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Abstract: Nitrogen and phosphorus limitation affect the growth, development, and productivity of
lettuce, which exert a marked influence on metabolites. To compare the influence of low-nitrogen
and low-phosphorus stresses on various metabolites of lettuce leaves, experiments were performed
under three conditions of treatment—low-nitrogen stress, low-phosphorus stress, and normal samples.
Metabolomic analyses were conducted based on ultra-performance liquid chromatography-quadrupole
time-of-flight mass spectrometry. Principle components analysis yielded distinctive clustering
information among the holistic samples; fold change analysis, t-test and orthogonal partial least square
discriminant analysis were used for the selection of metabolic biomarkers. Ten pathways were selected
which were significantly enriched by metabolic biomarkers. Metabolic biomarkers were screened by
fold change (FC) value, p-value and variable importance in the projection (VIP) value, low-nitrogen
and low-phosphorus stresses caused an increase in 16 metabolites (FC > 2, p-value < 0.05, VIP > 1)
and a decrease in 26 metabolites (FC < 0.5, p-value < 0.05, VIP > 1). Outside of these, our results
showed that inositol, p-hydroxybenzoic acid, stachyose, dinoseb, and 7, 8-dihydroxycoumarin increase
in low-nitrogen stress samples. Low-phosphorus stress caused accumulation of citrate, isocitrate,
l-5-oxoproline, succinate, and histamine, which may be considered potential metabolic biomarkers.
The metabolites could be used to monitor the nitrogen and phosphorus status of lettuce and to guide
appropriate fertilization regimens.
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1. Introduction

Mineral nutrients, such as nitrogen and phosphorus, frequently limit plant growth [1].
Nitrogen limitation directly influences the biosynthesis of compounds, such as proteins, vitamins,
phytohormones, co-enzymes, chlorophyll, and nucleic acids [2,3]. Phosphorus is a component of many
cellular molecules and plays an essential role in structural maintenance [4]. A key concern for growers
is to be able to verify plant nutrition status early while nutrition deficiency can still be remedied [5];
thus, the early diagnosis of nutrition stress plays a key role in the regulation of plant nutrition. Studies
have focused on topics such as the nutritional deficit of plants through the differences of surface macro
characteristics, such as height, length, and color [6]; the differences of micro characteristics such as
leaf surface roughness and texture [7]; the differences of the internal microstructure such as stomata,
sponges and palisade tissues; and the differences of macromolecular compounds such as chlorophyll
and lutein [8–10].

The diagnosis of cancer is based on tissue, cell, and molecule level. The detection of metabolic
biomarkers at the molecular level can realize early warning [11], which is of great significance to
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improve the life span and quality of life. On research of plant physiology and nutrition has indicated
that the reaction of crop nutrition stress is a complex mechanism, which involves macro characteristics,
micro characteristics, internal organization, macromolecules, and small molecule compounds [12].
To resist nutrition stress, plants use their metabolic capacity to produce a large variety of small
molecular compounds and reorganize their metabolic networks to maintain essential metabolism [13].
Plant metabolomics is now widespread and valuable biotechnology, which has been used to explore
the resistance mechanisms of plants in adverse environments [14]. Metabolomics has largely focused
on the study of all small molecular compounds and the related dynamic changes found in or produced
by organisms [15,16]. In this regard, several recent studies have explored the change of small molecular
compounds underlying the response to mineral nutrient stress. Sung et al. [17] conducted a detailed
broad-scale identification of metabolic responses of tomato leaves and roots to nitrogen, phosphorus,
or potassium deficiency, with deficiency of any of these three minerals affecting energy production and
amino acid metabolism. Cevallos-Cevallos et al. [18] found significant differences in oxo-butanedioic
acid, arabitol, and neo-inositol between zinc-deficient and healthy orange trees. The metabolomics of
rice leaves under conditions of nitrogen and phosphorus deficiencies were analyzed by Shen [19] and
Watanabe et al. [20], the stress-resistant substances and amino acid substitution products increased
under nitrogen deficiency, with sinapate, benzoate, and glucuronate related to phosphorus deficiency.

Lettuce forms an important component of the human diet and is typically low in calories and fat,
and high in protein, dietary fiber, iron, calcium, and phytochemicals. Lettuce metabolomic studies have
focused only on associations with light quality and intensity conditions [21], temperature stress [22],
saline stress [23], cultivation conditions [24], and lettuce varieties [25]. Few studies have focused
on the metabolite variation of lettuce and the identification of biomarkers under mineral nutrient
stress, particularly low-nitrogen and low-phosphorus stresses. In this study, the metabolites of lettuce
leaves were analyzed by an ultra-performance liquid chromatography–quadrupole time-of-flight
mass spectrometer (UPLC-QTOF MS) platform, insight into lettuce responses to low-nitrogen and
low-phosphorus stresses were obtained by discovering new information about changes in metabolite
abundance, aiming to provide a basis for further diagnosis of lettuce early nutrition stress and guide
appropriate fertilization regimens.

2. Materials and Methods

2.1. Plant Material and Growth Conditions

Lettuce seed (Lactuca sativa, Italian) was obtained from Woshu Seeds Co. Ltd., Nanjing, China,
and sown in sponge blocks, then the investigated plants were transplanted in Rockwool cubes
(50 × 50 × 50 mm) during the period of five true leaves and grown in a micro plant factory (Hangzhou
Shuolian instrument CO., LTD, Zhejiang, China) at Jiangsu University, China. This was a closed
cultivation room with an air conditioner to control the temperature and artificial lighting. Sample
cultivation is shown in Figure 1. The Yamasaki lettuce nutrient solution formula was used for lettuce
growth. The compositions of the nutrient solution supplied were: Ca(NO3)2·4H2O, 236 mg L−1;
KNO3, 404 mg L−1; NH4H2PO4, 57 mg L−1; MgSO4·7H2O, 123 mg L−1; Fe–EDTA, 16 mg L−1;
MnCl2·4H2O, 1.2 mg L−1; H3BO3, 0.72 mg L−1; ZnSO4·4H2O, 0.09 mg L−1; CuSO4·5H2O, 0.04 mg L−1

and (NO4)2Mo7O4, 0.01 mg L−1. Lettuce use nitrate (NO3
−) or ammonium (NH4

+) as primary
nitrogen source and primarily in the form of H2PO4

− as phosphorus sources. Among nutrient solution,
NO3

−was 6mmol L−1, NH4
+ was 0.5mmol L−1 and H2PO4

− 0.5mmol L−1. Three treatments had varying
levels of nitrogen and phosphorus. Treatment A: normal nutrient solution concentration; treatment
B: low-nitrogen stress, without NO3

− and NH4
+ in nutrient solution; treatment C: low-phosphorus

stress, without PO4
3− in the nutrient solution. The EC and pH of the nutrient solution were adjusted

to 1.6 dS m−1 and 6.0, respectively. Air temperature, relative humidity, and CO2 concentration were
maintained at 20 ± 5 ◦C, 60–80%, and 400 ± 10 µmol mol−1, respectively [26]. After two weeks, eighteen
plants having similar growth from each treatment were harvested between 10:00 and 12:00 to minimize
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diurnal effects on metabolite concentration. The leaves were rinsed briefly in deionized water and
immediately frozen in liquid nitrogen, and stored at −80 ◦C until biochemical analysis.

Agriculture 2020, 10, x FOR PEER REVIEW 3 of 15 

 

similar growth from each treatment were harvested between 10:00 and 12:00 to minimize diurnal 
effects on metabolite concentration. The leaves were rinsed briefly in deionized water and 
immediately frozen in liquid nitrogen, and stored at −80 °C until biochemical analysis. 

 

Figure 1. Samples cultivation in the micro plant factory. 

2.2. Metabolite Extraction 

Three groups of lettuce leaves were ground into liquid nitrogen, 1000 μL 
methanol/acetonitrile/water (2:2:1, V/V/V) was added to each sample, then the samples were 
ultrasonicated twice at low temperature for 30 min after vortexing, and incubated at −20 °C for 1 h. 
Acetonitrile (1499230-935) and methanol (144282) were purchased from Merck (Darmstadt, 
Germany). Subsequently, the samples were centrifuged at 16,626 g at 4 °C for 15 min. Supernatants 
were collected, lyophilized, and stored at −80 °C. Five quality control (QC) samples were prepared 
by pooling aliquots of all samples. The pretreatment of the QC samples was the same as that of the 
study samples. The QC samples were evenly inserted in each set of the analysis running sequence to 
monitor the stability of the large-scale analysis [27]. 

2.3. Non-Targeted LC–MS Analysis 

Separation of compounds was achieved using an Agilent 1290 infinity liquid chromatography 
system (Agilent Technologies, USA) coupled with an Acquity UPLC BEH amide column (2.1 mm × 
100 mm, 1.7 μm) (Waters Corporation, Milford, MA, USA). Mobile phase A consisted of 25 mmol L−1 
ammonium acetate and ammonia in ultrapure water, and mobile phase B consisted of acetonitrile. 
The gradient elution program was optimized as follows: 95% B (0–0.5 min), 95–65% B (0.5–7 min), 
65–40% B (7–9 min), 40% B (9–10 min), 40–95% B (10–11.1 min), 95% B (11.1–16 min). The injection 
temperature was 4 °C. The flow rate was 0.3 mL/min. The injection volume was 10 μL. The column 
temperature was maintained at 25 °C. 

Metabolites were measured using an UPLC-QTOF MS platform. Experiments were performed 
with a triple time-of-flight 5600+ mass spectrometer (AB SCIEX, Framingham, MA, USA) in both 
electrospray ionization (ESI) positive and negative ion modes. The mass spectrometer was equipped 
with an electrospray ionization (ESI) source. The ESI source parameters in ionization mode were as 
follows: source temperature, 600 °C; ion source pressure, 60 psig; curtain pressure, 30 psig; ion spray 
voltage floating (ISVF), ±5.5 KV; TOF MS scan m/z range, 60–1200 Da; TOF MS scan accumulation 
time, 0.15 s/spectra; production scan m/z range, 25–1200 Da; production scan accumulation time, 0.03 

Figure 1. Samples cultivation in the micro plant factory.

2.2. Metabolite Extraction

Three groups of lettuce leaves were ground into liquid nitrogen, 1000µL methanol/acetonitrile/water
(2:2:1, v/v/v) was added to each sample, then the samples were ultrasonicated twice at low temperature for
30 min after vortexing, and incubated at−20 ◦C for 1 h. Acetonitrile (1499230-935) and methanol (144282)
were purchased from Merck (Darmstadt, Germany). Subsequently, the samples were centrifuged at
16,626 g at 4 ◦C for 15 min. Supernatants were collected, lyophilized, and stored at −80 ◦C. Five quality
control (QC) samples were prepared by pooling aliquots of all samples. The pretreatment of the QC
samples was the same as that of the study samples. The QC samples were evenly inserted in each set of
the analysis running sequence to monitor the stability of the large-scale analysis [27].

2.3. Non-Targeted LC–MS Analysis

Separation of compounds was achieved using an Agilent 1290 infinity liquid chromatography system
(Agilent Technologies, USA) coupled with an Acquity UPLC BEH amide column (2.1 mm × 100 mm,
1.7 µm) (Waters Corporation, Milford, MA, USA). Mobile phase A consisted of 25 mmol L−1 ammonium
acetate and ammonia in ultrapure water, and mobile phase B consisted of acetonitrile. The gradient elution
program was optimized as follows: 95% B (0–0.5 min), 95–65% B (0.5–7 min), 65–40% B (7–9 min), 40% B
(9–10 min), 40–95% B (10–11.1 min), 95% B (11.1–16 min). The injection temperature was 4 ◦C. The flow
rate was 0.3 mL/min. The injection volume was 10 µL. The column temperature was maintained at 25 ◦C.

Metabolites were measured using an UPLC-QTOF MS platform. Experiments were performed
with a triple time-of-flight 5600+ mass spectrometer (AB SCIEX, Framingham, MA, USA) in both
electrospray ionization (ESI) positive and negative ion modes. The mass spectrometer was equipped
with an electrospray ionization (ESI) source. The ESI source parameters in ionization mode were as
follows: source temperature, 600 ◦C; ion source pressure, 60 psig; curtain pressure, 30 psig; ion spray
voltage floating (ISVF), ±5.5 KV; TOF MS scan m/z range, 60–1200 Da; TOF MS scan accumulation
time, 0.15 s/spectra; production scan m/z range, 25–1200 Da; production scan accumulation time,
0.03 s/spectra; declustering potential, ±60 V; collision energy, 30 eV; isotopes within 4 Da excluded;
candidate ions to monitor per cycle, 6.

2.4. Data Processing, Statistical Analysis, and Metabolic Pathway Analysis

The raw data were converted to common data format (mzXML) files for peak alignment, retention
time correction, and peak area extraction. The structure of metabolites was identified by mass number
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matching (<25 ppm) and secondary spectrum matching. The ion peaks with missing values >50% were
deleted and normalized by Pareto-scaling. 13,046 and 13,028 metabolite ions were acquired separately
in the negative ion mode of nitrogen and phosphorus, whereas 9761 and 9757 metabolite ions were
acquired separately in positive ion mode for nitrogen and phosphorus.

Principal component analysis (PCA) was applied for unsupervised multivariate analysis using
SIMCA-P 14.1 (Umetric, Umea, Sweden) software, which provided an overview of the similarities
and differences among the samples. Screening metabolites was divided into two steps. Fold change
analysis and t-test were used to search preliminarily for metabolic biomarkers, then fold change (FC)
value and p-value were calculated, and volcano plots were generated. The processed data sets were
imported to SIMCA-P 14.1 for orthogonal partial least squares-discriminant analysis (OPLS-DA).
The variable importance in the projection (VIP) values were considered as differential variables for
further screening metabolic biomarkers [28]. Metabolite structural identification was conducted
based on UPLC-QTOF MS analysis and retention time, accurate molecular weight, and MS/MS data.
The metabolomics pathway was analyzed by MetaboAnalyst (https://www.metaboanalyst.ca) based
on the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway database.

3. Results

3.1. Metabolic Biomarkers Screening

QC samples were visualized using total ion current, which indicated that the instrumental analysis
of all samples was strong and the peak capacity was large, so the retention time was reproducible.
The correlation between QC samples was greater than 0.9, which indicated the system was stable
as shown in Figure 2. To observe the overall distribution of samples, the PCA was considered
an unsupervised model to operate without any anthropogenic factors, which was conducive to
understanding the holistic data and eliminating abnormal samples. The results showed that QC
samples were aggregated, and stress and normal treatment groups of samples separated clearly.
There were no outlier samples in the Hotelling’s T2 region (95% confidence interval).

To examine the significant differences of metabolites between low-nitrogen stress, low-phosphorus
stress, and normal samples, the univariate analysis with fold change analysis and t-test were used
for screening metabolic biomarkers. The importance of metabolites in sample discrimination was
visible in the volcano plots. The volcano plots were employed to recognize the downregulated
(FC < 0.5) and upregulated (FC > 2) metabolites that showed significant differences (p-value < 0.05).
As shown in Figure 3, red points were upregulated metabolites, green points were downregulated
metabolites, the blue points were metabolites with no change. Low-nitrogen stress caused an
increase in 4952 metabolites and a decrease in 6787 metabolites, low-phosphorus stress caused an
increase in 4359 metabolites and a decrease in 7538 metabolites, the Venn diagrams are shown in
Figure 4. According to structural features of metabolic biomarkers, 260 metabolites were identified for
low-nitrogen stress (134 metabolites increased and 126 metabolites decreased). The low-phosphorus
stress treatment caused an increase in 53 metabolites and a decrease in 116 metabolites.

The next step of the statistical analysis was to perform a supervised OPLS-DA to separate samples
into two clusters and identify biomarkers between the normal and stress groups. To prevent the model
from overfitting, the quality of the model was investigated by seven-fold interactive validation and
a 200-response sequencing test. Validation parameters for the two OPLS-DA were R2Y = 0.948 and
Q2Y = 0.885 for low-nitrogen stress, and for low-phosphorus stress R2Y = 0.921 and Q2Y = 0.892.
262 and 169 identified compounds of low-nitrogen and low-phosphorus stresses were further screened
by Figure 5, in which the upper part was the V-plot figure, the lower part was the S-plot figure, and each
box/point represented one compound. In the V-plot figure, the biomarkers were filtered by VIP > 1.
In the S-plot figure, the closer the compound was to the lower left and the upper right corners the
greater the contribution to each category. In sum, 55 and 76 compounds were identified as important
variables that contribute to the low-nitrogen or low-phosphorus stress.

https://www.metaboanalyst.ca
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3.2. Cluster Analysis of Metabolic Biomarkers

To more intuitively and comprehensively display the expression patterns of the metabolites,
six samples were randomly selected from each group. The metabolic biomarkers in the two groups
were analyzed using heat maps, which showed that the low-nitrogen and low-phosphorus stresses
responded differently compared with the normal treatment. The results showed the distribution of
metabolic biomarkers in the two groups and demonstrated that metabolic biomarkers between the
two groups had a clustering trend. As shown in Figure 6, low-nitrogen stress caused an increase in
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21 metabolites and a decrease in 34 metabolites, 45 of which were negative ion mode and 10 were
positive ion mode. In Figure 7, low-phosphorus stress caused an increase in 45 metabolites and a
decrease in 31 metabolites, 54 metabolites in negative ion mode, 22 metabolites in positive ion mode.Agriculture 2020, 10, x FOR PEER REVIEW 8 of 15 
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3.3. KEGG Metabolic Pathway Analysis

The KEGG enrichment results can be visualized by bubble diagrams, and the ten pathways with
the smallest p-value were mapped. As shown in Figure 8, complex interactions between networks
of metabolic pathways exist in many aspects of nitrogen and phosphorus metabolism, and these
enriched pathways were ATP-binding cassette (ABC) transporters and Biosynthesis of plant secondary
metabolites. ABC transporters manage the active transport of a wide range of molecules across biological
membranes, including secondary metabolites, inorganic acids, lipids, and phytohormones [29]. In this
study, ABC transporters were associated with phosphoric acid; L-glutamate; sucrose; xylitol; raffinose;
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maltotriose; and alpha, alpha-trehalose; among others. Secondary metabolites often act as defense
molecules and protect plants in various adverse conditions [30], the pathways included succinate;
l-tryptophan; fumarate; l-asparagine; citrate; isocitrate; l-isoleucine; and cis-aconitate.
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4. Discussion

Nitrogen and phosphorus deficiencies resulted in changes of morphology, color, and texture.
For instance, nutritional deficiency caused the changes in foliar color due to the loss of chlorophyll [31,32],
and changes in texture may occur because of changes in surface structure and yellowish appearance in
the leaves [33]. There was some evidence that nitrogen and phosphorus may affect the endogenous
levels of phytohormones, such as cytokinins, which are involved in the regulation of both cell division
and cell elongation, known to be implicated in the regulation of plant morphogenesis [34,35]. Hence,
there were two potential problems with the detection of nitrogen and phosphorus. First, plants had a
similar performance in low-nitrogen and low-phosphorus stresses [36]. Second, changes in morphology,
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color, and texture are inconspicuous in the early stages of nutrient stress. When these characteristics
show obvious differences, nutritional stress was severe [37].

The change of internal small molecular compounds can occur earlier than changes in external
characteristics [37]. Previous studies only focused on the changes of metabolites under single nutrient
stress, such as nitrogen, phosphorus, potassium or zinc [17–20,38]. In fact, different nutritional stress
can cause changes of the same metabolites. In this study, a large number of metabolic biomarkers
were selected by FC value, p-value and VIP value. In these, low-nitrogen and low-phosphorus
stresses caused an increase in 16 metabolites (Raffinose; 9Z, 12Z-Linoleic acid; Maltotriose;
Catechin; Sildenafil citrate; D-(+)-Melezitose; Laudanosine; FA 18:3 + 2O; Coumaroyl quinic acid;
trans-5-O-Caffeoylquinic acid; Quercetin 3-(6-O-acetyl-beta-glucoside); Ginsenoside Rg5; Boldine;
Mitragynine; 7-Hydroxymitragynine and Maltopentaose) and a decrease in 26 metabolites (Phosphoric
acid; L-Glutamate; Sucrose; Uracil; Fumarate; Adenine; Isomaltose; Glyceric acid; Uridine; Xylitol;
cis-Aconitate; alpha-D-mannose 1-phosphate; Citramalate; Trehalose; Maleic acid; Hesperetin;
Mesaconic acid; D-Fructose; Hydroxyacetone; alpha-Linolenic acid; 4-Oxoretinol; Dihydroxy-Valerate;
Tranilast; FA 18:2 + 3O; Gardnerine and Glutathione (oxidized); Tranilast). These metabolites have no
significance for determining low-nitrogen or low-phosphorus stress in lettuce. The special biomarkers
are listed in Tables 1 and 2.

Table 1. The metabolic biomarkers under low-nitrogen stress.

Name ESI Mode m/z RT (min)

Upregulation

Inositol Negative 179.0586 9.03
P-hydroxybenzoic acid Negative 137.0247 0.72

Stachyose Negative 725.2340 12.05
Dinoseb Negative 239.0704 0.99

7,8-Dihydroxycoumarin Negative 177.0211 4.42

Downregulation

Adenosine Positive 268.1028 3.96
Palmitic acid Negative 255.2326 1.13

L-5-Oxoproline Positive 130.0497 9.68
3-Methylxanthine Negative 165.0412 8.65
tert-Butyric acid Negative 115.0787 1.82

D(-)-Gulono-gamma-lactone Negative 177.0418 2.55
FA 18:2 + 3O Negative 329.2314 3.22
MGMG 18:3 Negative 559.3070 2.56

Since the content of downregulated metabolites was low in lettuce under low-nitrogen or
low-phosphorus stress, the study focused on upregulated biomarkers. The 5 biomarkers of low-nitrogen
stress, all in negative ESI mode, belonged to classes of organic compounds known as cyclohexanols,
hydroxybenzoic acid derivatives, oligosaccharides, dinitrophenols, and phenylpropanoids. However,
the biomarker panel of low-phosphorus stress included 29 metabolites, which is not beneficial for
practical application. The top 5 biomarkers were further screened by VIP > 1.75, which were citrate,
isocitrate, l-5-oxoproline, succinate, and histamine. Citrate and isocitrate belonged to the class of organic
compounds known as tricarboxylic acids and derivatives. L-5-oxoproline, succinate, and histamine are
included in alpha amino acids and derivatives, dicarboxylic acids and derivatives and 2-arylethylamines.
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Table 2. The metabolic biomarkers under low-phosphorus stress.

Name ESI Mode m/z RT (min)

Upregulation

Succinate Negative 117.0217 9.20
L-Tryptophan Negative 203.0822 6.44
L-Asparagine Negative 131.0461 9.57

Citrate Negative 191.0211 11.99
Indole-3-carboxaldehyde Negative 144.0468 0.87

Isocitrate Negative 191.0193 11.30
Histamine Positive 112.0865 6.75

L-Isoleucine Negative 130.0877 6.64
2-Deoxyribose 5-phosphate Negative 213.0164 3.09

Galactinol Negative 341.1062 11.85
L-5-Oxoproline Positive 130.0497 9.68

gamma-Glutamylglutamine Positive 276.1186 10.66
Ajmaline Positive 327.2030 2.13

Desethyl atrazine Positive 188.0702 6.43
Ginkgolide C Negative 439.1220 8.51
Corynanthine Positive 355.2086 6.11

pregnenolone sulfate Negative 395.1898 3.78
N-Acetylneuraminic acid Negative 308.0955 6.96

Glu-Gln Negative 274.1040 10.66
2’-O-Methylinosine Negative 281.0865 8.92

FA 18:4 + 1O Negative 291.1943 1.09
FA 18:1 + 1O Negative 297.2427 1.06
Torasemide Negative 347.1167 11.04

Foramsulfuron Negative 451.1034 0.52
Indole-3-acetyl-L-valine Positive 275.1346 10.49

Desloratadine Positive 311.1336 8.51
Hydroxybutorphanol Positive 344.2264 1.69

Gardneramine Positive 413.2110 8.46
Hematoporphyrin_I Positive 599.2871 5.69

Downregulation

Mevalonic acid Negative 295.1385 2.49
sn-Glycero-3-phosphocholine Positive 258.1099 9.75
N4-Acetylsulfamethoxazole Positive 296.0658 9.75

Yohimbic Acid Negative 339.1631 2.54
Erucamide Positive 338.3422 0.80

5. Conclusions

Our objective aimed to obtain insight into lettuce responses to low-nitrogen and low-phosphorus
stresses by examining metabolites. We used LC-MS techniques to investigate the abundance and
identities of metabolites. PCA, Fold change analysis, t-test and OPLS-DA were used to understand the
holistic data and search for metabolic biomarkers. This study indicated that low-nitrogen stress caused
an increase in 21 metabolites and a decrease in 34 metabolites; low-phosphorus stress caused an increase
in 45 metabolites and a decrease in 31 metabolites. The most relevant pathways were ATP-binding
cassette transporters and Biosynthesis of plant secondary metabolites. From our comparison and
analysis, low-nitrogen stress caused accumulation of inositol, p-hydroxybenzoic acid, stachyose,
dinoseb, and 7, 8-dihydroxycoumarin; low-phosphorus stress caused accumulation of citrate, isocitrate,
l-5-oxoproline, succinate, and histamine. The metabolic biomarkers could be used to monitor the early
nitrogen or phosphorus status of lettuce, presumably to guide appropriate fertilization regimens.
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