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Abstract: Graft failure (GF) remains a significant limitation to improve long-term outcomes in renal
transplant recipients (RTR). Urinary epidermal growth factor (uEGF) is involved in kidney tissue
integrity, with a reduction of its urinary excretion being associated with fibrotic processes and a wide
range of renal pathologies. We aimed to investigate whether, in RTR, uEGF is prospectively associated
with GF. In this prospective cohort study, RTR with a functioning allograft ≥1-year were recruited
and followed-up for three years. uEGF was measured in 24-hours urine samples and normalized by
urinary creatinine (Cr). Its association with risk of GF was assessed by Cox-regression analyses and
its predictive ability by C-statistic. In 706 patients, uEGF/Cr at enrollment was 6.43 [IQR 4.07–10.77]
ng/mg. During follow-up, 41(6%) RTR developed GF. uEGF/Cr was inversely associated with the
risk of GF (HR 0.68 [95% CI 0.59–0.78]; P < 0.001), which remained significant after adjustment for
immunosuppressive therapy, estimated Glomerular Filtration Rate, and proteinuria. C-statistic of
uEGF/Cr for GF was 0.81 (P < 0.001). We concluded that uEGF/Cr is independently and inversely
associated with the risk of GF and depicts strong prediction ability for this outcome. Further studies
seem warranted to elucidate whether uEGF might be a promising marker for use in clinical practice.
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1. Introduction

Although in recent decades short-term graft survival has seen great improvement, chronic graft
failure remains a major clinical challenge for renal transplantation with no significant reduction achieved
in the same time frame [1]. Graft failure is a culmination of several factors, including chronic rejection,
toxicity of calcineurin inhibitors, infection, hypertension, oxidative stress, and proteinuria, together
leading to progressive fibrosis and loss of renal function [2–5]. In clinical settings, most biomarkers used
for follow-up, e.g., urinary albumin excretion and urinary protein excretion, are indicators of glomerular
damage [6], improper of the development of fibrosis, which is an early event in the natural history
of chronic rejection [3]. Finding non-invasive biomarkers that could reflect the pathophysiological
changes in the renal tissue would be of remarkable utility as potential tools to monitor patients and
timely identify those at high risk of graft failure [7], who could benefit from further interventions and
stricter follow-up before structural damage is already present [8].
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Epidermal growth factor (EGF) is a 53-amino acid peptide produced in the kidney at the
ascending loop of Henle and the distal convoluted tubule [7,8]. It stimulates the proliferation and
differentiation of epidermal and epithelial cells, and under normal conditions it has a critical role in
renal development [7], maintenance of renal tubule integrity and tubular regenerative response to
acute kidney injury [9–11]. However, the dysregulation and chronic activation of its receptor is known
to promote pro-inflammatory response [12]; furthermore, it has been implicated in the development of
interstitial fibrosis [13]. In clinical settings, the urinary excretion of EGF has shown to be decreased in
a wide range of kidney pathologies—e.g., diabetic nephropathy and IgA nephropathy—suggesting
that it could potentially work as a biomarker of a pathway which is common to several kidney tissue
insults [14]. Although it would not be possible to summarize the complexity of the graft failure process
with one biomarker, fibrosis is an important step towards graft failure development [2]; and suppression
of urinary EGF (uEGF) is an early marker of this phenomenon [15]. It may be theorized that uEGF
could also be altered in patients at high risk of graft failure; however, the potential association with
outcome or predictive ability of uEGF for graft failure is yet to be evaluated.

In the current study, we aimed to investigate the hypothesis that uEGF is prospectively associated
with the risk of graft failure in a large, well-phenotyped, cohort of stable renal transplant recipients
(RTR). Furthermore, we aimed to evaluate the prediction ability of uEGF for graft failure.

2. Materials and Methods

2.1. Study Design and Patient Population

In this prospective cohort study, all adult RTR with a functioning graft for ≥1 year, without history
of drug addiction, alcohol addiction or malignancy, who visited the outpatient clinic of the University
Medical Center of Groningen (The Netherlands) between November 2008–May 2011 were invited
to participate. In total 707 (86%) of the 817 eligible RTR signed a written informed consent. RTR
with missing information about uEGF at enrollment (n = 57) were excluded, resulting in 649 RTR
eligible for the statistical analyses (Figure 1). There were no significant differences in risk factors
for graft failure between patients with complete data and patients with missing data (Table S1).
The primary end point of the current study was death-censored graft failure, defined as restart of
dialysis or need of re-transplantation. The patients were followed-up for a total of 3 years. We contacted
general practitioners or referring nephrologists in cases where the status of a patient was unknown.
No participants were lost to follow-up (Figure 1). The current study was approved by the institutional
review board (METc 2008/186) and adhered to the Declarations of Helsinki and Istanbul.
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2.2. Data Collection

Data at enrollment were collected during a visit to the outpatient clinic, following a detailed
protocol described elsewhere [16,17]. Systolic blood pressure (SBP) and diastolic blood pressure (DBP)
were measured using a semiautomatic device (Dinamap 1846, Critikon, Tampa, Florida, USA) every
minute for 15 minutes, following a strict protocol as described before [16].

Other relevant donor, recipient, and transplant information was extracted from the Groningen
Renal Transplant Database [18]. Delayed graft function was defined as oliguria for 7 days or need for
continuous ambulatory peritoneal dialisys or need for >2 sessions of hemodyalisis. Data collection is
ensured by the continuous surveillance system of the outpatient clinic of our university hospital and
close collaboration with affiliated hospitals.

2.3. Laboratory Measurements and Calculations

According to a strict protocol, all RTR were asked to collect a 24-hours urine sample during the day
before to their visit to the outpatient clinic and on that day fasting blood samples were taken. Serum
creatinine was determined using the Jaffé reaction (MEGA AU510, Merck Diagnostica, Germany);
plasma glucose by the glucose oxidase method (YSI 2300 Stat Plus, Yellow Springs Instruments, Yellow
Springs, OH, USA). uEGF concentration was measured by ELISA (R&D Systems, Minneapolis, MN,
USA); the test has a range of detection of 3.9–250 pg/mL and the intra- and inter-plate coefficients
of variation were less than 10% and 15%, respectively [15]. Urinary creatinine concentration was
measured by colorimetric detection kit (Enzo, New York, NY, USA). Finally, the concentration of uEGF
was normalized by the concentration of urinary creatinine, and a ratio was created and used for all
analyses (uEGF/Cr).

Body surface area was calculated according to the Du Bois formula [19], estimated glomerular
filtration rate (eGFR) by the serum creatinine based Chronic Kidney Disease EPIdemiology collaboration
equation (CKD-EPI) [20] and the cumulative dose of prednisolone as the sum of the maintenance dose
of prednisolone from transplantation until enrollment.

2.4. Statistical Analysis

Data analyses, computations, and graphs were performed with SPSS 22.0 software (IBM
Corporation, Chicago, IL, USA) and GraphPad Prism version 7 software (GraphPad Software,
San Diego, CA, USA). Descriptive statistics data are presented as mean ± standard deviation (SD) for
normally distributed data, and as median (interquartile range [IQR]) for variables with a non-normal
distribution. Categorical data are expressed as number (percentage). Differences in characteristics
at enrollment between patients with and without data on uEGF, and among subgroups of RTR
according to tertiles of uEGF/Cr were tested by one-way ANOVA for continuous variables with normal
distribution, Mann–Whitney U test for continuous variables with skewed distribution and χ2 test for
categorical variables. We also performed linear regression analyses testing the association between
time after transplantation and uEGF/Cr in crude and multivariable analyses with adjustment for use of
cyclosporine inhibitors. For all statistical analyses, a statistical significance level of P ≤ 0.05 (two-tailed)
was used.

Graft failure development was visualized by Kaplan-Meier curves according to tertiles of uEGF/Cr,
with statistical significance among curves tested by log-rank (Mantel–Cox) test. The prospective
association of uEGF/Cr with risk of graft failure during follow-up was further examined, incorporating
time to event, by means of uni- and multivariate Cox proportional-hazards regression analyses with
time-dependent covariates to calculate hazard ratios (HR) and 95% confidence intervals (CI). First,
we performed an unadjusted model. Afterwards we adjusted for age and sex, and the following
variables: in model 2, transplant related data (transplant vintage, pre–emptive transplantation,
age and sex of donor, type of donor and cold ischemia time); in model 3, renal transplant recipient
characteristics (human leukocyte antigen [HLA] mismatch with donor and delayed graft function);
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in model 4, we adjusted for the variables included in the model 2 and 3; in model 4, immunosuppressive
therapy (usage of calcineurin inhibitors and proliferation inhibitors, and acute rejection treatment);
in model 5, graft function (eGFR and urinary protein excretion); and the final model (model 6) was a
combination of model 4 and 5. Schoenfeld residuals were calculated to assess whether proportionality
assumptions were fulfilled. Furthermore, we tested the potential predictive ability of uEGF/Cr for
graft failure by means of performing a receiver operating characteristics (ROC) curve. To investigate
whether uEGF might be of additional value to urinary albumin excretion and protein excretion,
we calculated the individual C-statistic of these variables, and then the C-statistic of them combined
with uEGF/Cr. Moreover, we performed an F-test to check whether the difference between predictive
models was significant. Positive and negative predictive value were calculated for the cut-off points of
the uEGF/Cr tertiles.

As secondary analyses, we assessed potential effect-modifications by pre-specified variables of:
age, sex, eGFR, plasma creatinine concentration, proteinuria, high-sensitivity C-reactive protein
(hs-CRP), acute rejection, and transplantation without dialysis (pre-emptive) by fitting models
containing both main effects and their cross-product terms. Finally, we performed sensitivity analyses in
which we eliminated patients with extreme values of uEGF/Cr (outside −2 and 2 standard deviations).

3. Results

3.1. Characteristics at Enrollment

In total 649 RTR were included in the analyses with a mean ± SD age of 53 ± 13 years, 57%
men. Patients were included at a median (IQR) of 5.28 (1.74–12.00) years after transplantation and
uEGF/Cr ratio had a median of 6.43 (4.07–10.77) ng/mg. In crude linear regression analyses, there was
no significant association between years after transplantation and uEGF/Cr (Std. β = −0.015; P = 0.71),
however, the association became apparent after the adjustment for calcineurin inhibitors usage (Std.
β = −0.81; P = 0.046). Characteristics at enrollment of the overall RTR population and according
to tertiles of uEGF/Cr are shown in Table 1. In the highest uEGF/Cr tertile patients had older age
(P = 0.01), smaller percentage of male population (P < 0.001), higher eGFR (P < 0.001), lower urinary
protein excretion (P < 0.001), larger percentage of transplant from living donors (P < 0.001), younger
donors age (P < 0.001), and higher percentage of donors were male (P = 0.03). Also, they used less
cyclosporine (P = 0.002) and tacrolimus (P < 0.001) in their immunosuppressive regimens, but more
mycophenolic acid (P = 0.03); and a smaller percentage of patients required acute rejection treatment
(P < 0.001) (Table 1). Patients in the highest uEGF/Cr tertile also had higher glycated hemoglobin
percentage (Table 1), independent of whether they were diabetic or non-diabetic subjects (Table S2).
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Table 1. Characteristics at enrollment of the study population.

Characteristics Overall RTR (n = 649)
Tertile 1 Tertile 2 Tertile 3

P
<4.78 ng/mg 4.78–8.80 ng/mg >8.80 ng/mg

uEGF/Cr, ng/mg 6.43 (4.07–10.77) 3.18 (2.12–4.07) 6.43 (5.57–7.45) 12.91 (10.77–16.08) —

Demographics

Age, years 53 ± 13 51 ± 13 53 ± 13 55 ± 12 0.01
Sex (male), n (%) 373 (57) 149 (69) 124 (57) 100 (46) <0.001

Caucasian ethnicity, n (%) 647 (99) 216 (100) 216 (100) 215 (99) 0.44

Renal allograft function

eGFR, mL/min/1.73 m2 a 52 ± 20 37 ± 14 53 ± 16 68 ± 17 <0.001
Urinary protein excretion, g/24 h b 0.20 (0.02–0.34) 0.25 (0.13–0.63) 0.19 (0.02–0.32) 0.08 (0.02–0.26) <0.001

Urinary albumin excretion, mg/24 h c 38.27 (10.57–174.38) 94.00 (20.48–393.77) 37.52 (10.50–155.20) 19.35 (7.11–71.08) <0.001

Renal transplantation characteristics

Pre–emptive transplantation, n (%) 105 (16) 27 (13) 35 (16) 43 (20) 0.11
Living donor, n (%) d 230 (35) 30 (14) 95 (44) 75 (35) 0.002
Age of donor, years e 43 ± 15 47 ± 14 45 ± 15 37 ± 15 <0.001

Sex of donor (male), n (%) f 331 (51) 97 (45) 109 (50) 125 (58) 0.03
Cold ischemia time, hours g 15.2 (2.7–21.3) 15.6 (3.0–22.5) 14.0 (2.6–21.0) 15.4 (2.7–22.0) 0.03

Time since transplantation, years 5.28 (1.74–12.00) 5.07 (1.53–12.92) 5.26 (1.40–12.32) 5.45 (2.63–10.98) 0.96

Renal transplantation recipients’ characteristics

Delayed graft fuction, n (%) 47 (7) 24 (11) 13 (6) 10 (5) 0.02
HLA mismatch with donor, number h 2 (1–3) 2 (1–3) 2 (1–3) 2 (1–3) 0.10

Immunosuppressive therapy

Cumulative prednisolone dose, g 17.4 (5.2–36.2) 17.0 (4.7–38.4) 16.8 (4.6–36.4) 18.1 (8.1–32.8) 0.78
Sirolimus or rapamune use, n (%) i 13 (2) 4 (2) 6 (3) 3 (1) 0.57

Type of calcineurin inhibitor
Cyclosporine, n (%) 258 (40) 90 (42) 102 (47) 66 (31) 0.002
Tacrolimus, n (%) 120 (18) 66 (31) 32 (15) 22 (10) <0.001

Type of proliferation inhibitor
Mycophenolic acid, n (%) 424 (65) 126 (58) 147 (68) 151 (70) 0.03

Azathioprine, n (%) 112 (17) 41 (19) 32 (15) 39 (18) 0.47
Acute rejection treatment, n (%) 172 (27) 77 (36) 55 (25) 40 (19) <0.001



J. Clin. Med. 2019, 8, 1673 6 of 12

Table 1. Cont.

Characteristics Overall RTR (n = 649)
Tertile 1 Tertile 2 Tertile 3

P
<4.78 ng/mg 4.78–8.80 ng/mg >8.80 ng/mg

Body composition

Body surface area, m2 1.94 ± 0.22 1.97 ± 0.23 1.94 ± 0.20 1.92 ± 0.21 0.06
Body mass index, kg/m2 26.5 ± 4.7 26.4 ± 4.8 26.4 ± 4.4 26.8 ± 4.9 0.53

Cardiovascular history

History of cardiovascular disease, n (%) j 281 (43) 88 (41) 96 (44) 97 (45) 0.65
Arterial pressure

SBP, mmHg a 136 ± 17 138 ± 18 135 ± 17 135 ± 17 0.17
DBP, mmHg a 82 ± 11 84 ± 11 82 ± 11 82 ± 10 0.06

Use of antihypertensives, n (%) 573 (88) 202 (94) 194 (90) 177 (82) 0.001

Lifestyle

Current smoker, n (%) k 78 (12) 31 (14) 25 (12) 22 (10) 0.48
Alcohol intake >30 g/day, n (%) l 29 (4) 9 (4) 11 (5) 9 (4) 0.60

SQUASH, intensity x hours 5050 (1950–8055) 5190 (1800–9105) 4750 (1700–7260) 5408 (2645–7301) 0.89

Diabetes and glucose homeostasis

Diabetes mellitus, n (%) 160 (25) 50 (23) 58 (27) 52 (24) 0.53
Plasma glucose, mmol/L a 5.2 (4.8–6.0) 5.3 (4.8–5.9) 5.2 (4.8–6.1) 5.3 (4.7–6.1) 0.09

HbA1c, % m 5.8 (5.5–6.2) 5.7 (5.4–6.1) 5.8 (5.5–6.2) 5.9 (5.6–6.3) 0.004

Inflammation

Leukocyte count, per 109/L b 8.2 ± 2.7 8.1 ± 2.8 8.2 ± 2.8 8.1 ± 2.4 0.97
hs-CRP, mg/L n 1.6 (0.7–4.6) 1.7 (0.8–4.9) 1.4 (0.7–3.7) 1.6 (0.7–5.1) 0.71

Differences were tested by ANOVA for continuous variables with normal distribution, Kruskal–Wallis test for continuous variables with non-normal distribution and by χ2 test for
categorical variables. Data available in a 647, b 648, c 637, d 649, e 633, f 636, g 623, h 638, i 608, j 567, k 607, l 581, m 627, n 613 patients. RTR, renal transplant recipients; uEGF, urinary
epidermal growth factor; Cr, creatinine; eGFR, estimated glomerular filtration rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; SQUASH, Short QUestionnaire to
ASsess Health-enhancing physical activity; HDL, high–density lipoprotein cholesterol; LDL, low–density lipoprotein cholesterol; HbA1c, glycated hemoglobin; hs-CRP, high-sensitivity
C-reactive protein.
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3.2. Prospective Analyses on Graft Failure

During a follow-up of 3 years, 41 (6%) RTR developed graft failure. Thirty-three events (80%)
were in the lowest tertile of uEGF/Cr, 4 (10%) in the intermediate tertile and 4 (10%) in the highest
tertile. The curves were significantly different according to the log-rank (Mantel cox) test (P < 0.001).
The corresponding Kaplan–Meier curves are shown in Figure 2.
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4.78–8.80 ng/mg; Tertile 3: > 8.80 ng/mg. P value was obtained from the log-rank (Mantel cox) test.
uEGF/Cr, urinary epidermal growth factor/creatinine ratio.

Cox regression analyses showed that uEGF/Cr ratio is inversely associated with the risk of graft
failure (HR 0.68 [95% CI 0.59-0.78] per ng/mg) and this association is highly significant (P < 0.001).
Further adjustment for transplantation-related data, renal transplant recipient characteristics,
immunosuppressive therapy, eGFR and urinary protein excretion did not materially change this
finding. The association between uEGF/Cr and graft failure was still strongly significant in the final
model which included adjustment for both immunosuppressive therapy and graft function, with a HR
of 0.79 (95% CI 0.67-0.94; P = 0.007) (Table 2).

Table 2. Multivariable-adjusted associations between uEGF/Cr and graft failure in 649 RTRs.

Models
uEGF/Cr, ng/mg

HR 95% CI P

Crude 0.68 0.59–0.78 <0.001
Model 1 0.67 0.58–0.78 <0.001
Model 2 0.70 0.58–0.77 <0.001
Model 3 0.67 0.58–0.78 <0.001
Model 4 0.66 0.57–0.77 <0.001
Model 5 0.78 0.66–0.93 0.005
Model 6 0.79 0.67–0.94 0.007

In total 41 (6%) patients developed graft failure. Model 1: adjusted for age, sex, and transplant related data. Model 2:
adjusted for age, sex, and renal transplant recipient characteristics. Model 3: Model 1 + Model 2. Model 4: adjusted
for age, sex, and immunosuppressive therapy. Model 5: adjusted for age, sex, and eGFR and urinary protein
excretion. Model 6: model 4 + model 5. RTRs, renal transplant recipients; uEGF, urinary epidermal growth factor.
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A ROC curve assessing the prediction ability of uEGF/Cr for graft failure is displayed in Figure 3.
uEGF/Cr showed to be a good predictor of the development of graft failure up to the following three
years (C-statistic = 0.81), with better predictive ability than urinary albumin excretion and urinary
protein excretion (C-statistic = 0.78 and C-statistic = 0.76, respectively). The curve of uEGF/Cr was
significantly different from the reference line (P < 0.001). Being on the first tertile of uEGF/Cr had a
positive predictive value of 75% for the development graft failure, on the other hand, being in the third
tertile had a negative predictive value of 81% (Table S3).
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Figure 3. ROC curve of uEGF/Cr for graft failure. During a follow-up of 3 years, 41 (6%) patients
developed graft failure. GF, graft failure; uEGF/Cr, urinary epidermal growth factor/creatinine ratio;
UAE, urinary albumin excretion; UPE, urinary protein excretion.

Urinary protein excretion and urinary albumin excretion had a C-statistic of 0.76 and 0.78,
respectively. The predictive value for both variables was significantly improved after the addition of
uEGF/Cr (C-statistic = 0.82, F-test for difference among models = P < 0.001) (Table 3).

Table 3. Predictive value (C-statistic) for uEGF/Cr on top of established risk factors for graft failure

C-Statistic P *

Urinary protein excretion, g/24 h 0.76 Ref.
+ uEGF/Cr, ng/mg 0.82 <0.001

Urinary albumin excretion, mg/24 h 0.78 Ref.
+ uEGF/Cr, ng/mg 0.82 <0.001

* P-value of F-test for difference between the reference model and the model plus uEGF/Cr. uEGF/Cr, urinary
epidermal growth factor/creatinine ratio.

3.3. Secondary and Sensitivity Analysis

In effect-modification analyses we found that none of the pre-specified variables we explored
(age, sex, eGFR, plasma creatinine concentration, proteinuria, hs-CRP, acute rejection, and pre-emptive
transplantation) was a significant effect-modifier of the association between uEGF/Cr and the risk of
graft failure (P > 0.10), therefore we did not proceed with any subgroup analyses (Table S4).

Finally, in the sensitivity analyses in which we removed patients with extreme values of uEGF/Cr
(patients outside of the −2 and +2 standard deviation), our findings remained materially unchanged.
uEGF/Cr was strongly inversely associated with risk of graft failure (HR 0.68 (95% CI 0.59–0.78);



J. Clin. Med. 2019, 8, 1673 9 of 12

P < 0.001) and further adjustments analogous to models used in the primary analyses did not materially
modified this association (Table S5).

4. Discussion

In a large cohort of stable RTR, we showed first, that patients with impaired renal function have
significantly lower excretion of uEGF. Second, that uEGF/Cr is inversely associated with the risk of graft
failure and that this association is independent of potential confounders, including immunosuppressive
therapy, eGFR and urinary protein excretion. Finally, uEGF/Cr also appears to have good prediction
ability for the development of graft failure, superior to urinary albumin excretion and urinary protein
excretion. These findings are in agreement with previous evidence showing that uEGF is a biomarker
altered in several kidney pathologies [15,21,22], and for the first time we provided evidence in the
post-renal transplantation setting.

EGF is a 53-amino acid peptide which expression is restricted to the kidney [7,15,22], particularly to
the thick ascending limb of Henle and the distal tubule [14], therefore it is found in higher concentrations
in urine than in any other body fluid [23]. EGF and its receptor are involved in several processes within
kidney tissue, mainly related to tubular cell proliferation [13] and pathways of cell survival [10,11],
making EGF a critical component in promoting kidney recovery from acute injury [11]. Therefore,
its dysregulation is involved in key pathogenic pathways that drive kidney disease progression
independent of etiology, e.g., chronic inflammation [24], extracellular matrix modulation and tubular
cell dedifferentiation [15].

EGF has gained interest as a biomarker of renal disease because its decreased urinary excretion has
been observed in nearly all rodent kidney injury models [20] and in various human kidney diseases [25],
including diabetic nephropathy, IgA nephropathy, and lupus nephritis [14]. Consistently, we found
that our study population of RTR had a decreased uEGF/Cr ratio when compared to healthy subjects,
and comparable ratios to those of patients with chronic kidney disease [15,26,27]. Its common clinical
standardization by creatinine (uEGF/Cr) has shown several advantages as a biomarker of kidney
tissue damage: (i) it is highly tissue specific, which makes it robust to extra renal events that may
affect the accuracy of other nonspecific biomarkers; (ii) it is known that even in the normal creatinine
range there is a significant influence of kidney function on uEGF/Cr [22]; and (iii) it shows only a
weak correlation with markers of glomerular damage as urinary protein excretion, which shows that
uEFG/Cr is a representation of a different independent pathophysiologic mechanism [12,14,27] and
could complement these other parameters. Our study further supports the role of uEGF/Cr as a
biomarker of damage to renal tissue, and more importantly, as a biomarker independently associated
with risk of graft failure in stable renal transplant recipients. Furthermore, the strong prediction abilities
of uEGF/Cr for risk of graft failure, even superior to those of urinary albumin excretion and urinary
protein excretion, and of adding predictive value in combination with these variables, also supports
the idea of uEGF/Cr being a marker of a different pathological aspect of graft failure which might be
earlier than stablished glomerular damage.

Because risk of graft failure increases with time, one could speculate that uEGF decreases with time
after transplantation. However, we did not observe such a relationship over increasing tertiles of uEGF.
This finding may be explained by a confounding effect of use of cyclosporine resulting in lowering
of uEGF, which is supported by the observation that an association between uEGF and time after
transplantation became apparent after adjustment for use of cyclosporine in linear regression analyses.
We also found in our population that the use of calcineurin inhibitors was higher among patients with
lower uEGF/Cr. This is in agreement with previous studies showing an inverse association between
uEGF and the use of calcineurin inhibitors [28,29] and a potential involvement of the EGF receptor
in the alterations that lead to magnesium loss in renal transplant recipients receiving calcineurin
inhibitors [29,30]. Nevertheless, the association between uEGF/Cr and graft failure was independent
of the adjustment for the use of calcineurin inhibitors. This suggests that the association of uEGF/Cr is
not mediated by a nephrotoxic effect of calcineurin inhibitors, but is mediated by other mechanisms,
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which may involve renal fibrosis. Furthermore, in contrast to previous results [31], no difference was
observed in the prevalence of diabetes between the uEGF/Cr tertiles in our study population.

The present study has several strengths. We assessed not only the association but also the
risk-prediction ability for graft failure of uEGF/Cr. Also, our extensively phenotyped cohort allowed us
to control for several potential confounders, among which demographic and anthropometric variables,
renal function and immunosuppressive therapy were accounted for. The following limitations should
be considered in the interpretation of our results. This study was carried out in a single center with
over-representation of Caucasian population, which calls prudence to extrapolation of our results
to different populations regarding ethnicity. Also, we did not have repeated uEGF measurements,
and the single measurement of the variable of interest could have given rise to the underestimation
of the true effect [32,33]. Moreover, we used the Jaffé method to measure serum creatinine, which
can generate false positive results in the presence of pesudochromogens such as ketones [34]. Next,
only limited data were available regarding donors characteristics and therefore we could not adjust
for donor variables such as donor serum creatinine or donor hepatitis C status. Finally, as with any
observational study, residual confounding may occur despite the substantial number of potentially
confounding factors for which we adjusted.

5. Conclusions

uEGF/Cr is inversely and independently associated with the risk of graft failure in stable RTR.
This study provides for the first time relevant prospective data on a potential role of EGF in the
pathophysiological changes that lead to graft failure. Furthermore, it appears that uEGF/Cr could be a
biomarker of interest in the identification of patients at high risk of graft failure. Of note, to the best of
our knowledge, current reference values for uEGF/Cr have not been established. Given our findings
standardized assays for uEGF with reference values being generated are warranted. The potential
utility of EGF directed therapies or the implementation of uEGF/Cr in clinical care of stable RTR
requires further research and validation in a larger and more heterogeneous clinical studies.
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