Pulmonary Arterial Hypertension Induces a Distinct Signature of Circulating Metabolites
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Burger, C.D.; Ghandour, M.; Padmanabhan Menon, D.; Helmi, H.; Benza, R.L. Early intervention in the management of pulmonary arterial hypertension: Clinical and economic outcomes. ClinicoEcon. Outcomes Res. 2017, 9, 731–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galie, N.; Channick, R.N.; Frantz, R.P.; Grunig, E.; Jing, Z.C.; Moiseeva, O.; Preston, I.R.; Pulido, T.; Safdar, Z.; Tamura, Y.; et al. Risk stratification and medical therapy of pulmonary arterial hypertension. Eur. Respir. J. 2019, 53. [Google Scholar] [CrossRef] [PubMed]
- Rafikova, O.; Al Ghouleh, I.; Rafikov, R. Focus on Early Events: Pathogenesis of Pulmonary Arterial Hypertension Development. Antioxid. Redox Signal. 2019, 31, 933–953. [Google Scholar] [CrossRef] [PubMed]
- Rafikova, O.; Meadows, M.L.; Kinchen, J.M.; Mohney, R.P.; Maltepe, E.; Desai, A.A.; Yuan, J.X.; Garcia, J.G.; Fineman, J.R.; Rafikov, R.; et al. Metabolic Changes Precede the Development of Pulmonary Hypertension in the Monocrotaline Exposed Rat Lung. PLoS ONE 2016, 11, e0150480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhodes, C.J.; Ghataorhe, P.; Wharton, J.; Rue-Albrecht, K.C.; Hadinnapola, C.; Watson, G.; Bleda, M.; Haimel, M.; Coghlan, G.; Corris, P.A.; et al. Plasma Metabolomics Implicates Modified Transfer RNAs and Altered Bioenergetics in the Outcomes of Pulmonary Arterial Hypertension. Circulation 2017, 135, 460–475. [Google Scholar] [CrossRef] [PubMed]
- Bujak, R.; Mateo, J.; Blanco, I.; Izquierdo-Garcia, J.L.; Dudzik, D.; Markuszewski, M.J.; Peinado, V.I.; Laclaustra, M.; Barbera, J.A.; Barbas, C.; et al. New Biochemical Insights into the Mechanisms of Pulmonary Arterial Hypertension in Humans. PLoS ONE 2016, 11, e0160505. [Google Scholar] [CrossRef]
- Humbert, M.; Guignabert, C.; Bonnet, S.; Dorfmuller, P.; Klinger, J.R.; Nicolls, M.R.; Olschewski, A.J.; Pullamsetti, S.S.; Schermuly, R.T.; Stenmark, K.R.; et al. Pathology and pathobiology of pulmonary hypertension: State of the art and research perspectives. Eur. Respir. J. 2019, 53, 1801887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoeper, M.M.; Simon, R.G.J. The changing landscape of pulmonary arterial hypertension and implications for patient care. Eur. Respir. Rev. 2014, 23, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Liu, B.; Sun, Y.; Du, Y.; Snetselaar, L.G.; Hu, F.B.; Bao, W. Prevalence of diagnosed type 1 and type 2 diabetes among US adults in 2016 and 2017: Population based study. BMJ 2018, 362, k1497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yazdanyar, A.; Newman, A.B. The burden of cardiovascular disease in the elderly: Morbidity, mortality, and costs. Clin. Geriatr. Med. 2009, 25, 563–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitaker, M.E.; Nair, V.; Sinari, S.; Dherange, P.A.; Natarajan, B.; Trutter, L.; Brittain, E.L.; Hemnes, A.R.; Austin, E.D.; Patel, K.; et al. Diabetes Mellitus Associates with Increased Right Ventricular Afterload and Remodeling in Pulmonary Arterial Hypertension. Am. J. Med. 2018, 131, 702.e7–702.e13. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Yoshihisa, A.; Sugimoto, K.; Yokokawa, T.; Misaka, T.; Kaneshiro, T.; Oikawa, M.; Kobayashi, A.; Nakazato, K.; Ishida, T.; et al. Associations between diabetes mellitus and pulmonary hypertension in chronic respiratory disease patients. PLoS ONE 2018, 13, e0205008. [Google Scholar] [CrossRef] [PubMed]
- Sanders, J.L.; Han, Y.; Urbina, M.F.; Systrom, D.M.; Waxman, A.B. Metabolomics of exercise pulmonary hypertension are intermediate between controls and patients with pulmonary arterial hypertension. Pulm. Circ. 2019, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafikov, R.; McBride, M.L.; Zemskova, M.; Kurdyukov, S.; McClain, N.; Niihori, M.; Langlais, P.R.; Rafikova, O. Inositol monophosphatase 1 as a novel interacting partner of RAGE in pulmonary hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 2019, 316, L428–L444. [Google Scholar] [CrossRef] [PubMed]
- Thenappan, T.; Khoruts, A.; Chen, Y.; Weir, E.K. Can intestinal microbiota and circulating microbial products contribute to pulmonary arterial hypertension? Am. J. Physiol. Heart Circ. Physiol. 2019, 317, H1093–H1101. [Google Scholar] [CrossRef] [PubMed]
- Strange, G.; Gabbay, E.; Kermeen, F.; Williams, T.; Carrington, M.; Stewart, S.; Keogh, A. Time from symptoms to definitive diagnosis of idiopathic pulmonary arterial hypertension: The delay study. Pulm. Circ. 2013, 3, 89–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heresi, G.A.; Mey, J.T.; Bartholomew, J.R.; Haddadin, I.S.; Tonelli, A.; Dweik, R.A.; Kirwan, J.P.; Kalhan, S. EXPRESS: Plasma Metabolomic Profile in Chronic Thromboembolic Pulmonary Hypertension. Pulm. Circ. 2019. [Google Scholar] [CrossRef] [Green Version]
Metabolites | Fold Heart | p-Value | Fold DM | p-Value |
---|---|---|---|---|
oxalic acid | 45.23 | 4.35 × 10−5 | 82.10 | 2.24 × 10−8 |
aminomalonate | 3.00 | 6.52 × 10−5 | 2.75 | 6.12 × 10−3 |
pseudo uridine | 2.62 | 2.31 × 10−4 | 3.07 | 8.86 × 10−5 |
gluconic acid | 2.35 | 6.25 × 10−8 | 1.55 | 1.33 × 10−2 |
isothreonic acid | 2.05 | 1.31 × 10−5 | 2.09 | 9.85 × 10−4 |
4-hydroxyphenylacetic acid | 2.02 | 1.57 × 10−2 | 2.24 | 2.77 × 10−3 |
erythritol | 2.01 | 3.16 × 10−3 | 2.83 | 1.56 × 10−3 |
uric acid | 1.99 | 2.28 × 10−3 | 1.79 | 4.85 × 10−2 |
UDP-glucuronic acid | 1.98 | 4.45 × 10−3 | 4.49 | 2.77 × 10−4 |
fumaric acid | 1.95 | 3.81 × 10−5 | 1.37 | 1.16 × 10−2 |
focuse | 1.86 | 1.68 × 10−3 | 1.68 | 3.40 × 10−3 |
aconitic acid | 1.86 | 5.21 × 10−5 | 3.14 | 1.68 × 10−9 |
2-deoxytetronic acid | 1.78 | 1.36 × 10−2 | 2.17 | 7.04 × 10−5 |
pantothenic acid | 1.75 | 7.33 × 10−3 | 1.69 | 8.60 × 10−4 |
indole-3-acetate | 1.59 | 9.92 × 10−3 | 2.06 | 1.16 × 10−3 |
myo-inositol | 1.50 | 2.52 × 10−2 | 1.65 | 2.32 × 10−2 |
2-hydroxyvaleric acid | 1.48 | 3.27 × 10−2 | 2.12 | 5.16 × 10−3 |
citric acid | 1.48 | 2.97 × 10−2 | 2.01 | 1.81 × 10−4 |
ribonic acid | 1.48 | 6.03 × 10−4 | 2.61 | 5.75 × 10−4 |
glycine | 1.44 | 5.18 × 10−2 | 1.41 | 4.17 × 10−2 |
glutamic acid | 1.40 | 4.91 × 10−2 | 0.68 | 3.59 × 10−2 |
creatinine | 1.38 | 1.55 × 10−2 | 1.58 | 8.82 × 10−4 |
glucuronic acid | 1.37 | 8.21 × 10−4 | 2.66 | 1.77 × 10−4 |
phosphate | 1.28 | 4.56 × 10−2 | 4.54 | 2.09 × 10−11 |
indole-3-lactate | 1.26 | 3.59 × 10−2 | 1.85 | 4.37 × 10−6 |
urea | 1.21 | 2.91 × 10−2 | 1.47 | 2.49 × 10−2 |
2-hydroxyglutaric acid | 0.78 | 2.88 × 10−2 | 1.55 | 2.80 × 10−4 |
tryptophan | 0.76 | 4.66 × 10−3 | 0.51 | 7.55 × 10−8 |
tyrosine | 0.74 | 7.99 × 10−3 | 0.67 | 3.43 × 10−5 |
glutamine | 0.73 | 4.99 × 10−3 | 0.71 | 2.97 × 10−2 |
lysine | 0.72 | 4.38 × 10−4 | 0.56 | 2.20 × 10−6 |
histidine | 0.51 | 1.34 × 10−5 | 0.45 | 8.65 × 10−7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rafikov, R.; Coletta, D.K.; Mandarino, L.J.; Rafikova, O. Pulmonary Arterial Hypertension Induces a Distinct Signature of Circulating Metabolites. J. Clin. Med. 2020, 9, 217. https://doi.org/10.3390/jcm9010217
Rafikov R, Coletta DK, Mandarino LJ, Rafikova O. Pulmonary Arterial Hypertension Induces a Distinct Signature of Circulating Metabolites. Journal of Clinical Medicine. 2020; 9(1):217. https://doi.org/10.3390/jcm9010217
Chicago/Turabian StyleRafikov, Ruslan, Dawn K Coletta, Lawrence J. Mandarino, and Olga Rafikova. 2020. "Pulmonary Arterial Hypertension Induces a Distinct Signature of Circulating Metabolites" Journal of Clinical Medicine 9, no. 1: 217. https://doi.org/10.3390/jcm9010217
APA StyleRafikov, R., Coletta, D. K., Mandarino, L. J., & Rafikova, O. (2020). Pulmonary Arterial Hypertension Induces a Distinct Signature of Circulating Metabolites. Journal of Clinical Medicine, 9(1), 217. https://doi.org/10.3390/jcm9010217