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Abstract: In the present study, 133 bacterial isolates from 11 composted aromatic plant wastes
were selected for their ability to inhibit the mycelial growth of the soil-borne phytopathogenic
fungi Sclerotinia minor and Rhizoctonia solani. Successively, a subset of 35 from them were further
characterized for their ability to control, in vivo, rocket damping-off caused by the two fungi.
Moreover, the isolates were characterized for morphology of the colonies, Gram reaction, siderophore
production, P-solubilization and for the presence of antimicrobial lipopeptide genes in the genome.
The screening for the in vitro antagonisms showed a mycelial growth reduction ranging between
31.7% and 56.1% for R. solani and 34.4% and 59.4% for S. minor. All the isolates were not able to
produce siderophores and some of them were able to solubilize P. The isolates contained two or
more of the five lipoproteins coding genes investigated in this study. The most promising isolates
were identified at species level by 16S-rRNA partial gene sequence analysis and were grouped in
two main clusters related to Bacillus subtilis and Bacillus amyloliquefaciens reference strains. Results
indicated that Bacillus isolates from compost are good candidates for application in the biocontrol of
cultivated plants.
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1. Introduction

Plant fungal diseases are responsible for the emergence of different symptoms, such as wilting,
scabs, moldy coatings, rusts, blotches and rotted tissue, on a wide variety of crops causing heavy
economic losses [1]. In recent decades, many control strategies, such as chemical-based tools, plant
breeding and agronomic techniques (crop rotations, soil tillage, solarization, weed control, organic
amendment, etc.), have been developed in order to reduce deleterious disease effects. Among them,
synthetic fungicides still remain the most adopted means for reliability reasons [1]. However, ecofriendly
alternatives are needed because of increasing public request for organic and chemical-free vegetables
and the enactment of restrictive regulations about sustainable fungicide use, aimed at reducing risks
for the environment and human health. Furthermore, the application of chemicals over the years may
contribute to the development of resistance in pathogens, thereby impacting the real effectiveness of
the control solution [2]. In the last few decades, many efforts have been made by scientists to find
alternative tools, paying attention particularly to antagonistic microorganisms, such as bacteria belonging
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to Pseudomonas and Bacillus genera [3–5], as potential biological control agents (BCAs). Several authors
have described the ability of many Bacillus rhizosphere-competent strains to inhibit the growth of a
plethora of fungal plant pathogens through different direct mechanisms [6–12]. It was demonstrated
that some antagonistic Bacillus strains can, moreover, elicit systemic resistance by increasing the level
of PR-proteins [13] or salicilic acid [14]. Bacillus spp. may exert antagonistic activity through the
release of antifungal lipopeptides, such as surfactin, iturin, fengycin and other bioactive molecules with
surfactant-like properties. These molecules are implicated both in the biocontrol of diseases and in
the promotion of plant growth [15,16]. Bacillus spp. can produce endospores: such structures confer
resistance to desiccation, have a threshold temperature of 90 ◦C and have extreme pH and osmotic
tolerances. So, these bacterial cells are particularly suitable for commercial purposes for their potential to
adapt to different environmental situations [17].

Composting is a biochemical process that involves a large variety of mesophilic and thermophilic
aerobic microorganisms, including bacteria, actinomycetes, yeasts and fungi, in transforming low-value
undecomposed materials into a high-value humified products [18]. A wide range of biowaste can
be composted, including materials generated by the agriculture, food and wood processing, sewage
treatment, industry and municipal waste [19,20]. Microorganisms such as bacteria, actinomycetes
and fungi, play a fundamental role in the organic matter decomposing processes that takes place
during composting, and moreover, confer specific biological characteristics to the compost, such as
suppressiveness [21]. Several bacterial strains, belonging to species of Bacillus, Micrococcus, Clostridium,
Staphylococcus, Citrobacter, Serratia, Klebsiella, Pseudomonas, Enterobacter and Escherichia, were isolated
from composts [22]. Among the aerobic prokaryotes isolated from compost, Bacillus spp. are among
the most important potential biocontrol agents. Spore-forming bacteria are abundant in the compost
and are promising for the suppression of soil-borne phytopathogens, especially through the production
of antifungal proteins, antibiotics and lipopeptides [23].

The aim of this work was to isolate and characterize spore-forming bacteria from a set of composted
aromatic plant residues for the in vitro and in vivo ability to control Sclerotinia minor and Rhizoctonia
solani on rocket. Our investigation was directed to a stepwise antagonistic screening program as
a general criterion to recruit new Bacillus biocontrol agents for agricultural applications by using
composts as suitable sources of beneficial microbes.

2. Materials and Methods

2.1. Composts

Eleven different composts (P1–11), have been produced on a static pile, manually turned
system [24] using different aromatic plants and vegetables waste. Among these, composts P2,
P3, P5, P7, P9 and P11 were produced using defatted feedstock, from which essential oils were
previously extracted by distillation; the remaining originated by raw feedstock. The composition
of each compost was the following (percentages are expressed as dry matter): P1: 40% wood chips,
30% escarole (Cichorium endivia L.) and 30% a mixture of sage, basil, mint and parsley; P2: 40%
wood chips, 30% escarole and 30% by a mixture of essential oil-free sage (Salvia officinalis L.), basil
(Ocimum basilicum L.) and rosemary (Rosmarinus officinalis L.); P3: 20% wood chips, and a mixture of
essential oil-free parsley (Petroselinum crispum (Mill.) Fuss) 50.5%, basil 29.9%, mint (Mentha x piperita L.)
1.6%, thyme (Thymus vulgaris L.) 6.2%, laurel (Laurus nobilis L.) 2%, red radish (Raphanus sativus L.) 3.6%
and rocket salad (Diplotaxis tenuifolia L.) 6.2%; P4, basil 100%; P5: essential oil-free basil 100%; P6: wood
chips 20%, and a mixture of mint 5.5%, thyme 28%, parsley 50%, oregano (Origanum vulgare L.) 3.8%,
rosemary 8.1%, tarragon (Artemisia dracunculus L.) 0.7%, sage 2.5%, basil 0.5% and laurel 0.9%; P7: wood
chips 20%, and a mixture of mint 6.9%, parsley 17.6%, rosemary 19.7%, sage 16.5% and basil 39.3%;
P8: rosemary 100%; P9: essential oil-free rosemary 100%; P10: 100% sage; P11: essential oil-free
sage 100%.
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2.2. Isolation of Spore-Forming Bacteria

Five grams (fresh weight) of each compost was used to collect spore-forming bacteria, from a vital
environment, by serial dilution technique. Each compost sample was 5 mm sieved and added to 45 mL
of Na-phosphate buffer 0.1 M pH 7.6; the suspension was placed on an orbital shaker at 120 rpm for
60 min at room temperature. After 10 min of decantation, 1 mL of suspension was heated at 90 ◦C
for 10 min to select spore-forming bacteria by killing microbial vegetative cells. The suspension was
serially diluted until to 10−8 and 100 µL of this dilution was spread on nutrient agar (NA, Oxoid), and
the plate was incubated at 30 ◦C overnight [25]. Spore-forming colonies grown on agar plates were
picked-up and further purified by streaking on agar plates. The isolates were maintained on NA slants
at 4 ◦C.

2.3. Characterization of Isolated Bacteria for In Vitro Antibiosis Activity

All spore-forming bacterial isolates were assayed for their ability to inhibit growth of S. minor
and R. solani by dual-culture method [26] on potato dextrose agar (PDA, Oxoid). Fungal pathogens
used in this study were isolated from cabbage and lettuce respectively, and maintained on PDA [23].
The bacterial isolates were streaked at the edges of Petri dish, while a mycelial plug (diameter 5 mm)
was deposited at the center of the plate. The inoculated plates were incubated at 25 ◦C for 5 days.
The fungal growth inhibition (I) was calculated as the percentage of reduction of mycelium colony
expansion compared to control plates without bacteria by the formula: I (%) = (R − r) × 100/R, where
R is the colony diameter of the fungus in the control plate, and r is the diameter of the colony in the
treated plate. Results are reported as the averages of three independent trials.

2.4. Characterization of the Potential Antagonistic Bacteria

Bacteria that showed inhibitive growth rates higher than the general average were further
characterized. Selected isolates were characterized for Ryu test and for colony morphology, siderophore
production and phosphorus solubilization. The Ryu test was performed using 3% KOH: Gram-negative
bacteria become viscous, while gram-positive bacteria do not [27,28]. The colony morphology was
evaluated by visual observation of bacteria grown on NA plates. The potential production of
siderophores was detected growing bacteria on an iron-free substrate (per liter: sucrose (20 g),
L-asparagine (2 g), K2HPO4 (1 g), MgSO4 (0.5 g) and agar (18 g)) and the release of siderophores
was highlighted by a halo formation around the colony 3–4 days after incubation [29]. To assess the
phosphorus solubilization activity, the selected isolates were grown on National Botanical Research
Institute Phosphate medium (NBRIP-medium) [30] and the presence of a translucent halo was
evaluated by visual observation after 3–4 days of incubation at 28 ◦C. Other features evaluated by
visual observations were shape, thickness, edge and pigmentation [31]. All isolates were stored on
slants at 4 ◦C and in glycerol stocks (20% v/v) at −80 ◦C. Tests were carried-out in triplicate.

2.5. Biocontrol Assays against Sclerotinia Minor and Rhizoctonia Solani on Rocket

Isolates that showed an in vitro inhibition rate above 50% were chosen for assessing in vivo
diseases suppression caused by S. minor and R. solani on rocket (Diplotaxis tenuifolia L.). The fungal
inoculum was prepared by infecting 100 g of wetted millet (Panicum miliaceum L.) contained in 1 L
flask previously hydrated with 100 mL of distilled water and autoclaved at 120 ◦C for 21 min. Flasks
inoculated with 10 mycelial plugs (diameter 5 mm), obtained from an actively growing colony, were
incubated at 25 ◦C for 10 days. The bioassays were performed on sterile peat inoculated with 1%
(w/w) of infected millet and dispensed in a nursery-polystyrene try-container (170 holes). Antagonistic
bacteria were grown on NA plates, recovered and suspended into sterile water at two concentrations,
107 and 108 CFU ml−1. Treatments are represented by the different antagonistic bacterial suspensions
added (5 mL) to pathogen inoculated holes. Infected holes treated with water only, and not-infected
and not-treated ones, were used as controls. Five holes (replicates) per treatment were sowed, each with
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30 seeds of rocket. Seed homogeneity and health were both verified before starting the biocontrol tests.
The container was kept in climatic chamber at 25 ◦C with 70% of humidity under a photoperiod of
16 h of light (≈8000 Lux) and 8 h of dark. The number of healthy plants per replicate was recorded at
7-days post inoculation, and then, damping-off percentages were calculated according to the formula
of Yang et al. [32]. The experiment was carried out twice.

2.6. Identification of Antagonists/PGPR Isolates and Phylogentic Analisys

Bacterial antagonists were identified by partial sequencing of 16S rRNA gene [33] by using
16S primers (Table 1). DNA was extracted using the Sigma’s GenEluteTM Bacterial Genomic DNA
kit (Promega), following the manufacturer’s instructions, and quantified using NanoDrop 1000
spectrophotometer (Thermo Scientific, Waltham, MA, USA). DNA samples were analyzed by running
on 1.2% agarose gel electrophoresis in 1 × Tris-borate EDTA (TBE) (89 mM tris pH 7.6, 89 mM boric
acid, 2 mM EDTA) and visualized by Sybr Safe DNA Gel Stain (Invitrogen) staining, to determine
DNA size and to assess RNA contamination. PCR reactions were carried out in a total volume of
50 µl with 1 × PCR Green Buffer, 0.2 mM dNTPs, 0.2 µM of each primer and 1.0 U of DreamTaq
DNA Polymerase (Thermo Scientific), using the following conditions: 95 ◦C for 3 min, 35 cycles
at 94 ◦C for 1 min, annealing temperature at 55 ◦C for 1 min and extension at 72 ◦C for 1 min; a
final extension step at 72 ◦C for 3 min was followed by a 4 ◦C step for to preserve samples until
electrophoresis. The amplicons were loaded in 1.2% agarose gel in 1 × TBE with 1 kb Opti-DNA
Marker (abm), run for 60 min at 100 V and viewed, after staining, in a Gel Doc 2000 Visualizer
(Biorad). The obtained amplicons were excised from the gel, purified by Wizard® SV Gel and
PCR Clean-Up System (Promega) and directly sequenced by Sanger method. The sequences were
analyzed by Serial Cloner Software 2.6.1 and aligned by the free tool MUSCLE available at this link:
http://www.ebi.ac.uk/Tools/msa/muscle/ [34]. Database search was carried out for similar nucleotide
sequences with the BLAST search database (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Partial length
16S rRNA gene sequences of the strains closely related to the isolates were retrieved from NCBI for
further analysis (accession numbers: CP015004, AY162126, NZ_CP011151, KF911350.1, NZ_CP011534,
NZ_CP010052, KF001839, KM051086, NR_074540, NZ_CP015589, JF899265, NR_075005, JN107751,
AB682190, AB682188, AB681490, JF899254). For describing their phylogenetic relationship, the 16S
rRNA gene partial sequences were aligned using MEGA version 6 software and a phylogenetic tree
was constructed by means of neighbor-joining method [35]. The nucleotide sequences of 16S rRNA
were obtained and deposited in the GenBank database (EMBL, Cambridge, UK).

Table 1. List of the oligonucleotides used in this study to detect antibiotic genes by PCR screening and
to amplify the 16S rDNA gene in the genomes of the selected antagonists. Annealing temperature and
lengths of the amplicons are indicated.

Gene Primer Sequence Annealing T (◦C) Amplicon Length (bp)

srfAA SRFAF TCGGGACAGGAAGACATCAT
60 201SRFAR CCACTCAAACGGATAATCCTGA

bacA
BACF CAGCTCATGGGAATGCTTTT

60 498BACR CTCGGTCCTGAAGGGACAAG

ituC
ITUCF GGCTGCTGCAGATGCTTTAT

60 423ITUCR TCGCAGATAATCGCAGTGAG

bmyB BMYBF GAATCCCGTTGTTCTCCAAA
60 370BMYBR GCGGGTATTGAATGCTTGTT

fenD FENDF GGCCCGTTCTCTAAATCCAT
60 269FENDR GTCATGCTGACGAGAGCAAA

16S
fD1 CCGAATTCGTCGACAACAGAGTTTGATCCTGGCTCAG

63 1600rD1 CCCGGGATCCAAGCTTAAGGAGGTGATCCAGCC

2.7. Detection of Antimicrobial Lipopeptides Genes

Selected isolates were further characterized for the presence in the genome of five antimicrobial
lipopeptides genes: surfactin (srfA), iturin (ituC), fengycin (fenD), bacillomycin (bmyB) and bacilysin

http://www.ebi.ac.uk/Tools/msa/muscle/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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(bacA). The oligonucleotides used for this aim [36] and the corresponding melting temperatures are
listed in Table 1. PCR and electrophoretic conditions used were the same as described above.

2.8. Statistical Analysis

All data were analyzed by one-way ANOVA, with type of bacterial isolate as the independent
variable and Student’s t-test for simple pair-wise comparisons. Variables were arcsin transformed,
if necessary. Means of damping-off percentages were separated by Fisher’s LSD test.

3. Results

3.1. Isolation and Characterization for Antibiosis Activities of Spore-Forming Bacteria

Over 300 different spore-forming bacterial colonies were picked-up from primary plate cultures
of eluates from the eleven composts. Based on their size, color and margin shape features, 133 colonies
were visually chosen among them; they were transferred in pure culture and submitted to the
preliminary qualitative in vitro assays, in order to discriminate antagonistic properties against S. minor
and R. solani. At this step, the number of isolates per compost ranged from seven to 20 and the largest
numbers of individuals were recruited from composts P5, P8 and P11, while the lowest numbers were
from composts P7 and P10. The in vitro qualitative experiments (Table 2) allowed us to individuate
eight isolates able to only inhibit mycelial growth of S. minor, eight isolates able to only inhibit mycelial
growth of R. solani and 104 isolates able to inhibit the mycelial growth of both pathogens. It is interesting
to note that from the composts P4, P5, P6, P8, P9, P10 and P11—all obtained by a single feedstock with
the exception only for P6—the highest number of antagonistic isolates were obtained.

Table 2. General report on the in vitro antagonistic activity of the isolated bacterial colonies from the
composts (P1–11) against the target pathogens (Sclerotinia minor and Rhizoctonia solani).

Compost

N◦ of Isolates

All
without
in-Vitro

Antibiosis

with in-Vitro
Antibiosis Against
Sclerotinia Minor

with in-Vitro
Antibiosis Against
Rhizoctonia Solani

with in-Vitro
Antibiosis Against

both Pathogens

P1 10 2 3 0 5
P2 10 3 2 0 5
P3 11 1 0 6 4
P4 13 0 0 0 13
P5 16 4 0 2 10
P6 11 0 0 0 11
P7 9 3 3 0 3
P8 17 0 0 0 17
P9 9 0 0 0 9
P10 7 0 0 0 7
P11 20 0 0 0 20

Total 133 13 8 8 104

Then, the 104 bacterial isolates exhibiting antagonistic behavior against both phytopathogenic
fungi, were characterized for a quantitative in vitro assay in order to assess the fungal growth inhibition
rate (Table 3). The assayed isolates showed percentages of fungal growth inhibition accounting in
the range 10.0–56.1% for R. solani and in the range 13.9–59.4% for S. minor. The in vitro antibiosis
performances allowed us to select a panel of 35 promising antagonistic isolates on the basis of a higher
multiple pathogen inhibition criteria. The highest numbers of antagonistic isolates originated from the
composts in the rank order P9, P11, P7 and P8; whereas, from the composts P1 and P3, only one isolate
each was selected. None were taken from the composts P3, P4, P5 and P6. The selected isolates were
subsequently used in the disease biocontrol assays.
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Table 3. In vitro inhibition percentage of Sclerotinia minor and Rhizoctonia solani mycelial growth in a
dual culture assay of the 104 isolates obtained from the composts (P1–11), against the target pathogens.
In bold are indicated the 35 isolates chosen for showing a growth inhibition above the average of all
the isolates.

Compost Isolate Inhibition (%) Compost Isolate Inhibition (%)

RS SM RS SM

P1 1 26.1 35.6 3 32.2 35.0
2 33.3 35.0 4 32.8 36.1
3 27.8 40.6 5 39.4 39.4
4 28.9 23.3 P8 1 32.8 32.8

P2 1 23.3 20.6 2 13.3 33.3
2 21.7 21.1 3 12.8 35.6
3 29.4 22.8 4 27.8 38.3
4 28.3 38.9 5 39.4 43.3
5 25.6 13.9 6 41.7 45.0
6 25.6 13.9 7 44.4 47.2
7 28.9 21.7 8 10.0 40.6
8 12.8 38.9 9 29.4 38.9

P3 1 10.3 21.7 10 41.1 50.6
2 31.7 40.6 11 16.7 39.4

P4 1 20.6 21.7 12 25.0 40.6
2 26.1 34.4 13 11.7 39.4
3 30.0 28.3 14 38.9 35.0
4 28.9 28.9 15 11.1 41.1
5 31.7 36.1 P9 1 43.3 44.4
6 34.4 37.2 2 50.0 55.0
7 25.6 31.1 3 22.2 38.9
8 33.3 25.0 4 45.0 57.2
9 28.3 26.7 5 41.1 36.1

10 25.0 21.7 6 40.6 43.3
11 30.6 26.7 7 45.6 31.7
12 30.0 24.4 8 38.3 35.0

P5 1 32.8 32.2 9 38.3 35.0
2 30.6 27.8 P10 1 11.1 35.6
3 32.2 23.9 2 29.4 38.3
4 35.0 27.8 3 13.3 36.7
5 32.2 30.8 4 16.7 37.2
6 29.4 27.8 5 41.7 52.8
7 28.3 36.7 6 45.0 51.7
8 32.2 25.8 7 31.7 36.7
9 31.1 26.7 P11 1 32.2 31.1

10 32.2 30.0 2 43.3 46.7
11 19.4 26.7 3 29.4 48.9
12 30.6 21.9 4 33.9 39.4
13 34.4 34.7 5 56.1 59.4

P6 1 41.7 41.7 6 45.0 34.4
2 38.3 32.8 7 40.6 31.7
3 37.8 30.6 8 36.7 42.8
4 40.6 37.8 9 28.9 32.2
5 36.1 33.1 10 38.3 36.1
6 36.1 31.1 11 30.6 41.1
7 37.8 32.8 12 32.2 48.3
8 34.4 32.2 13 33.3 37.2
9 34.4 37.2 14 14.4 38.9

10 39.2 50.0 15 36.7 29.4
11 38.3 41.1 16 38.9 34.4

P7 1 25.3 26.7 17 21.1 26.7
2 30.8 28.6 18 32.2 33.3

3.2. Characterization of the Selected Bacterial Isolates

The in vitro experiments allowed us to individuate a promising set of antagonists, including
35 isolates, as previously reported. An in-depth morpho-physiological characterization separated the
isolates into seven classes (Table 4).

The selected isolates do not produce siderophores, and, except for PXI-4, P10-7 and P11-12, showed
a weakly positive Gram reaction (Table 5). Twelve out of 35 bacterial isolates showed P-solubilizing
activity (PSB) (Table 5, Figure 1), and all the isolates obtained from the raw sage compost (P10) had
PSB. Interestingly, no isolates from the composts P1, P8 and P9 showed this activity (Table 5).
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Table 4. Morphological descriptions of the 35 bacterial isolates obtained from the composts (P1–11).

Class of Morphology Shape Thickness Edge Pigmentation

A Circular/Fried-egg Umbonate Regular Glossy-white
B Circular Convex Regular Glossy-white
C Circular - Regular Matt-white
D Circular Cupuliform Regular Yellowish
E Circular Flat Regular-full Matt-white
F Fried egg Umbonate Ondulate White
G Flat Flat Ondulate Unpigmented
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Table 5. Class of morphology, Gram reaction and presence (+) or absence (-) of siderophore production
and P-solubilization activity of the 35 selected bacterial isolates.

Isolate Class of Morphology Gram Reaction Siderophore P-Solubilization

P1-2 B + - -
P3-2 F + - +
P4-5 E + - -
P4-6 C + - +
P6-1 A + - -
P6-4 F + - -
P6-9 B + - +

P6-10 B + - +
P6-11 B + - -
P7-3 B + - -
P7-4 C + - +
P7-5 E + - -
P8-5 E + - -
P8-6 E + - -
P8-7 B + - -

P8-10 B + - -
P8-14 B + - -
P9-1 B + - -
P9-2 B + - -
P9-4 C + - -
P9-5 C + - -
P9-6 A + - -
P9-8 B + - -
P9-9 A + - -

P10-5 G + - +
P10-6 B + - +
P10-7 C - - +
P11-2 C + - +
P11-4 D - - +
P11-5 B + - -
P11-6 C + - -
P11-8 C + - -
P11-10 B + - +
P11-12 B - - +
P11-13 D + - -
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3.3. Biocontrol Assay, Identification of Bacterial Isolates and Detection of Lipopeptide Biosynthetic Gene Markers

Seven isolates chosen from the selected 35 on the basis of the in vitro best antagonistic activity
results were used in the in vivo trials. The isolates P6-10, P8-10, P9-2, P9-4, P10-5, P10-6 and P11-5
displayed suppressiveness against Sclerotinia damping-off on rocket, whilst they did not show any
control efficacy against R. solani. In general, bacterial concentration did not affect the magnitude of
the antagonism. P9-2, P9-4 and P10-6 showed the highest S. minor biocontrol levels with a disease
incidence reduction of about 50% at the largest concentration (Figure 2).
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values ± standard error; different lower-case letters indicate statistically significant differences between
bars, according to Fisher’s LSD test (p < 0.05).

The 16S rRNA gene partial sequences obtained by analyzing the seven isolates used for in vivo
biocontrol experiments, were subjected to BLAST analysis. The isolates P6-10, P8-10, P9-2, P10-5 and
P10-6, showed high similarity (>99%) to Bacillus subtilis, whereas the isolates P9-4 and P11-5, showed
high similarity (>99%) to Bacillus amyloliquefaciens.

The 16S rRNA gene partial sequences have been deposited in GenBank under the following
accession numbers: KY380056 (strain P6-10), KY380057 (strain P8-10), KY380058 (strain P9-2), KY380059
(strain P9-4), KY380060 (strain P10-5), KY380061 (strain P10-6) and KY380062 (P11-5). In Figure 3, their
phylogenetic relationship is illustrated.
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Genes srfAA, bcaA, ituC, bmyB and fenD belonging to the biosynthetic pathway of lipopeptides,
were differently found in the genomes of the selected isolates. Indeed, all tested isolates contained two
or more of the five lipoprotein coding genes (Table 6). Results indicate that all seven biocontrol isolates
harbor biosynthetic lipopetide genes in their genome.

Table 6. Presence (+)/absence (-) of the biosynthetic genes bacA, bmyB, fend, ituC and srfAA in the
selected biological control agent (BCA). strains.

BCA strain Identified as bacA bmyB fenD ituC srfAA

P6-10 BS + - + + +
P8-10 BS + + + - +
P9-2 BS + - - - +
P9-4 BA + + + - +

P10-5 BS + + + - +
P10-6 BS + + + - +
P11-5 BA + + + + +

4. Discussion

Soil-borne fungal diseases are difficult to manage, and the causal pathogens are among the
main threats which farmers must be face, due to their ability to survive in soil for a long time.
Integrated approaches with the use of microbial biocontrol agents are welcome. In the last few decades,
the use of eco-friendly control means of soil-borne pathogens has become a popular alternative to
conventional chemical treatments in a lot of cropping systems [37]. In fact, several studies and reviews
highlighted the possibility to isolate new potential BCAs and use them to reduce crop losses [12,38–41].
In this study, we carried out a step-by-step selection for the S. minor and R. solani controllability of
spore-forming bacterial isolates, obtained from aromatic plant residue-based composts. A general
assessment of the selecting program showed that composts obtained with defatted matrices, such as
P9 and P11, respectively, oil-free rosemary and sage, gave the largest number of putative BCAs for the
succeeding steps.

Phylogenetic analysis revealed that the best biocontrol agents of Sclerotinia damping-off selected
here, are related to Bacillus amyloliquefaciens and B. subtilis species. Many reports indicate that microbiota
present in compost can exert a suppressive effect on some phytopathogens [42–44]. Bacillus genus
is a group of microorganisms widely present in soils and compost-amended soils [42,45], and well
known for their beneficial effects exerted on plant growth, health and fitness [7]. Moreover, a consistent
number of Bacillus species have been reported to behave both as direct antagonists of pathogens [46]
and may function as elicitors of induced resistance mechanisms [47,48].

The in vitro evaluation through dual antagonist-pathogen assay, may indicate the potential
of microorganisms to act as BCAs [49]. In the current study, to individuate the isolates with the
best in vitro activities, a total of 133 candidates were found at beginning of this stepwise selection.
This result suggests the possible production of diffusible metabolites in the media that are inhibitory
for the in vitro development of the target pathogens, thereby indicating a possible antibiosis-like
mechanism based on delivering antimicrobials outside the cells. Despite many Bacillus species having
been shown to antagonize microbial pathogens that way [16,50,51], the contemporary presence of
other types of interactions, such as competition for the space and/or resources, and predation, cannot
be excluded. The percentage of the in vitro fungal growth reduction, as compared to untreated
control, ranged from 10% to 56.1% for R. solani and was between 13.9% and 59.4% for S. minor.
Thirty-five out of 104 BCAs candidates were able to inhibit mycelial growth of both pathogens.
It is well established that Bacillus spp. can inhibit fungal pathogens under in vitro conditions by
producing a plethora of active molecules, such as diffusible metabolites, volatile compounds and
cyclic lipopeptides (LPs) belonging to different families [52]. LPs produced by many BCAs are
responsible for the suppression of several phytopathogens belonging to different genera, such as
Sclerotium, Fusarium, Rhizoctonia and Aspergillus [7]. In the present study, the most promising bacterial
isolates harbor at least two of lipopeptide genes in the genome, as revealed by PCR investigation.
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This agrees with several authors [9,11,53–55] who described the presence of multiple LP-genes in
Bacillus strains exhibiting antagonistic activity. The antifungal properties of lipopeptides have been
deeply investigated. For example, the activities of Iturin A and Surfactin rely on the surfactant
properties of these molecules which induce the disruption of the pathogens’ membranes by pore
formation [56,57] in a dose-dependent manner, so as to lose cellular contents [9].

Among the seven most promising bacteria, two, namely, B. subtilis isolates (P9-2 and P10-6) and a
B. amyloliquefaciens strain (P9-4), confirmed their biocontrol activity in the rocket/S. minor pathosystem.
However, they failed in the R. solani/rocket experiments. The difficulty of controlling Rhizoctonia
damping-off, probably, is linked to cruelty, high fitness and the development capability of the pathogen
in the telluric environments.

For the selected strains, the LP screening revealed in all the isolates the contemporary presence of
surfactin, bacylisin and fengycin genes, as previously described for other antagonists [58]. Instead,
iturin and bacyllomicin genes were not always present. Furthermore, we noticed that the isolate
P11-5 held all the detected genes, even if it did not show significant activity in in vivo assays in both
pathosystems R. solani/rocket and S. minor/rocket. It must be considered that even if a BCA holds a set
of genes for a function, it does not mean that the function itself is strictly correlated to the biocontrol
ability [59]. In many cases of beneficial plant–microbe interactions, several mechanisms are involved at
the same time [60] so that the disease suppression and the PGP mechanisms are difficult to differentiate,
as are their relative importance, which can be different depending on the pathosystems [61].

In conclusion, seven spore-forming isolates obtained from aromatic plant waste composts,
B. amyloliquefaciens strains P9-4 and P11-5, and B. subtilis strains P6-10, P8-10, P9-2, P10-5 and P10-6,
could have the potential to exert biological control on soil-borne diseases. B. subtilis P6-10, and
B. amyloliquefaciens P10-5 and P10-6 strains proved to be the most effective isolates. Findings confirm
that compost is a suitable source and precious reservoir of beneficial microorganisms to be potentially
advantageously applied not only for improving soil fertility, but also for increasing the sustainable
management of plant diseases [62]. The production of antibiotics, secondary metabolites, volatile
compounds or any other mechanisms, might be related to the biocontrol activities of these Bacillus
isolates. However, other experiments and field evaluations of BCAs need to be done to elucidate the
mechanisms elicited by the bacterial isolates that have protected rocket seedlings against S. minor in
our study.
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