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Abstract: The rapid developments in high-throughput sequencing technologies have allowed re-
searchers to analyze the full genomic sequence of organisms faster and cheaper than ever before.
An important application of such advancements is to identify the impact of single nucleotide poly-
morphisms (SNPs) on the phenotypes and genotypes of the same species by discovering the factors
that affect the occurrence of SNPs. The focus of this study is to determine whether climate factors
such as the main climate, the precipitation, and the temperature affecting a certain geographical
area might be associated with specific variations in certain ecotypes of the plant Arabidopsis thaliana.
To test our hypothesis we analyzed 18 genes that encode Forkhead-Associated domain-containing
proteins. They were extracted from 80 genomic sequences gathered from within 8 Eurasian regions.
We used k-means clustering to separate the plants into distinct groups and evaluated the clusters
using an innovative scoring system based upon the Köppen-Geiger climate classification system.
The methods we used allow the selection of candidate clusters most likely to contain samples with
similar polymorphisms. These clusters show that there is a correlation between genomic variations
and the geographic distribution of those ecotypes.

Keywords: single nucleotide polymorphisms; Arabidopsis thaliana; Köppen-Geiger climate classifica-
tion system; Fork-head-associated domain

1. Introduction

The potential use of Arabidopsis thaliana (L.) Heynh. (Brassicaceae) as a model system
for genetic studies was first reported by Titova in 1935 [1]. There are many advantages
to using Arabidopsis as a model in research studies [2] that aim to understand the genetic,
cellular, and molecular biological structure of plants. To analyze the sequence variations
within A. thaliana the 1001 Genomes Project, available at http://1001genomes.org (accessed
on 16 June 2020), was launched with the specific goal to discover the whole sequence
variation in at least 1001 strains of the reference plant [3–12].

The goal of many association studies is to find genotype differences between and
in some cases within certain species and examine how these changes are reflected in
the phenotypic characteristics of those species. In the case of Arabidopsis, some studies
have concentrated on finding phenotype and genotype associations related to alternative
splicing and transposable element effects [13–16]. Here, we seek to relate certain genotypic
characteristics like SNPs within FHA domain genes to the distribution of those plant
ecotypes collected from within different climate regions. Our clustering-based approach,
combined with the climatic scoring, represents a unique approach in A. thaliana research
studies.
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We aim to determine whether SNPs appearing in these 18 gene sequences may be
related to climate properties at the locations from which samples were collected. Previous
studies have addressed similar issues, such as investigating the association between flow-
ering time and clinical variations with latitude [17–19]. The local adaptation in A. thaliana
loci was also investigated in [20]. The study found that loci related to certain environments
show geographic and climatic patterns of adaptation. In another study [21], the authors
were able to predict relative fitness among A. thaliana accessions that were gathered from
different geographic locations but grown together in a similar environment. Their results
provide insights that mutations that increase fitness play an important role in the adap-
tation of A. thaliana. In [22], a Bayesian method to identify certain loci correlations with
environmental variables was developed through estimating covariance in allele frequencies
between populations and use that as a model to test SNPs. The method distinguishes
interesting loci for further investigation. While most of the previous approaches support
the notion that different environmental factors can have a certain effect on the genotypic
characteristics of A. thaliana, they differ in the approaches and methodologies used. For
example, the different statistical tests used for quantitative traits, such as the ANOVA
test, compared to control/case studies that use the chi-square test [23]. There are also
differences in the technologies used by those studies such as Affymetrix versus Illumina.
These differences affect the final results established by those studies, and the conclusions
inferred based upon those results. Our approach here provides a novel way to weigh the
association between SNP variations in A. thaliana and environmental factors (climate, pre-
cipitation, and temperature) affecting those plants using the Köppen-Geiger classification
system to measure those factors. The Köppen-Geiger climate classification [24,25] has been
used to associate the mapping of mean climate with the ecosystem conditions in certain
geographic areas and more recently in identifying potential changes in vegetation over
time and climate variability on various temporal scales [26]. Other studies concentrated
on the variation in the phenotypic characteristics based on environmental factors [27,28],
altitude [29–33], and longtitude [34].

2. Methods

We conducted our study on 80 A. thaliana genome sequences taken from the MPI-
Cao2010 project [3], hosted under the 1001 Genomes website [10]. These plants were
gathered from 8 Eurasian regions: Spain, North Africa, Swabia in the southwest of Ger-
many, South Tyrol in the North of Italy, Southern Italy, Eastern Europe, Caucasus, Southern
Russia, and Central Asia. The sequences were generated using Illumina’s sequencing-by-
synthesis (SBS) technology. At the time when the study was conducted, whole-genome
information was only available for those 80 ecotypes.

As a first step in identifying possible associations between identified SNPs and dif-
ferent climate factors in these ecotypes, we decided to focus on a specific gene family
that includes 18 genes. These 18 genes encode a protein with a Fork-head associated
domain (FHA) domain. A list of AGI codes for the 18 genes is given in the Supplementary
Material section. FHA domain is a phosphothreonine binding domain and is usually part
of a multi-domain protein [35]. FHA domain is present in bacteria, animals, humans,
and plants. It mediates protein-protein interactions controlling biochemical and cellular
function in growth and development such as DNA repair or cell-cycle progression [36].
Within the A. thaliana genome there are 18 genes that encode proteins with a FHA domain.
So far, the function of some of these genes is known. These functions include DNA repair,
signal transduction, control of meiosis, development, hormone synthesis, and microRNA
biogenesis [11,37–42]. We chose this family of genes because proteins with an FHA domain
have important cellular functions in bacteria, animals, and plants. FHA domain is a small
protein domain that recognizes phosphothreonine on proteins regulating their activities.
Since phosphorylation is widely used protein modification, FHA domain can interact with
a wide range of proteins. In this respect we belive that we can possibly identify relations
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between the occurrence of SNPs and the climate factors without the need to examine all
the genes in the plant.

To identify any association between the different plant ecotypes, we created a binary
matrix. Then we portioned the plants into different groups using K-means clustering. We
also used hierarchical clustering, but the results did show a significant correlation between
the SNPs and the climate factors. Subsequently, we assess the resulting clusters based upon
climate data in which those plants originated from. It is informative to look at the process
as a whole, since the process we are proposing is a multi-step process. It is befitting here to
summarize the steps involved in the process as shown in Figure 1 below, before we explain
each step in much more detail.
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Figure 1. A summary of the steps used to calculate the score and the size of each cluster for the 80 plants at each k-value.

2.1. Analysis at the Tiner Level

We examined the effects of climate on plants at a finer level of granularity by analyzing
the temperature and rainfall data for each of the 80 accessions using the closest registered
cities data to their locations [43]. We then designed a custom program to calculate the
Euclidean distances between any two plants using the temperature and rainfall information.
The program calculates the cluster score for temperature and rainfall based on the number
of plants within the cluster and the distances between the plants in each cluster for both
criteria. The cluster scores are then averaged to obtain the mean temperature and rainfall
scores at different k-values. From our analysis, we did not find a clear relation between the
distribution of the SNPs within the accessions and the temperature and rainfall at this finer
level. This led us to examine relationships between the distribution of SNPs within the
plants and the general climate, examining the relationship at a coarser level of granularity.

2.2. Analysis at the Coarser Level

To identify possible climatic associations with the SNPs from the plant ecotypes,
we created a binary matrix to represent the SNPs identified in the 18 genes across the
80 accessions. The sequence of each of these accessions was compared to the A. thaliana
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reference sequence [2], and if the nucleotide in a particular position in the sample did not
match the reference, a 1 was placed in the matrix and a 0 otherwise.

We then applied the k-means clustering method [44] implemented in the R-language
for statistical computing [45] to the binary matrix to partition the plants into disjoint
clusters. Other clustering methods were also investigated (i.e., hierarchical clustering)
before choosing k-means as our method of choice.

The resulting clusters represent a partitioning of the plants based on occurrences of
SNPs at a similar set of locations. A custom scoring system based upon the Köppen climate
classification [46] properties was designed to determine whether cluster members tended
to share climates that are similar or closely related to each other. The Köppen climate
classification system divides the land regions based upon the vegetation appearing in
various regions, along with different aspects of temperature and precipitation to describe
the different climates in the world.

The climate distribution is described by three factors. The first factor is the main
climate classification, which may be one of the main five climate groups such as equatorial
(A), arid (B), warm temperature (C), snow (D), and polar (E). The second is the seasonal
precipitation which takes on values of desert (W), steppe (S), fully humid (f), summer-dry
(s), winter dry (w), and monsoonal (m). The third is temperature or level of heat, which can
be hot arid (h), cold arid (k), hot summer (a), warm summer (b), cool summer (c), extremely
continental (d), polar frost (F), and polar tundra (T). Figure 2 shows the locations of the
plants in each country and region.
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Our scoring system was built by assigning a weight point method to every individual
letter in the system based on the three factors that make up the Köppen-Geiger climate
classification system. A two-point weight difference was assigned for each letter represent-
ing one of the main climates. A one-point difference between each precipitation and half
a point difference between each temperature classification. Considering the three factors
mentioned above, for each category, the closer these factors are to each other, the lesser the
score difference there will be between them.

An important thing to note here is that the assignments of different weights to the
different factors are not random but are founded upon the extent to which those factors
affect the climate and the plants inhabiting each region. The main climate has the highest
influence on the plants since even the precipitation and temperature can vary up to a
certain degree within each climate type. For such reason, we allocate for the main climate a
higher weight, in this case, two points for each change in the main climate. We also applied
as shown in Table 1 a various number of weights for precipitation and temperature.
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Table 1. Scores assigned for each climate factor.

Main Climate Precipitation Temperature

A = 2 W = 1 m = 6 h = 0.5 d = 3

B = 4 S = 2 _ = 7 k = 1 F = 3.5

C = 6 f = 3 a = 1.5 T = 4

D = 8 s = 4 b = 2

E = 10 w = 5 c = 2.5

When we decided how to factor the weights of temperature and precipitation, we
considered that for each category in the precipitation category there are several different
temperatures. Therefore, we apply a higher weight for the precipitation factor compared
to the temperature factor. One can also argue that the value given to each factor in the
process does not represent the exact level of significance than the factor has on the overall
climate. This is a valid argument, but it cannot stand on a strong basis since it is extremely
hard to get an exact measure of the level of contribution each specific category has on the
overall process could be difficult or even impossible to measure. The point of the weight
mechanism is to give a rough estimate regarding how important each factor is impacting
the entire process and not the exact level each factor contributes to the process. Table 1
shows the individual letter score assigned to each of the three factors.

To find out how close every pair of plants that are grouped together in a certain cluster,
we took the sum of the absolute values for the difference between each of the three factors
(climate, precipitation, temperature) for those two plants. This is noticeably expressed
in the numerator part of Equation (1) To show how we calculate the score between two
plants let’s consider this example. If we take one plant from a region classified in the “BSk”
climate and another plant from a nearby region but with a different climate, let’s say “Csa”.
Using the proposed climate scoring method, the difference in the first factor is one level
(B = 4 points and C = 6 points) which is equal to two points. For the second factor, there is
a difference of two levels (S = 2 points and s = 4 points) which gives us a total of two points.
For the third factor, it is a one-level difference (k = 1 points and a = 1.5 points) which is
worth 0.5 points. If we take the sum of all the scores (2, 2, and 0.5) for each of the factors
the total will be equal to 4.5 points.

We repeat this process for every plant grouped in the same cluster which means that
every plant will have a certain score that reflects the proximity level of all the plants in
each cluster. To further illustrate this point let us assume we have a cluster that contains
eight plants. This suggests that every plant will have seven different scores. Each of the
scores is a representation of how close those factors we are measuring in each plant is, in
comparison to the other seven plants grouped in the same cluster. Then we calculate the
mean pairwise climate score (i.e., average cluster score) for that cluster by adding all the
pairwise scores for all the plants in the cluster and dividing the total score by the number
of plants in the cluster using the following equation:

Σn
i=1

(|Ci2 − Ci1|+|Pi2 − Pi1|+|Ti2 − Ti1|)
n

(1)

Here (C) represents the main climate, (P) the precipitation, and (T) the temperature.
(n) Indicates the number of comparisons between the plants within the same cluster and
(i1) and (i2) represents the two plants that are compared. Generally speaking, the lower the
mean climate score of a certain cluster, the more similar those ecotype climates are to each
other.

Since the k-means algorithm selects random cluster centers at the beginning of the
clustering process, clusters produced may be different for subsequent runs at the same k
value. Therefore, the clustering process was repeated five times for each k value to avoid
bias caused by individual runs.
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To find the overall mean score (i.e., K-score) for that run at a certain k value we sum
all the average cluster scores for all the plants within each cluster divided by the number
of clusters as shown in Equation (2). For example, if we have three plants taken from three
different climates BSk, Csa, and Dsb. Referring back to the example we mentioned earlier
we found out that the score difference between BSk and Csa is four and half points. Using
the same approach, we can calculate the score difference between BSk and Dsb which
happen to be 7 points, and for Csa and Dsb 2.5 points. The K-score will be the sum of all
the scores divided by three which is approximately equal to 4.67 points:

ΣN
j=1

Σn
i=1

(|Ci2−Ci1|+|Pi2−Pi1|+|Ti2−Ti1|)
n

N
(2)

To account for outliers in the score, we calculated the median, and to ensure the quality
of our results and that our scores are fairly dispersed around the mean, we calculated the
standard deviation (SD) and the coefficient of variation (CV). This will assist in finding the
degree of disparity in the results across all the average scores.

We notice that the (SD) for all k-mean runs is small. This implies, that the results from
the various k-mean runs are not dependent upon the randomness inherent in the k-means
algorithm and hence, the results are highly repeatable. Table 2 shows each specific K-score,
their means, standard deviations, and medians at different k-values.

Table 2. K-scores at different k-values.

K. Run 1 Run 2 Run 3 Run 4 Run 5 Mean Median SD CV (%)

5 2.06 2.48 2.72 1.38 2.29 2.18 2.29 0.51 23.35

6 1.45 1.25 2.14 1.25 2.02 1.62 1.45 0.43 26.51

7 2.26 2.32 2.06 1.81 1.31 1.95 2.06 0.41 21.01

8 1.55 1.55 2.27 2.31 2.40 2.02 2.27 0.43 21.33

9 2.12 1.61 1.42 1.81 1.89 1.77 1.81 0.27 15.26

10 1.71 1.94 2.11 1.38 1.79 1.79 1.79 0.27 15.11

11 1.69 2.03 1.62 1.47 1.54 1.67 1.62 0.22 13.16

12 1.75 1.76 1.26 2.10 1.39 1.65 1.75 0.33 20.00

13 1.57 1.99 1.94 1.18 1.24 1.58 1.57 0.38 24.01

14 1.72 1.54 1.29 1.10 1.44 1.42 1.44 0.24 16.96

15 1.11 1.07 1.17 1.75 1.58 1.34 1.17 0.31 23.19

16 1.00 1.64 1.92 1.36 1.19 1.42 1.36 0.37 26.01

17 1.44 1.57 1.09 1.30 0.97 1.27 1.30 0.24 18.84

18 1.27 1.18 1.09 1.14 1.34 1.20 1.18 0.10 8.31

19 1.16 1.51 1.38 1.21 1.06 1.26 1.21 0.18 14.27

20 0.94 1.00 0.98 1.36 1.38 1.13 1.00 0.22 19.47
The table shows the average climate score for each cluster at different values of k for each of the 5 runs of the
k-means algorithm.

3. Results

The mean, SD, median, and CV for each individual K-score all assist in finding a stable
k-value for the clustering. A stable k-value is likely to hold a low average score for all
four criteria, in comparison with the other runs, or at least, for three of the criteria used
with the fourth one not exhibiting a very high score value. A low score for a cluster marks
evidence of similarity among the plants grouped within the same cluster. The lower the
score the closer the plants grouped in the same cluster are to each other. A score of zero
means that all the plants grouped in that cluster are identical in all three criteria. This could
happen sometimes to one group out of all the k-groups within the cluster. We observed
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this happening to two plants that were taken from the ET region (those were the only two
plants from that region) where they were grouped together in one cluster during some
runs. Calculating the median is necessary to make sure that the mean K-scores are not
influenced by the existence of outliers.

The K-score represents how far the cluster scores are apart from each other for each
individual run. The lower the score, the more uniform is the grouping of the plants into
one cluster. Examining all the k-values from 5 to 20 overall of the 5 runs, we noticed that
the maximum score over all the runs was 2.72 points, and the mean climate scores for
all the runs are at most 2.18 and the highest median was 2.29 which are low scores. This
reflects the similarity between the plants grouped in each cluster.

We calculated the quartiles and inner and outer fences as shown in Table 3 to check
for the presence of major or minor outliers. All the scores were in the inner fence’s range
which denotes the absence of any outliers in the scores. Examining the average (mean) and
the median scores in Figure 3 below we noticed that the scores are generally very close
and, in some cases, nearly identical. This suggests along with the absence of any outliers
that the clustering of the values was more uniform and that the plants grouped in the same
cluster are usually close to each other regarding the factors that we are measuring.

Table 3. Quartiles, inner and outer fence ranges.

First Quartile 1.25

Second Quartile 1.52

Third Quartile 1.91

IQR 0.67

Inner Fence 0.25 2.91

Outer Fence −0.75 3.91
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4. Discussion

To identify which value of k-clustering of the plant ecotypes groups has a stable score
we need to examine our results for the (SD) and the (CV) scores at each k-value. A lower
score for the SD and the CV is a strong indication that the plants within each cluster group
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have scores that are close to each other. We demonstrate our point with a simple example
where we choose the k-value to be equal to 10. Let us assume that the plants were equally
distributed across all 10 clusters with 8 plants in each cluster. If we take the first two
clusters denoted by C1 and C2 for cluster 1 and cluster 2, respectively. If the average
pairwise difference between all the plant’s scores in C1 is less than that of C2 then this
an indication that the eight plants grouped in C1 are much more similar in respect to the
factors we are measuring when compared to C2.

If the plants grouped together exhibit a low score then this could be an indication that
there is a correlation between the presence of SNPs within their FHA domain genes and
the climatic factors that affect those plants in different geographic areas.

This can be observed through finding a stable k-value which can be defined as a value
for k with both low SD and CV. Examining the (SD) and (CV)climate scores in Figure 4
we find that the k-value scores for SD and CV generally exhibit low values starting from
k = 9 up until k = 20 with the lowest three scores in both categories at k = 18 with SD = 0.1
and CV = 8.31, at k = 11 with SD = 0.22 and CV = 13.16 and at k = 19 with SD = 0.18 and
CV = 14.27. Those clusters contain ecotypes gathered from locations that are affected by
similar climates which leads us to believe that the plant ecotypes with FHA domain genes
might hold key information in deciding if these plants developed in very similar climates.
The low values of SD and CV are a strong indication that the clusters at these values are
stable and therefore these clusters contain plants that share a similar or a closely related
climate and since these clusters were created using the SNPs found in the 18 FHA domain
genes of those plants. It follows that the presence of specific variations in those 18 genes
contributed significantly to the correlation between genomic variations and the geographic
distribution of those ecotypes.
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5. Conclusions

In this paper, we investigated possible associations between the distribution of plant
ecotypes in various locations and SNPs appearing in these ecotypes within 18 FHA domain
genes. SNPs data were clustered using the k-means clustering method and assigned a
score using an array of climate factors for a range of k values. Based upon our analysis
of these values, at different runs, and examining the K-run mean, median, (SD), and
(CV) for the climate scores along with, the average and average median cluster sizes
of those clusters. We established that using k-means clustering to find an association
relationship between plant ecotypes at different locations and SNPs appearing in those
ecotypes is generally stable for most k-values starting at k = 9 with k = 18, 11, and 19
possessing the most stable SD and CV clustering values. Our analysis shows that there is
a correlation between the presence of SNPs in FHA domain genes in A. thaliana ecotypes
and their geographic distribution. Future work includes utilizing machine learning to
build models for predicting the association between SNPs and the distribution of plant
ecotypes in various locations. In addition, we will continue to investigate the probability
that the clusters at these k-values can effectively group plants sharing the same climate
characteristics.
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