
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Figure 5. T1 LAVA axial images after HSCA (gadobenate dimeglumine) intravenous administration.
(A) The arterial phase. Arterial structures and hypervascular lesions are evidenced: in the liver
segment 6, it is possible to identify a subcapsular hyperintense area as indication of a hypervascular
behavior (arrow); (B) in the venous phase, the liver parenchyma reach the best enhancement and the
hypervascular area in segment 6 shows persistent enhancement (arrow); (C) the delayed/equilibrium
phase allows representation of interstitial and extracellular spaces enhancement. The subcapsular
lesion is quite completely homogeneous to the liver parenchyma arrow, suggesting the angiomatous
nature of the lesion. (D,E) Axial and coronal images after HSCA (Multihance) intravenous admin-
istration of the same patient acquired in the delayed hepatobiliary phase show the opacification of
the gallbladder lumen and the choledocic duct (stars); the subcapsular lesion is also identified as the
hypointense area (arrows), confirming the vascular nature of the angioma and the lack of hepatocyte
uptake and biliary excretion.

• When using BPAs, despite at present being withdrawn from the market, BPAs presented
with a first-pass angiographic phase like ESCAs but offered a very long steady-state
phase (up to 1 h from injection) to accurately depict blood vessels; timing should,
however, be tuned according to the specific clinical indication for MRI examination
(arteries vs. veins imaging).

As it is easy to imagine, contrast-enhanced body MRI scanning may require long
time periods and multi-timing post-contrast acquisitions. To make the imaging process
more efficient, it can be useful to put into practice all these strategies to allow earliest
GBCA injection and to perform some additional pulse sequences in the time gap between
arterial/venous and delayed post-contrast 3D GRE sequences. The type of pulse sequence
to adopt relies on which GBCA has been used as well as on the effect of the specific contrast
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media on image degradation. Hereafter, we present some major considerations regarding
the topic:
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Figure 6. Axial and coronal T1 LAVA images after HSCA intravenous administration (gadobenate
dimeglumine) of the same patient in hepatobiliary phase with different flip angle (FA) settings.
(A,B) The FA is settled at 10 degree: the liver parenchyma results in the hepatobiliary excretion
phase, and it is possible to identify the lesion with no hepatocyte uptake as hypointense (arrow),
(C,D) changing the FA to 30 degree the hypointensity of the non hepatocitary lesion is better visible
and identification is easier (arrow); moreover, the biliary signal results in better appreciated hyperin-
tense signal (stars). Please note in the image, with the FA settled to 30 degree, the noise of the images
increases; the modified flip angle is planned just in the last phases of acquisition.

• Pulse sequences that may benefit from previous GBCA injection:

− Two-dimensional radial slab MR cholangiopancreatography after ECSA, as gadolin-
ium reduces the signal intensity of the kidneys and renal collecting systems, which
may improve the visualization of the biliary tract and pancreatic ducts (Figure 7);

− Short tau inversion recovery (STIR) after gadoxetate disodium, as contrast-induced
T1 shortening of hepatic parenchyma causes suppression of background liver
signal, accentuating contrast between normal liver and focal hepatic lesions;

− Moderately T2-weighted fat-suppressed (reducing signal of kidneys and urinary
system, and slightly reducing signal of other abdominal organs);

− 2D GRE series (increased signal intensity of blood vessels).

• Pulse sequences not significantly influenced by GBCA injection:

− Balanced steady-state free-precession (Figure 8);
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− Diffusion-weighted images (paying attention to possible susceptibility artifacts
from gadolinium in the urinary system).

• Pulse sequences negatively influenced by GBCA injection:

− Dual GRE in-phase and out-of-phase (interferes with the evaluation of fatty liver
or fat-containing lesions);

− Two-dimensional radial slab MR cholangiopancreatography/high-resolution 3D
MR cholangiopancreatography after HSCAs (the biliary excretion may darken
the bile ducts and degrade biliary duct visualization, potentially rendering these
images nondiagnostic);

− STIR images after ECSA administration;
− Single-shot fast-spin echo (SSFSE) heavily T2-weighted sequences (interference

due to the T2 shortening effect of GBCA).
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Figure 7. Images of 2D radial slab MR cholangiopancreatography. (A) The 2D cholangiopancreato-
graphic image shows the anatomy of biliary tree and of the gallbladder with a hyperintense signal
derived by biliary fluid. (B) The 2D cholangiopancreatographic image is acquired after ESCA injec-
tion, showing a better imaging representation with reduced intensity signal of the kidneys and renal
collecting systems, which may improve the visualization of the biliary tract and pancreatic ducts.
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4. GBCA-Related Adverse Reactions and Secondary Effects

GBCAs are generally safe and well tolerated by most patients when injected. Acute
adverse reactions due to MRI GBCAs have a lower incidence compared to the ones reported
for CT iodinated contrast media, ranging from 0.01% to 2.4% in recent statistics [28,29].
Generally moderate and self-limiting, such adverse reactions are probably largely related to
the high osmolality of these complex compounds and include coldness, pain at the injection
site, itching, nausea, headache, dizziness, paresthesias; life-threatening events; and death
from hypersensitivity reactions, although representing exceptional circumstances, are also
possible [30–32]. Due to these concerns, researchers are systematically re-examining acute
adverse reactions and medium/long-term side effects related to GBCAs administration.
In this section, we provide a comprehensive overview of the most common allergic and
secondary reactions to these drugs, and we examine the major concerns related to GBCAs
accumulation in human tissues.

4.1. Local Undesired Events: Injection Site Reactions and GBCAs Extravasation

Some patients experiment with transient and harmless adverse reactions at the injec-
tion site, including pain, warmth, or coldness; generally, self-limiting and transitory, these
sensations are mainly attributable to the injection technique as well as to uneasiness or
anxiety felt by the patient (Lalli effect), and do not require further treatment [33]. Milder
local adverse reactions such as a skin rash and hives are also occasionally reported, and
only require single administration of an antihistamine drug [29,34]. GBCAs extravasa-
tion is another possible local undesired occurrence, which is usually self-limiting, and is
also possible thanks to the sophisticated technologies of modern MRI-compatible contrast
agent injectors; however, more serious complications such as compartment syndrome or
tissue necrosis have also sporadically been reported [35]. Extravasation for GBCAs has
a prevalence of about 0.045%, significantly lower compared to iodinated contrast media;
this difference may be referred to a lower volume, lower injection rate, and more frequent
resorting to hand injections, rather than by pharmacological or distribution differences [36].
For extravasation prevention, professionals must be up to date on extravasation manage-
ment standard guidelines and be familiar with the most common procedures to apply in
case of extravasation. Such procedures include the following (in this order): stopping the
administration of intravenous drugs as first signs of extravasation occur; disconnecting
the intravenous tube from the cannula; aspirating the remaining drug from the cannula;
refrigerating the anatomical area involved by resorting to local thermal treatments, thus
limiting drug dispersion in interstitial tissues; notifying the physician and reporting the
undesired event in medical records; and resorting to surgical consultation in case of massive
extravasation [37,38]

4.2. Systemic Adverse Events: Acute and Late Reactions

Systemic adverse events may be classified according to the timing of their occurrence
in acute and late adverse reactions; acute adverse effects occur within 1 h from GBCA injec-
tion, while late adverse effects occur from 1 h to 1 week from administration. Acute adverse
effects may be due to allergy-like reactions (not strictly IgE-mediated), hypersensitivity (IgE-
mediated), or chemotoxicity. Acute adverse events are usually represented by mild phe-
nomena such as skin rash, urticaria, itching, and erythema (allergy-like/hypersensitivity
mechanisms, with an incidence ranging from 0.004–0.7%), or nausea, vomiting, paresthe-
sias, headache, and dizziness (supposed direct chemotoxicity, self-limiting conditions with
a described incidence of up to 2.4%). Acute severe and life-threating reactions are far less
common, with an overall incidence ranging from 0.001% to 0.01%, whereas fatal reactions
to GBCAs are only exceptionally reported; they include bronchospasm, laryngeal edema,
hypotensive shock, respiratory arrest, and arrhythmia. Later reactions are generally milder
than acute forms, and are mainly represented by a skin rash with erythema, swelling, and
pruritus, as well as nausea, vomiting, headache, and fever (whose actual dependence on
contrast media administration has to be elucidated) [39–41].
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Adverse events incidence rises up to eight times in case of previous moderate-to-severe
acute reactions to GBCAs; a mild increase in the overall risk has also been described for
patients with personal history of asthma or atopy requiring medical treatment [41]. In
these cases, it is required to determine whether the use of GBCAs during MRI examination
is strictly necessary, or if an alternative diagnostic technique or a different GBCA can be
envisaged. It must be remembered that, according to the most recent European Society of
Urogenital Radiology (ESUR) guidelines [41], premedication is no longer recommended,
as there is no evidence of its protective role and no scientific publication can confirm its
efficacy in reducing the likelihood of such events in at-risk patients; however, according
to the American College of Radiology (ACR) [42], prudential corticosteroid premedica-
tion prior to repeated contrast-enhanced studies with similar contrast media can still be
suggested. In case of previous reactions to GBCAs, it is good practice to refer the patient
to a specialist in drug allergy in order to check for evidence of a true allergy to GBCAs
or cross-reactivity with other molecules, in order to minimize the risk of new reactions
in case of re-administration [41]. Similarly to premedication, preventive fasting before
contrast media administration is no longer recommended to prevent nausea, vomiting, or
aspiration [43].

4.3. Nephrogenic Systemic Fibrosis

First described in the early 2000s, nephrogenic systemic fibrosis (NSF) is consid-
ered as a very late adverse reaction to GBCAs administration (sometimes classified as
deposition-related phenomenon) which generally occurs in dialyzed patients or in patients
with end-stage chronic kidney disease (CKD), and especially in cases of multiple GBCAs
administrations over time. NSF symptoms’ onset is described as being within the days
or months after injection with GBCAs and is characterized at first by systemic fibrosis in
the skin and subcutaneous tissues with pruritus and thickening (described as indurate
skin plaques and papules on extremities and trunk), followed by variable involvement of
lungs, heart, esophagus, and skeletal muscles [44–46]. The exact etiological mechanism of
NSF is still largely unknown: the most widely accepted hypothesis is that lower stability
molecules such as linear GBCAs are more susceptible to a chemical phenomenon called
dissociation-transmetallation (in which endogenous ions can replace gadolinium ions from
the chelate), with the subsequent release of free toxic gadoliunium ions that may deposit in
tissues and promote pathologic fibrosis; this mechanism only occurs if the elimination of
GBCAs from the body through the kidneys is significantly delayed, thus in patients with
impaired renal function or under dialytic treatment [1,2]. While linear GBCAs are more
unstable and prone to transmetallation, macrocyclic chelates are far more stable and are,
therefore, less susceptible to such dissociation and are safer in use. Patients with severe
kidney failure (eGFR between 15 and 29 mL/min/1.73 m2; CDK stage 4) or end-stage CDK
(CKD stage 5; eGFR < 15 mL/min/1.73 m2), as well as patients with acute kidney injury
(AKI) superimposed or not to CDK represent at-risk outpatients. Because of these consider-
ations, at present, laboratory testing of renal function including eGFR is not mandatory in
low-risk patients and for cyclic chelates administration, while it is strictly recommended in
high-risk patients such as those with a single kidney, who have had a kidney transplant
and surgery, who have history of known renal cancer and multiple myeloma, and who
have history of CDK or previous AKI [47]. For dialyzed patients, see the following section.
No known prophylaxis is currently available to reduce the risk of NSF [48]; moreover, there
is no scientific evidence demonstrating the preventive role of a low GBCA dose (lower than
recommended for diagnostic purpose) in avoiding NSF [49].

Concerning the development of NSF after GBCAs administration, both ESUR (ac-
cording to EMA guidelines) and ACR provided risk stratification of the most commonly
available contrast media, but with the presence of some major differences between soci-
eties [41]; a panel to summarize these discrepancies is shown in Table 3.
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Table 3. Classification of GBCAs in NSF risk classes (higher to lower) according to ESUR and ACR.

GBCA ESUR ACR *

Gadodiamide, linear (Omniscan®) High-risk for NSF; suspended by EMA.
Group I: patients’ stratification based on
eGFR required, contraindicated if CKD
stage 4–5 and AKI.

Gadoversetamide, linear (Optimark®) High-risk for NSF; suspended by EMA.
Group I: patients’ stratification based on
eGFR required, contraindicated if CKD
stage 4–5 and AKI.

Gadopentetic acid, linear (Magnevist®)

High-risk for NSF; suspended by EMA
for intravenous use; only allowed for
intra-articular administration in
arthrography MRI.

Group I: patients’ stratification based on
eGFR required, contraindicated if CKD
stage 4–5 and AKI.

Gadobenic acid, linear (MultiHance®)
Intermediate-risk for NSF; approved by
EMA for hepatobiliary imaging only.

Group II: recommended for patients with
chronic kidney disease; assessment of
renal function optional prior to
intravenous administration.

Gadoxetic acid, linear (Eovist®,
Primovist®)

Intermediate-risk for NSF; approved by
EMA for hepatobiliary imaging only.

Group III (data regarding NSF risk
remains limited despite an alternative
hepatobiliary excretion pathway):
patients’ stratification based on eGFR
required.

Gadobutrol, cyclic (Gadavist®,
Gadovist®)

Low-risk for NSF; assessment of renal
function not mandatory prior to
intravenous administration; caution in
patients with eGFR < 30 mL/min (at least
7 days between two injections).

Group II: recommended for patients with
chronic kidney disease; assessment of
renal function optional prior to
intravenous administration.

Gadoteridol, cyclic (Prohance®)

Low-risk for NSF; assessment of renal
function not mandatory prior to
intravenous administration; caution in
patients with eGFR < 30 mL/min (at least
7 days between two injections).

Group II: recommended for patients with
chronic kidney disease; assessment of
renal function optional prior to
intravenous administration.

Gadoteric acid (Dotarem®, Artirem®,
Clariscan®)

Low-risk for NSF; assessment of renal
function not mandatory prior to
intravenous administration; caution in
patients with eGFR < 30 mL/min (at least
7 days between two injections).

Group II: recommended for patients with
chronic kidney disease; assessment of
renal function optional prior to
intravenous administration.

* Important note: ACR committee indications are less adherent to the more restrictive FDA guidelines, which
recommend screening patients for AKI and conditions that may interfere with renal function, independently from
the GBCA adopted.

In summary, cyclic GBCAs’ structure seems to prevent the breakdown between the
ligand and the Gadolinium ion; therefore, the risk for NSF in patients undergoing standard
doses’ administration can be considered negligible also in CKD patients. Indeed, prior risk
stratification through clinical questionnaires and eGFR assessment is optional. High-risk
linear molecules for NSF include gadodiamide, gadoversetamide, and gadopentetic acid,
which have been suspended for intravenous use in Europe by EMA (while according to
ACR guidelines they may still be used after a comprehensive patients’ stratification based
on eGFR, remaining formerly contraindicated only if CKD is stage 4–5 and AKI). It must be
noted that, according to EMA, gadopentetic acid (Magnevist®) can be used for arthrography
MRI using intra-articular administration. Finally, intermediate-risk linear molecules for
NSF include gadobenic acid and gadoxetic acid, which are approved in Europe by EMA for
hepatobiliary imaging only due to their alternative hepatobiliary excretion pathway, but
this is unlike in Europe, where according to ACR guidelines Gadobenic acid (MultiHance®)
is considered safe for patients with chronic kidney disease and the preliminary assessment
of renal function is considered optional prior to intravenous administration [50].
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4.4. Accumulation in Human Tissues

In recent years, an ever-increasing number of in vivo and ex vivo studies provided
evidence of gadolinium retention in normal tissues after repeated GBCAs administrations,
occurring with both linear and cyclic contrast agents despite having a different magnitude
(greater with linear GBCAs than with macrocyclic GBCAs, probably due to the less labile
structure of the latter). This aberrant and unexpected deposition occurs in patients regard-
less of preserved renal and hepatic function. Because of this evidence of dose-dependent
accumulation after repetitive GBCAs administrations, caution is still warranted especially
for linear GBCAs [51,52]; however, gadolinium deposition still is a relatively undefined
phenomenon from a clinical perspective. Due to this evidence and to their at least in part
undetermined clinical meaning, the EMA suspended from the European market some
linear GBCAs due to concerns regarding gadolinium retention (Optimark®, Omniscan®)
or severely restricted their diagnostic applications (Magnevist®, Eovist®, Primovist® and
MultiHance®) [50]. In the wake of this, the FDA published a safety alert stating the need to
continue analyzing the risk and clinical significance connected to gadolinium deposits, but
have not yet foreseen any suspension in the GBCAs market in the United States due to a
lack of association between adverse events and gadolinium retention [53].

Gadolinium retention in bones, liver, and skin has been assessed with histology, as
well as the one observed in the kidney (specifically in patients with NSF), but it cannot be
detected using MRI. Gadolinium retention in brain tissue, although confirmed in several
post-mortem studies, can also be observed at MRI examinations as a focal T1-weighted
hyperintensity in specific central nervous system (CNS) regions [51,54,55]. Among the
above-mentioned deposition sites, the most striking and groundbreaking reports first
concerned gadolinium retention in CNS [56,57], the only one that can be observed in vivo
by means of MRI examination as spontaneous unenhanced T1-weighted hyperintensity
in the dentate nuclei and globus pallidus (Figure 9). The phenomenon is not limited to
patients with blood–brain–barrier disruption; it is apparently dose-dependent and is more
likely to occur with linear rather than with cyclic GBCAs [51].
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Figure 9. (a) Example of spontaneous T1w hyperintensity due to gadolinium deposition within
dentate nuclei (white arrows) at 1.5 T MRI in a 25-year-old patient diagnosed with tuberous sclerosis
who has undergone multiple Gadobutrol administrations over years. (b) Age- and sex-matched
normal control for comparison.

The exact mechanisms by which gadolinium administration causes high signal in-
tensity in these CNS regions remain unclear; however, at present there is no evidence
supporting neurotoxic effects of such gadolinium depositions in the short and medium
term, neither in animal models nor in humans [58–61]. However, the radiology community
is still making a systematic effort with GBCAs exposure analysis to definitively assess
safety, define potential undiscovered neurotoxicity, and modify guidelines accordingly as
new evidence is collected.
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5. Gadolinium-Based Contrast Agents and at-Risk Categories

Some clinical situations bring into question the safety profile of GBCAs and represent
a potential source of application error for radiologists. Here, we revise some cardinal
concepts for safe GBCAs’ use in specific at-risk outpatients, clarifying possible doubts and
dispelling myths.

5.1. GBCAs and Dialyzed Patients

As per other patients with known or highly suspected kidney function impairment,
in dialyzed patients, the use of low-risk NSF GBCAs is recommended. Radiologists are
requested to always consider alternative equivalent examinations, to use the smallest
contrast dose necessary for diagnostic purposes, and to avoid close re-administrations (at
least 7 days between two injections) [41]. Indeed, dialysis effectively removes circulating
GBCAs (up to 95% in three dialytic sessions); therefore, it is important to synchronize
the timing of contrast agent administration with the timing of the scheduled dialysis
session in patients with CKD who are already undergoing dialysis. At present, there is
no evidence of the protective impact of prior prophylactic dialysis on reducing the risk of
NSF or AKI [62,63], and contrast-enhanced MRI should be scheduled before a regularly
programmed dialysis session. In case of urgent non-scheduled examinations, an extra
dialysis session after contrast media injection can also be recommended; however, no
consensus on this point has already been reached between the major scientific societies, and
ACR committee still recommend not to alter dialysis timing in patients receiving low-risk
NSF GBCAs [42].

5.2. GBCAs and Patients with Sickle Cell Disease

Despite some historical alleged facts and fallacies related to the risk increase in acute
crisis after GBCAs administration in patients with sickle cell disease (SCD), there is no
evidence that intra-venous GBCAs induce vaso-occlusive or hemolytic events when admin-
istered to SCD patients [64]. As if proving this point, in several studies on SCD patients
GBCAs were administered for contrast-enhanced MRI examinations without reported
adverse effects [65,66]. Therefore, no restriction in GBCAs administration must currently
be envisaged solely on the basis of sickle cell trait or SCD, and no specific premedication
is required.

5.3. GBCAs and Interaction with Other Drugs

Among the molecules requiring additional consideration, particular mention should
be made of drugs that could interact with GBCAs or potentially enhance contrast-induced
nephrotoxicity and renal adverse reactions; the list should specifically include metformin
treatment for diabetes, non-steroidal anti-inflammatories, and chemotherapies. Concerning
antidiabetic medications, it has been clarified that no special precaution is necessary for di-
abetic patients on metformin treatment, for patients under non-steroidal anti-inflammatory
drugs, and for patients on Cyclosporine/Cisplatin treatment, given the low risk of AKI with
GBCAs (provided that the renal function is preserved); therefore, stopping nephrotoxic
drugs before GBCAs is not generally required. Concerning interleukin-2, patients with
known previous GBCAs-related reactions or on interleukin-2 treatment should be informed
of the remote chance of late skin reactions; radiologist should recommend contacting a
specialist in case of cutaneous symptoms onset [41,67].

Another important point is the one concerning interactions with other contrast media,
especially CT iodinated contrast media. Comprising 75% of both gadolinium- and iodine-
based contrast agents excreted within the first 4 h from intravenous administration, the
second injection can be performed from 4 h from the first diagnostic procedure; conversely
and as previously stated, in case of subjects with renal function impairment, there should
be an interval of 7 days between the two administrations. As a further annotation, when
choosing in which order to perform contrast-enhanced CT and MRI, it must be considered
that GBCAs significantly attenuate X-rays when excreted in the urinary and in the biliary
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tract (Figure 1) (therefore, abdominal CT should be performed before MRI); no order
concerns are described in cases of chest or head-and-neck examinations [41].

Finally, GBCAs should not be mixed with other drugs before intravascular injection,
as it may interfere with their molecular stability; moreover, it is good practice not to use
for GBCAs injection the same venous access used for other drugs administration or (when
this is the case) flushing the catheter with normal saline before and after contrast-media
administration [67].

5.4. GBCAs during Pregnancy

Only a few studies evaluated the correlation between GBCAs administration during
pregnancy and the harmful effects to the fetus or newborn, but at present no mutagenic or
teratogenic effect was described. In animal models, accumulation of GBCAs in amniotic
fluid is demonstrated until 2 h, despite having no clear clinical repercussions [68]. In
humans, the most important evidence on this concern is represented by a retrospective
review of a large database of newborns [69], in which no significant difference in the risk of
congenital abnormalities was found between women having undergone contrast-enhanced
MRI examination with GBCAs and those who have not; conversely, in newborns exposed to
GBCAs in utero (independent from gestational age at the time of the MRI) an increased risk
of a wide spectrum of rheumatological, inflammatory, or infiltrative skin conditions was
observed, coupled with an increased risk of stillbirth or neonatal death. These conclusions
determined the indication of ACR that GBCAs should be administrated with caution during
pregnancy or in possibly pregnant women, and only if a potential critical benefit to the
patient or fetus can justify the currently still-unknown risk of fetal exposure [42]. Similarly,
ESUR allows the use of the smallest quantity of GBCA during pregnancy only in cases
of very strong clinical indications of the contrast-enhanced MRI examination [41]. Both
guidelines formerly recommend the use of one of the macrocyclic GBCAs at low-risk for the
NSF. However, it must be noticed that the use of GBCAs during pregnancy, despite being
rare, is far more common during the first weeks of gestation before pregnancy is known
and sometimes even when pregnancy tests are still negative before embryo implantation in
the second week, but, as the embryo is not yet directly exposed to circulating GBCAs, this
inadvertent administration is not likely to result in gadolinium retention in the embryo,
with possible mitigation of the potential harmful effects [70]. Finally, in pregnant women
with known renal impairment, the use of GBCAs is formally contraindicated in Europe [41],
while according to ACR the same safety measures as in non-pregnant women should
be adopted.

A summary of the different guidelines between ESUR and ACR concerning the use of
GBCAs in pregnant women is shown in Table 4.

Table 4. Summary of ESUR vs. ACR guidelines concerning GBCAs administration in pregnant and
lactating women.

ESUR ACR

Pregnant women with preserved
renal function

Smallest quantity of macrocyclic GBCAs only;
very strong clinical indication to contrast
enhanced MRI

Smallest quantity of macrocyclic GBCAs
only; very strong clinical indication to
contrast enhanced MRI

Pregnant women with impaired
renal function GBCAs formally contraindicated Same safety measures as in

non-pregnant women

Lactating women with preserved
renal function No breast-feeding interruption formally required No breast-feeding interruption

formally required

Lactating women with impaired
renal function GBCAs formally contraindicated Same safety measures as in

non-pregnant women
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5.5. GBCAs in Women Who Are Breast-Feeding

Women with preserved renal function excrete less than a 0.04% GBCA dose into breast
milk within the first 24 h after intravenous injection, and infants absorb less than 1% of
the swallowed drug through the gastrointestinal tract; therefore, the global dose absorbed
by the infant is lower than 0.0004% of the intravascular dose administered to the mother
and the connected risks for the infant can be considered negligible. This suggests that no
breast-feeding interruption is formally required after GBCAs administration [71]. However,
if the woman is particularly concerned about the potential undesired events for the infant,
breast-feeding abstention can be proposed within the first 24 h from GBCAs administration
to the mother and breast milk elimination from both breasts should be suggested during the
same period. For scheduled MRI examinations, a breast pump to obtain milk before GBCA
injection can be used to feed the infant during the abstention period. Abstention from
breast-feeding does not need to take place beyond 24 h from GBCAs administration [42].
As a final remark, one must always bear in mind that in lactating women with known renal
impairment the use of GBCAs is formally contraindicated [41].

A summary of the different guidelines between ESUR and ACR concerning the use of
GBCAs in lactating women is shown in Table 4.

6. GBCAs in Children

At present, scientific evidence suggests that GBCAs are usually well tolerated by
children and that the risk of adverse effects is apparently comparable to that observed in
adults. Many adverse reactions are mild or moderate, and generally they are self-limiting
with no need for therapy or hospitalization [72]. Considering pediatric life expectancy and
the lack of studies on long-term GBCAs effects in children, it is of the utmost importance to
weigh the risks and benefits of single or repeated contrast media administrations, so, when
the diagnostic advantage deriving from contrast-enhanced MRI in children is significant,
GBCAs can be used if the dose is adjusted for the patient’s age and weight [73]. However,
GBCAs are mostly used off-label in children, and intermediate/high-risk agents should
be avoided. Moreover, as several of these agents are still not approved for pediatric use,
GBCA’s leaflet should be preliminarily consulted, and (when not formally approved GBCA
is available) prior informed consent for off-label use must be obtained from parents. When
absolute contraindication to the use of a specific GBCA in the pediatric population is
reported in the leaflet, its use in children is formally proscribed regardless from parents’
consent [41,42]. No clear evidence for nephrotoxicity in children after GBCAs adminis-
tration at approved doses has been described, and similarly there are only a few isolated
reports of NSF in children [74]. As per adults, pediatric patients at risk for AKI/CKD
should be identified; in these cases, age-specific normal parameters for assessing renal
function must be measured, remembering to use a revised Schwartz equation to determine
eGFR [32,33]: eGFR (mL/min/1.73 m2) = 36.5 × length (in cm)/serum Cr (in µmol/L).

7. Conclusions

Despite the efforts invested in the effective development of GBCAs for in vivo human
imaging, only a handful of compounds gained the approval for current applications in
clinical practice. To date, approved GBCAs are widely used in MRI examinations as positive
contrast agents, in order to enhance detection of possible abnormalities and improve
anatomical depiction of organs and systems. However, as for any other drug, GBCAs use
is not without risk, and the long-term effects have long been under the magnifying glass
for their potential clinical implications that have yet to be fully explored and interpreted.
Therefore, a thorough knowledge of GBCAs’ properties as well as a deep understanding
of their indications and limitations are strongly desirable to optimize their use, improve
tolerance, avoid possible pitfalls, and minimize the risk of adverse effects.
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