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Abstract: Acute myeloid leukemia (AML) is a heterogeneous clonal disorder characterized by
immature myeloid cell proliferation and bone marrow failure. Cytogenetics and mutation testing
remain a critical prognostic tool for post induction treatment. Despite rapid advances in the field
including new drug targets and increased understanding of the biology, AML treatment remains
unchanged for the past three decades with the majority of patients eventually relapsing and dying
of the disease. Allogenic transplant remains the best chance for cure for patients with intermediate
or high risk disease. In this review, we discuss the landmark genetic studies that have improved
outcome prediction and novel therapies.
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1. Introduction

Acute myeloid leukemia (AML) is a heterogeneous disorder characterized by clonal expansion of
myeloid progenitors (blasts) in the bone marrow and peripheral blood. Previously incurable, AML
is now cured in approximately 35%–40% of patients younger than age 60 years old [1]. For those
>60 years old, the prognosis is improving but remains grim. Recent studies have revealed that the
disorder arises from a series of recurrent hematopoietic stem cell genetic alterations accumulated
with age. Using deep sequencing techniques on primary and relapsed tumors, a phenomenon called
clonal evolution has been characterized with both founding clones and novel subclones, impacting
the therapeutic approach [2]. Despite an increased understanding of AML biology, our efforts to this
point in changing treatment strategy have been disappointing. In this review, we discuss the current
diagnostic and prognostic strategies, current treatment approaches and novel therapies critical to
AML management.

2. Morphology

Morphologically, AML blasts vary in size from slightly larger than lymphocytes to the size
of monocytes or larger. The nuclei are large in size, varied in shape and usually contain several
nucleoli. AML blasts express antigens found also on healthy immature myeloid cells, including
common differentiation (CD) markers CD13, CD33 and CD34 [3]. Other cells markers are expressed
depending on the morphological subtype of AML and stage of differentiation block such as monocytic
differentiation markers (CD4, CD14, CD11b), erythroid (CD36, CD71) and megakaryocytes markers
(CD41a and CD61). On occasion, AML blasts also co-express antigens restricted to T or B cell lineages
including Terminal deoxynucleotidyl transferase (TdT), Human leukocyte antigen-antigen D related
(HLA-DR), CD7 and CD19. Rarely, the blasts can exhibit morphologic and immune-phenotypic features
of both myeloid and lymphoid cells that make it difficult to classify them as either myeloid or lymphoid
in origin. These cases are classified as mixed phenotypic leukemia and usually portend a worse
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overall survival [4]. Bone marrow aspirate and biopsy, including morphology, immune-phenotype,
cytochemistry and genetics studies (conventional karyotype and molecular studies) remain essential
for diagnosis, classification and risk stratification.

3. Classification

Over the years there have been several different classification systems for AML based
on etiology, morphology, immune-phenotype and genetics. In the 1970s, AML was classified
according to the French-American-British classification system using mainly morphology and
immune-phenotype/cytochemical criteria to define eight major AML subtypes (FAB M0 to M7) [5]. The
World Health Organization (WHO) classification of AML, replaced the old French-American-British
classification system to become the essential modality for AML classification today. The WHO
classification was updated in 2008 and identifies seven AML subtypes: (1) AML with recurrent genetic
abnormalities (RUNX1-RUNX1T1 t(8;21)(q22;q22), CBFB-MYH11 Inv(16)(p13.1q22), t(16;16)(p13.1;q22),
PML-RARA t(15,17)(q22;q12), MLL 11q23 abnormalities, etc.) and with gene mutations (Nucleophosmin
1 (NPM1) and CEBPA mutated gene); (2) AML with myelodysplasia-related changes; (3) Therapy
related myeloid neoplasms; (4) AML not otherwise specified (NOS) (similar to FAB Classification
M0–M7 with others such as acute megakaryoblastic leukemia, acute panmyelosis with myelofibrosis,
and pure erythroleukemia); (5) Myeloid sarcoma; (6) Myeloid proliferations related to Down syndrome;
and (7) Blastic plasmocytoid dendritic cell neoplasm [6]. Based on etiology alone, AML can also be
subdivided into three distinct categories: (1) Secondary AML (s-AML) (associated with antecedent
myelodysplastic syndrome (MDS) or other myeloid proliferative disorder (MPD)); (2) Therapy-related
AML (t-AML) (associated with prior toxin/chemotherapy exposure) and (3) De novo AML [7].

4. Cytogenetics

Non-random chromosomal abnormalities (e.g., deletions, translocations) are identified in
approximately 52% of all adult primary AML patients and have long been recognized as the genetic
events that cause and promote this disease [8]. Certain cytogenetic abnormalities, including the
t(8;21)(q22;q22), t(15;17)(q22;q12) and inv(16)(p13.1;q22) are associated with longer remission and
survival, while alterations of chromosomes 5, 7, complex karyotype (described as >3 chromosomal
abnormalities) and 11q23 are associated with poor response to therapy and shorter overall survival [1].
In contrast, about 40%–50% of all AML cases are cytogenetically normal (CN-AML) when assessed
using conventional banding analysis [9]. Although, this group has an intermediate risk of relapse,
a substantial heterogeneity is found in this population in terms of clinical outcome. Molecular screening
of this AML category is critical for prognostic categorization and treatment strategy.

5. Molecular Abnormalities

During the last decade, several studies have shown that the presence or absence of specific gene
mutations and/or changes in gene expression can further classify AML cases and have an effect on the
patients’ prognosis [7,10,11]. As stated above, this is particularly relevant for patients with CN-AML.
With the advent of next generation sequencing, the genetic landscape of CN-AML has been more
defined with each case having an average of 13 mutations, eight of which are random “passenger”
mutations and five of which are recurrent “driver” mutations [10]. Key molecular abnormalities have
been identified and are now used to predict outcome and help guide treatment for AML patients.
In the next sections we will describe the most relevant AML mutations discussed in relative order
of frequency.

5.1. Nucleophosmin 1 (NPM1) Mutations

Nucleophosmin 1 (NPM1) mutations are the most frequent mutation in AML, occurring in
25%–30% of AML patients, with female predominance [12,13]. NPM1 mutations result in the aberrant
expression of the NPM1 protein in the cytoplasm rather than the nucleus, stimulating myeloid
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proliferation and leukemia development [13–15]. Clinically, the mutation is associated with monocytic
morphology and in the absence of FMS-like tyrosine kinase 3 or FLT3-ITD, predicts favorable overall
survival (OS). The reason for improved survival remains unclear however it has been found that NPM1
mutations have been associated with chemosensitivity to intensive chemotherapy in both young and
old patients, which may account for improved outcome [16]. NPM1 mutations are associated with
other recurrent genetic abnormalities such as +8, DNMT3A mutations, FLT3-ITD (40% of the time),
FLT3-TKD (10%–15%) and IDH mutations (25% of time) [11,17].

5.2. DNA Methyltansferase 3A (DNMT3A) Mutations

Mutations in the DNA methyltansferase 3A (DNMT3A) gene occurs in 18%–22% of all AML cases
and in about 34% of CN-AML [18]. Missense mutations affecting arginine codon 882 (R882-DNMT3A)
are more common than those affecting other codons (non-R882-DNMT3A) causing a defect in normal
hematopoiesis and proper methylation [17]. Recently, DNMT3A mutations have been identified as
pre-leukemic mutations, arising early in AML evolution and persisting in times of remission [19].
The prognostic significance of DNMT3A mutations is therefore thought to be adverse. Initial studies
showed unfavorable impact on outcome in CN-AML [17]. However, these effects were age related.
Younger patients with non-R882-DNMT3A mutations had shorter disease free survival (DFS) and
overall survival (OS), whereas older patients with R882-DNMT3A mutations had shorter DFS and OS
after adjustment for other clinical and molecular prognosticators [17]. A larger study involving more
than 1700 AML cases found no significant impact of DNMT3A mutations on survival end points [20].
Recently, it was reported that patients with DNMT3A-mutated AML have an inferior survival when
treated with standard-dose anthracycline induction therapy. Sehgal et al., concluded that this group
should be considered for high-dose induction therapy [21]. High-dose daunorubicin, as compared
with standard-dose daunorubicin, improved the rate of survival among patients with DNMT3A or
NPM1 mutations or MLL translocations (p = 0.001) but not among patients with wild-type DNMT3A,
NPM1, and MLL (p = 0.67) [22].

5.3. Fms-Like Tyrosine Kinase 3 (FLT3) Mutations

First described in 1991, FLT3 was found to be strongly expressed in hematopoietic stem cells with
important roles in cell survival and proliferation [23,24]. Internal tandem duplications (ITD) in the
juxta-membrane (JM) domain or mutations in the second tyrosine kinase domain (TKD) of the FLT3
gene have been found in 20% of all AML cases and 30% to 45% of CN-AML patients [1,25]. Both types
of mutations constitutively activate FLT3 signaling, promoting blast proliferation [25,26]. Indeed
patients with FLT3 mutations often present with extreme leukocytosis and characteristic prominent
nuclear invagination often described as “cuplike” nucleus [25,27]. Furthermore, FLT3-ITD mutations
have been associated with increased risk of relapse, while the prognostic relevance of FLT3-TKD
mutations is controversial [28]. The degree to which FLT3-ITD is a biomarker associated with poor
outcome is determined by the binding site and FLT3-ITD allelic burden [25,28,29]. Studies have shown
that non-JM ITD are worse than JM domain ITD and higher mutant to wild-type allelic ratios were
significantly associated with lower complete remission (CR) rates [28,29]. Currently, tyrosine kinase
inhibitors (TKI) are being tested in FLT3 mutated AML patients. Unfortunately, when used alone, TKIs
showed only a transient reduction of blasts, and even if initially effective, subsequent acquisition of
secondary mutations induces resistance over time [30].

5.4. Isocitrate Dehydrogenase (IDH) Mutations

Mutations of the isocitrate dehydrogenase (IDH) 1 and 2 gene are gain-of-function mutations
which cause loss of the physiologic enzyme function and create a novel ability of the enzymes to
convert α-ketoglutarate into 2-hydroxyglutarate. IDH mutations are oncogenic. Specifically recurrent
mutations affecting the highly conserved arginine (R) residue at codon 132 (R132) of IDH1 and at
codons R140 and R172 of IDH2 have been identified in 15%–20% of all AML and 25% to 30% of patients
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with CN-AML [11,22,31]. They are found more frequently in older patients [32]. IDH mutations,
in particular IDH1, are associated with lower DFS and OS in CN-AML cases with NPM1 mutations
and wild type FLT3 [31,32]. Orally available, selective, potent inhibitors of mutated IDH are currently
being tested in Phase I and II studies in AML with promising results [33].

5.5. Ten–Eleven Translocation 2 (TET2) Mutations

The ten–eleven translocation oncogene family member 2 (TET2) is found mutated in about
9%–23% of AML patients [34]. TET1 is an enzyme involved in the conversion of 5-methylcytosine
(5mC) to 5-hydroxymethylcytosine (5hmC) in DNA, which is a process thought to play an important
role in DNA demethylation [34]. In general, TET2 mutations are loss-of-function mutations. Overall,
despite several studies their prognostic significance remains unclear. Metzeler et al., reported TET2
mutations as an adverse factor for CR and OS [35]. However Gaidzik et al., did not show a prognostic
effect with TET2 mutations [36].

5.6. Runt-Related Transcription Factor (RUNX1) Mutations

Runt-related transcription factor (RUNX1) has been shown to be essential in normal
hematopoiesis [37]. Also known as AML1 protein or core-binding factor subunit α-2 (CBFA2), RUNX1
is located at chromosome 21 and is frequently translocated with the ETO/MTG8/RUNX1T1 gene located
on chromosome 8q22, creating a fusion protein AML-ETO or t(8;21)(q22;q22) AML [38]. In addition
to chromosome translocations, RUNX1 mutations are found in 5%–13% of AML and are commonly
associated with trisomy 13, trisomy 21, absence of NPM1 and older CN-AML [11]. In general, studies
have shown RUNX1 mutations are associated with resistance to standard induction therapy with
inferior overall survival for both younger and older patients [39].

5.7. CCAAT Enhancer Binding Protein α (CEBPA) Mutations

The differentiation-inducing transcription factor CCAAT enhancer binding protein α (CBPA)
mutations are found in 6%–10% of all AML and 15%–19% of CN-AML, commonly in association
with del(9q) [1,40]. CEBPA is a critical transcription factor that controls gene expression during
hematopoiesis [41]. In AML, CEBPA mutations commonly harbor two mutations or double mutations,
which frequently involve both a combination of an N-terminal and a bZIP gene mutation. Importantly,
only bi allelic mutation, not single, CEBPA mutations predicted a higher complete response (CR) and
favorable OS, occurring in 4%–5% of AML [42]. AML with a single CEBPA mutation is associated with
survival similar to that of AML with wild-type CEBPA [11,43].

5.8. Additional Sex Comb-Like 1 (ASXL1) Mutations

Additional sex comb-like 1 (ASXL1) mutations are loss-of-function mutations that occur in 5%–11%
of AML cases [44]. The function of ASXL1 protein is not fully understood, but it is suggested that it
may be involved in epigenetic regulation (DNA and/or histone modifications) [36]. ASXL1 mutations
are five times more common in older (ě60 years) patients (16.2%) than those younger than 60 years
(3.2%; p < 0.001) [44]. Among older patients, ASXL1 mutations are associated with t(8;21), wild-type
NPM1, absence of FLT3-ITD, mutated CEBPA, and overall inferior complete remission and overall
survival [45,46].

5.9. Mixed Lineage Leukemia (MLL) Mutations

The mixed lineage leukemia (MLL) gene at chromosome 11q23 encodes for a protein that has
histone methyltransferase activity that coordinates chromatin modification as part of a regulatory
complex [47]. Translocations affecting the MLL gene lead to aggressive acute lymphoblastic and
myeloid leukemia with poor prognosis that is characterized by HOX gene overexpression [37].
In addition to translocations, partial in tandem duplications (PTD) of the MLL gene (MLL-PTD)
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have been demonstrated most often in adult de novo CN-AML and in trisomy 11 AML cases [48,49].
In adult CN-AML, the frequency of MLL rearrangement is 11% with the presence of the MLL-PTD
associated with a worse prognosis (i.e., shorter duration of remission) when compared with CN-AML
without the MLL-PTD [50].

5.10. Tumor Protein p53 (TP53) Mutations

The tumor suppressor gene TP53 is found in 8%–14% of AML cases. These mutations and
deletions are primarily associated in AML with complex karyotype (69%) and are rare in patient
without chromosomal deletions. In general, TP53 mutations confer a very adverse prognosis with
documented chemoresistance [51].

5.11. c-KIT Mutations

The KIT tyrosine kinase receptor is a 145 kDa transmembrane protein critical to normal
hematopoiesis [52]. This mutation is rare in AML (<5%) however present approximately 22%–29% of
the time in CBF mutations (i.e., AML harboring t(8;21)(q22;q22) or inv(16)(p13.1q22) or corresponding
respective fusion genes RUNX1/RUNX1T1 and CBFB/MYH11). KIT mutations have been shown to
confer higher relapse risk and lower OS. The KIT mutation in the codon D816 in particular has been
associated with unfavorable DFS and OS, particularly in t(8;21)(q22;q22) patients [53]. Prospective
studies later confirmed that patients with CBF AML harboring KIT mutations have shorter OS than
patients with wild type KIT for t(8;21)(q22;q22) but not for patients with inv(16)(p13.1q22) [54].
Remarkably KIT could be targeted pharmacologically by using tyrosine kinase inhibitors, such as
dasatinb [52]. Preliminary results were presented recently at the American Society of Hematology
Annual Meeting from a phase II trial that combined the KIT inhibitor, dasatinib with standard
chemotherapy for newly diagnosed patients with CBF AML. After a median follow-up of 21 months,
patients with KIT mutations who received dasatinib with standard chemotherapy showed similar
outcomes to that of wild type KIT patients [55]. Unfortunately, no survival benefit was found with
maintenance dasatinib in a phase II study completed by Boissel et al., Interestingly, at relapse there was
disappearance of the KIT subclone which is hypothesized to be dasatinib driven [56]. More studies are
needed to evaluate the long term outcomes of KIT inhibitors in CBF AML.

5.12. Spilicing Factor Gene Mutations and Mutations in Cohesion Complex Members

Often considered founding mutations, spilicing factor gene mutations have been found to be
associated with pre-leukemic conditions such as MDS. The most common genes reported include
SF3B1, U2AF1, SRSF2 and ZRSR2 [7]. In newly diagnosed AML patients, splicesome mutations
including SRSF2, F3B1, U2AF1, or ZRSR2 are now considered pathognomonic of secondary AML
developing from precedent MDS [57]. Somatic cohesion complex mutations were identified in roughly
20% of patients with high-risk MDS and secondary AML. Relevant mutations include STAG2, TAD21
and SMC3 which are important in regulating gene expression and DNA-loop formation. Mutations in
cohesion complex members are associated with poor overall survival [58].

6. Prognosis/Risk Stratification

Age and performance status in addition to chromosomal and molecular aberrations remain the
most important tools for outcome prediction in AML. In 2010, the European LeukemiaNet (ELN)
classification scheme was created in an effort to standardize risk stratification in adult AML patients by
incorporating cytogenetic and known molecular abnormalities [59]. Patients are classified into one of
four risk groups: favorable, intermediate 1, intermediate 2 and adverse (Table 1). Favorable prognosis
is associated with acute promyelocytic leukemia (APL) t(15;17)(q22;q12), balanced abnormalities of
t(8;21)(q22;q22), inv(16)(p13.1q22), t(16;16)(p13.1;q22), mutated NPM1 without FLT3-ITD and biallelic
mutated CEBPA. Intermediate 1 includes mutated NPM1 with FLT3-ITD, wild-type NPM1 with
or without FLT3-ITD. The intermediate -2 category includes t(9;11), MLLT3-MLL and cytogenetic
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abnormality neither favorable nor adverse. Complex karyotype, inv(3)(q21q26)/t(3;3)(q21;q26),
RPN1-EVI1, DEK-NUP214 t(6,9)(p23;q34), t(6;11), ´5 or del(5q), ´7 or abnormal (17p) and monosomal
karyotype are associated with poor prognosis [59,60]. Patients with monosomal karyotype (defined as
having two of more distinct monosomies or one monosomy and another structural abnormality) have
a very poor prognosis (less than 4% survival at four years) [61]. Studies have shown that age >60 is an
independent predictor of poor outcomes regardless of the ELN classification [60].

Table 1. ELN risk stratification of molecular, genetic and cytogenetic alterations.

Risk Group Subsets

Favorable

t(8;21)(q22;q22); RUNX1-RUNX1T1
inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11
Mutated NPM1 without FLT3-ITD (normal karyotype)

Biallelic mutated CEBPA (normal karyotype)

Intermediate-I
Mutated NPM1 and FLT3-ITD (normal karyotype)

Wild-type NPM1 and FLT3-ITD (normal karyotype)
Wild-type NPM1 without FLT3-ITD (normal karyotype)

Intermediate-II
t(9;11)(p22;q23); MLLT3-KMT2A

Cytogenetic abnormalities not classified as favorable
or adverse

Adverse

inv(3)(q21q26.2) or t(3;3)(q21;q26.2); GATA2-MECO (EVI1)
t(6;9)(p23;q34); DEK-NUP214

t(v;11)(v;q23); KMT2A rearranged
–5 or del(5q); –7; abnl(17p); complex karyotype *

Abbreviations: ITD, internal tandem duplication; * A complex karyotype is defined as three or more chromosome
abnormalities; in the absence of one of the WHO designated recurring translocations; or inversions: t(8;21),
inv(16) or t(16;16), t(15;17), t(9;11), t(v;11)(v;q23), t(6;9), inv(3) or t(3;3).

APL is risk stratified according to the risk of relapse based on initial white blood count (WBC)
and platelet count at diagnosis. The following patient categories are: (1) low-risk: presenting WBC
count below or equal to 10 ˆ 109/L and platelet count above 40 ˆ 109/L; (2) intermediate-risk:
presenting WBC and platelet counts below or equal to 10 ˆ 109 and 40 ˆ 109/L, respectively; and
(3) high-risk group: presenting WBC greater than 10 ˆ 109/L. Treatment strategy varies depending on
risk stratification at diagnosis however, the inclusion of arsenic trioxide (ATO) in frontline therapy
seems to benefit all-risk category APL patients [62].

7. Therapeutics

7.1. Induction Therapy

Since 1970, the backbone of intensive induction chemotherapy remains unchanged. For young
adults (age < 60 years) and fit elderly patients (especially those harboring NPM1 mutations and
CBF leukemia) the intensive anthracycline and cytarabine regimen, “7 + 3”, induction therapy is the
standard of care. The typical dose and schedule includes either daunorubicin (60 or 90 mg/m2 on
days 1, 2 and 3) or idarubicin (10–12 mg/m2 on days 1, 2 and 3) given with seven days of continuous
cytarabine infusion (100 mg/m2/daily for one week (days 1 through 7). The goal of induction
chemotherapy is to achieve morphologic complete remission (CR), which is defined as: (1) <5% blasts
in bone marrow aspirate sample with marrow spicules and with a count of ě200 nucleated cells (no
blasts with Auer rods or persistence of extramedullary disease); (2) absolute neutrophil count (ANC)
>1000/µL, and (3) platelets ě 100,000/µL [63]. Young, de novo, AML patients achieve CR in 65%–73%
using standard induction with “7 + 3” while only 38%–62% of patients over 60 years of age with
AML achieve CR [64–66]. Several trials have now shown that higher dose of anthracycline (90 versus
45 mg/m2) in both younger and older fit adults (from 60 to 65) results in higher CR rates and increases
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the duration of OS [65,66]. Concerns about toxicity of high-dose daunorubicin and the wide use of
the 60-mg/m2 dose as a newer “standard,” led the United Kingdom (UK) National Cancer Research
Council (NCRC) to conduct a prospective randomized trial with the goal to compare daunorubicin
at 60 vs. 90 mg/m2 in the induction of 1206 AML patients [67]. In this study there was no benefit
of using higher dosing (90 mg/m2) over 60 mg/m2 across all subgroups [67]. However there are
some caveats to consider in this trial. In particular, the cumulative dose of anthracyclines in the low
dose arm (60 mg/m2) was equivalent in the United Kingdom National Cancer Research Institute
(UK NCRC) trial to the higher dose (90 mg/m2) of the other clinical trials due to multiple courses
of anthracycline. In addition the UK NCRC trial has a shorter follow up [68]. Thus, it is clear that
45 mg/m2 of daunorubicin seems insufficient and 60 mg/m2 is not inferior to 90 mg/m2 with less
associated toxicity. Patients found to have a FLT3 mutation should be treated with a FLT3 inhibitor
(discussed in more detail below), such as midostaurin, added to standard induction therapy [69].

Characterizing fitness in the adult population is important when deciding treatment strategy.
In particular, appropriate therapy in the elderly AML patient should be determined based on
“patient-specific fitness” using geriatric assessments to determine fitness, vulnerable and frail status
regardless of age [70]. In older adults, deemed not fit for intensive induction therapy especially
harboring complex karyotype without NPM1 mutations, the use of hypomethylating agents including
decitabine and azacitidine has shown to be beneficial [70–72]. Both agents, commonly used to treat
myelodisplasia, have activity in AML as initial induction therapy and in the relapsed setting. Several
phase II and III studies using azacitadine and decitabine have been conducted [71–73]. A study of
82 patients with AML, median age of 72 years, who received azacitidine as part of a compassionate
use program showed CR/incomplete CR in 11 of the 35 untreated patients (31%). The median overall
response duration was 13 months with the one-year and two-years overall survival rates of 58% and
24%, respectively [73]. Blum et al. showed an even higher complete remission rate of 47% and overall
response rate of 64% with 10 days of low-dose decitabine at 20 mg/m2 intravenous over 1 h [72].
This treatment was well tolerated with CR achieved in 52% of subjects presenting with CN-AML and
in 50% of those with complex karyotypes [72]. Older patients receiving induction decitabine usually
require a median of two to four cycles of therapy to have an optimal response.

Patients with suspected acute promyelocytic leukemia (APL) should be treated with all-trans
retinoic acid (ATRA) even before the diagnosis is confirmed. Early use of ATRA decreases the risk
of APL induced coagulopathy, development of disseminated intravascular coagulation (DIC) and
mortality. For patients with low-to-intermediate-risk APL (WBC ď 10 ˆ 109/L) outcomes are excellent
with the use of ATRA with arsenic (ATO) [74]. In this non-inferiority study, the ATO-ATRA combination
showed CR rates in all 77 patients (100%) and in 75 of 79 patients (95%) in the ATRA-idarubicin group.
The two-year event-free survival and OS rates were significantly improved (97% and 99%) in the
ATO-ATRA arm than for those in the ATRA–chemotherapy arm (86% and 91%) [74]. For high-risk
patients (WBC > 10 ˆ 109/L), chemotherapy with idarubicin should be initiated once the diagnosis is
confirmed in addition to ATO-ATRA for rapid control of leukocytosis. During induction treatment it
is recommended that WBC, fibrinogen level, prothrombin time and partial thromboplastin time be
monitored at least twice daily with aggressive transfusion support (platelet count ě 30 ˆ 109/L and
fibrinogen level ě 1.5 g/L). Prophylactic steroids are also recommended, in particular when using
ATRA/ATO combination for induction in patients with high WBC count to prevent differentiation
syndrome [74,75].

7.2. Consolidation Strategies

Consolidation or post-induction therapy is given to prevent relapse and eradicate minimal
residual leukemia (MRD) in the bone marrow after induction as a bridge to transplant or to achieve
cure. Assessment of minimal residual disease using real-time PCR or Next Generation Sequencing
(NGS) is increasingly being used to help track treatment response and has been shown to be superior
than morphology alone in predicting impending relapse [76,77]. Despite this powerful information,
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the heterogentiy of AML in general has made following mutational clones difficult to determine
absolute risk of leukemia development as some clones can persist in patient in long-term remission
following treatment, such as DNMT3A [19]. In general, there are two main strategies for consolidation;
chemotherapy (including targeted agents) and hematopoietic stem cell transplantation [64]. Both
strategies could be used alone or most commonly in combination depending on the type of leukemia,
the fitness of the patient and the availability of a stem cell donor. Post induction chemotherapy using
intermediate-dose cytarabine 1.5 g/m2 twice daily on days 1, 3 and 5 given in three to four cycles
is an effective and established regimen to prolong remission and improve survival in favorable risk
young adults (<60 year of age) [8]. These patients are usually treated with chemotherapy alone and
transplantation is reserved only at relapse [64]. In 2013, Burnett et al. challenged this dose schedule
for adults <60 year old and showed that higher dose (3 g/m2) as compared to lower dose (1.5 g/m2)
cytarabine for three courses led to identical outcomes [78]. Thus, low dose cytarabine at 1.5 g/m2

became the standard of care. High-dose cytarabine is still used for patients with CBF AML [e.g., t(8:21);
or inv(16)] and NPM1 mutated AML [8,78]. In elderly patients (>60 year of age) there was no benefit
with high dose cytarabine with increased and sometimes irreversible neurotoxicity noted [79], therefore
500–1000 mg/m2 is standardly used [1].

For other prognostic groups, in particular fit patients with intermediate risk or high risk disease
after achieving CR, allogeneic hematopoietic stem cell transplantation remains the most effective
long term therapy for AML with cure in 50% to 60% of patients in first CR [80,81]. Despite this,
several patients never become eligible for transplant given co-morbidities, failure to achieve CR
or lack of suitable donor [80]. While waiting for transplant it is standard practice to give post
induction chemotherapy to maintain CR and keep the leukemia burden low. Decisions regarding
consolidation rather than moving straight to transplant should be individualized as consolidation
therapy poses risk of morbidity and mortality, which may hinder eventual curative transplant.
Recent evidence unanimously confirms that age should no longer be used as the sole criteria for
transplant eligibility [80,82]. Rather eligibility should be decided upon based on pre-transplant
performance status, co-morbidities and current remission. The most widely recognized and validated
tool for assessing comorbidity includes the Hematopoietic Cell Transplantation Comorbidity Index
(HCT-CI) [82]. The higher the comorbidity index score, the worse the clinical outcome. Improvements
in supportive care, increased donor options (haplo-identical donors and cord grafts) and reduced
intensity preparation regimens for HCT have increased the success of transplant in all age groups.
It is for this reason that we advocate for early patient discussion, risk assessment and tissue typing at
diagnosis. Conditioning regimen should be decided based on patient fitness, transplant options and
disease characteristics. Although risk of relapse is higher, long term outcomes of reduced-intensity
allogeneic hematopoietic stem cell transplant in patients who were ineligible for myeloablative
transplant are promising [81]. The results of a prospective multicenter phase II trial conduced
by the Alliance for Clinical Trials in Oncology (formerly Cancer and Leukemia Group B) and the
Blood and Marrow Transplant Clinical trial Network showed reduced intensity conditioning-based
hematopoietic stem cell transplant (HSCT) to be an effective strategy for suitable older patients with
an available matched donor with a disease-free survival and OS at two years after transplant of 42%
and 48%, respectively [83]. Reduced intensity transplants are therefore becoming more common and
clinically accepted.

7.3. Relapsed Disease

Of the patients who relapse, only a small fraction achieve successful second remission using
salvage chemotherapy followed by allogeneic stem cell transplant with curative intent [64]. Studies
examining clonal evolution of relapse show that relapse can occur from expansion of major or
minor clones present at diagnosis or through newly acquired mutations over time [2]. Therefore,
clinical trial is the preferred treatment approach especially in light of novel targeted therapies. Early
relapse (occurring within the first six months after CR1) portends a poor overall survival. Salvage
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regimes include intermediate dose cytarabine (500–1500 mg/m2 intravenously every 12 h on days
1–3); MEC (Mitoxantrone 8 mg/m2 on days 1–5, Etoposide 100 mg/m2 on days 1–5, and Cytarabine
100 mg/m2 on days 1–5) or lastly, FLAG-IDA (Fludarabine 30 mg/m2, intravenously on days 1–5
(20 mg/m2 in patient >60 years old), Cytarabine 1500 mg/m2 (500–1000 mg/m2 in patients >60 year)
intravenously, 4 h after fludarabine infusion, on days 1–5; Idarubicin 8 mg/m2, intravenously, on days
3–5; Granulocyte colony-stimulating factor 5 µg/kg, subcutaneously, from day 6 to white-cell count
>1 g/L (FLAG-IDA) [1]. The likelihood of achieving a second CR is best in patients with a long first
remission, younger age and in those with favorable cytogenetics [84]. In cases of APL, re-induction
with ATO with or without ATRA remains the standard. CR rates with single agent ATO are good at
roughly 85% [85].

8. Novel Targets

8.1. Fms-Like Tyrosine Kinase 3 (FLT3) Inhibitors

Several FLT3 small molecule inhibitors have been developed with mixed results. First generation
drugs include multi-kinase inhibitors such as midostaurin, lestaurtinib, tandutinib sunitinib and
sorafenib. When used as single agents they have limited anti-leukemia activity mostly showing only
transient reduction of blood and bone marrow blasts and increased toxicity [86]. In a randomized
trial of 224 patients with FLT3 mutated AML in first relapse lestaurtinib did not increase the response
rate or prolong survival [87]. Single agent use with midostantrum, tandutinib and KW2449 in phase
I/II trials were also not clinically effective [88–90]. Combination therapy using FLT3 inhibitors with
chemotherapy have also been conducted. Serve et al. reported a randomized trial of 201 newly
diagnosed older AML patients, using the addition of sorafenib to induction and consolidation therapy.
Unfortunately, sorafenib did not improve outcomes and patients did worse in the sorafenib arm due
to higher treatment-related mortality and lower CR rates [91]. A recent phase II study of sorafenib
in combination with 5-azacitadine in relapsed/refractory FLT3-ITD mutant AML demonstrated a
response rate of 46%, mostly consisting of CR or CR with incomplete count recovery [92]. Sunitinib
added to induction and consolidation chemotherapy in older patients with AML and FLT3 activating
mutations showed some effectiveness with CR rates 53% (8/15) and 71% (5/7) for patients with
FLT3-ITD and FLT3-TKD mutations, respectively. The 13 patients who achieved CR went on to
be consolidated with high dose cytarabine and 7/13 received sunitinib maintenance. The median
overall survival in this study was 18.8 months [93]. The largest randomized, phase III clinical
trial in FLT3-mutated AML conduced to date was recently presented at the 2015 American Society
of Hematology (ASH) Plenary session showing the benefit of midostaurin added to induction
chemotherapy (RATIFY trial) in which patients receiving midostaurin had significantly longer median
OS than those receiving placebo: 74.7 versus 25.6 months (p = 0.0076) [94]. Second generation
agents, promising to have better potency and less side effects include quizartinib and crenolanib
are still undergoing clinical investigation. One trial, using quizartinib (AC220), did show better
blast count clearance however also noted the development of secondary resistance. Drug resistance
has since become the major challenge in treating patients with a single FLT3 inhibitor. The point
mutations identified which lead to resistance include N676, F691, and D835 within the kinase domain
of FLT3-ITD [95]. The novel FLT3 inhibitors, G-749 and ASP2215 (active against both FLT3 ITD and
D835 mutations), have recently been shown to provide sustained inhibition of FLT3 phosphorylation
and increased ability to overcome drug resistance in pre-clinical trials but further studies are needed to
determine if it will have clinical efficacy [96,97].

8.2. Isocitrate Dehydrogenase (IDH) Inhibitors

The IDH1 inhibitor AG-120 and the IDH2 inhibitor AG-221 have demonstrated promising response
rates in patients with AML in two separate phase I clinical trials [98,99]. Preliminary results were
recently presented for both trials. The objective response rate (ORR) with AG-221 was 40% and 31%
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with AG-120 in relapsed/refractory AML patients. More interestingly the duration of the responses
for AG-221 and AG-120 were more than 15 and 11 months at the analysis, and remained ongoing.
Overall, 76% of responses lasted longer than six months. Based on these data, the Food and Drug
Administration (FDA) have granted the medication an orphan drug designation for patients with AML.

8.3. Nuclear Exporter Inhibitors

The anti-leukemic efficacy of reversible inhibitors of the major nuclear export receptor,
chromosome region maintenance 1 (CRM1, also termed XPO1) has brought much excitement. CRM1
is a major nuclear exporter protein which mediates the export and inactivation of several tumor
suppressors such as p53, p73, FOXO1, RB1 and p21 (CDKN1A) among others [100]. CRM1 has
been shown to be upregulated in a range of solid tumors and hematological malignancies, including
AML [101,102]. Preclinical studies indicate that treatment of AML cell lines, patient samples and
AML xenografts with novel CRM1 inhibitors (Selinexor) induces strong anti-leukemic effects [103,104].
Based on these studies, Phase I/II clinical trials are currently ongoing to assess the safety, tolerability
and activity of selinexor in AML patients.

8.4. Immune Therapies

Novel antibody therapies are revolutionary in the treatment leukemia and currently under
development in AML. Monoclonal antibodies being explored include CD33 (Gemtuzumab
ozogamicin) [105] and bispecific antibodies such as AMG 330 (anti-CD33 and CD3) [106]. Chimeric
antigen receptor (CAR)-transduced T cells (CARTs) are T cells engineered to express a specific antigen
receptor target designed against a specific cell-surface antigen. CD123 has been found to be expressed
on the majority of AML blasts but also normal hematopoietic cells. Preclinical data shows that targeting
CD123 via CARTs results in rejection of human AML and myeloablation in the mouse models [107].

9. Conclusions

AML is complex disease with a diverse genetic landscape. The field is rapidly expanding with
increased understanding of the biology as well as potential new drug targets. Despite our best
efforts at targeted therapy, it has become apparent that single drug options may be less likely to
succeed over multiple drug targets. Relapse disease remains the highest cause of mortality after HCT.
Immunotherapy is also an exciting new therapeutic approach which may offer long term cures for
relapsed patients. We remain hopeful that the therapeutic options will continue to improve, with less
toxicity and improved efficacy.

Conflicts of Interest: The authors declare no conflict of interest.
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