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Abstract: The accurate identification of weeds in peanut fields can significantly reduce the use
of herbicides in the weed control process. To address the identification difficulties caused by the
cross-growth of peanuts and weeds and by the variety of weed species, this paper proposes a weed
identification model named EM-YOLOv4-Tiny incorporating multiscale detection and attention
mechanisms based on YOLOv4-Tiny. Firstly, an Efficient Channel Attention (ECA) module is added
to the Feature Pyramid Network (FPN) of YOLOv4-Tiny to improve the recognition of small target
weeds by using the detailed information of shallow features. Secondly, the soft Non-Maximum
Suppression (soft-NMS) is used in the output prediction layer to filter the best prediction frames
to avoid the problem of missed weed detection caused by overlapping anchor frames. Finally, the
Complete Intersection over Union (CIoU) loss is used to replace the original Intersection over Union
(IoU) loss so that the model can reach the convergence state faster. The experimental results show
that the EM-YOLOv4-Tiny network is 28.7 M in size and takes 10.4 ms to detect a single image,
which meets the requirement of real-time weed detection. Meanwhile, the mAP on the test dataset
reached 94.54%, which is 6.83%, 4.78%, 6.76%, 4.84%, and 9.64% higher compared with YOLOv4-Tiny,
YOLOv4, YOLOv5s, Swin-Transformer, and Faster-RCNN, respectively. The method has much
reference value for solving the problem of fast and accurate weed identification in peanut fields.

Keywords: weed identification; YOLOv4-Tiny; attention mechanism; multiscale detection; precision
agriculture

1. Introduction

Peanut is one of the leading oil crops in the world and is vital to global oil produc-
tion. However, weed competition [1] is an essential factor restricting peanut production,
reducing peanut production by 5–15% owing to annual grass damage. Research has shown
that peanut production in farmlands with 20 weeds per square meter is 48.31% less than a
no-weed control group. In addition, weeds facilitate the breeding and spread of diseases
and insect pests, resulting in the frequent emergence of peanut diseases and insect pests [2].
The conventional weeding method of spraying pesticides incurs a significant amount of
pesticide waste and causes irreversible pollution to the farmland. Owing to the develop-
ment of precision agriculture [3], the investigation of site-specific weed management [4]
for weed prevention and control has intensified gradually. An efficient detection and
identification method for peanuts and weeds is necessary to achieve accurate weed control
and management in the farmland.

Currently, many methods are proposed for weed detection, including remote sensing
analysis [5], spectral identification [6], and machine vision identification [7]. The equipment
required for remote sensing analysis and spectral identification methods is expensive and
difficult to promote in agricultural production. The machine vision identification method
has been widely used in weed identification because of its low cost and high portability.
Bakhshish et al. [8] used Fourier descriptors and invariant moment features to form a
shape feature set and implemented weed detection based on artificial neural networks.
Rojas et al. [9] extracted the texture features of weeds using the gray-level co-occurrence
matrix. They used principal component analysis to reduce the dimensionality of the
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features and finally used a support vector machine algorithm to complete the classification.
Although these methods achieve the identification of crops and weeds, they rely excessively
on the manual design and selection of image features, are susceptible to environmental
factors such as lighting, and have poor stability and low recognition accuracy.

The development of deep learning technology [10] has enabled convolutional neural
networks to reveal deeper features in images, which possess stronger generalization ability
than manually selected features. Gai et al. [11] proposed an improved YOLOv4 model
for fast and accurate detection of cherry fruit in complex environments. Khan et al. [12]
established a weed identification system for pea and strawberry fields based on an im-
proved Faster-RCNN, whose maximum average accuracy for weed recognition was 94.73%.
Sun et al. [13] used YOLOv3 to identify Chinese cabbages in a vegetable field. They em-
ployed image processing methods to tag plants around Chinese cabbages as weeds. To
detect weeds in a carrot field, Ying et al. [14] incorporated deep separable convolutions and
an inverted residual block structure into YOLOv4 and replaced its backbone network with
MobileNetV3-Small, which improved the recognition speed of the model; however, the
average recognition accuracy was only 86.62%. The studies mentioned above indicate that
although deep learning can solve the problem of manual feature design in conventional
image processing methods, the following issues remain: 1) although using a deep-seated
network model for weed detection improves the recognition accuracy, the recognition
speed cannot satisfy real-time requirements owing to its large volume; 2) improving the
recognition speed by trimming the model network renders the model insensitive to smaller
target recognition and reduces its recognition accuracy.

In this study, peanuts and six types of weeds were used as recognition objects, and
a weed recognition model based on the improved YOLOv4-Tiny [15] was developed to
address the issues above. First, based on YOLOv4-Tiny, CSPDarkNet53-Tiny [16] was used
as the backbone network of the model to ensure real-time detection performance; next, a
multiscale detection model was implemented by introducing the detailed information of
shallow-layer features in an FPN [17] to improve the ability of smaller target recognition.
In addition, an ECA [18] module was used to calibrate the effective feature layer to enhance
key information pertaining to weeds in the image. Finally, the soft-NMS [19] function
was used in the output prediction layer to replace the NMS [20] function to filter the
prediction box.

2. Materials and Methods
2.1. Materials
2.1.1. Data Acquisition

The weed images used in this study were obtained from peanut fields in more than
20 areas in Henan Province, China. A Fuji Finepixs4500 camera was used to capture
artificial images with a resolution of 2017 × 2155 in JPG format; 855 images were obtained,
including those of a single weed, sparsely distributed weeds, and overgrown weeds.
The images were captured at 7:00, 13:00, and 17:00 via high-angle overhead shots from
approximately 70 cm relative to the ground. Based on investigation and screening, the weed
types selected were Portulaca oleracea, Eleusine indica, Chenopodium album, Amaranth
blitum, Abutilon theophrasti, and Calystegia. No imbalance was indicated between any
two types of weeds. The shape and color of the six weeds are shown in Figure 1.
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Figure 1. Shape and color of six weeds. (a) Portulaca oleracea, (b) Eleusine indica, (c) Chenopodium 

album, (d) Amaranth blitum, (e) Abutilon thophrasti, (f) Calystegia hederacea. 

2.1.2. Data Enhancement and Annotation 

Overfitting in the training set caused by excessively small data sizes was prevented 

using the following methods: image horizontal and vertical flip, brightness increase and 

decrease (randomly increase or decrease the original brightness by 10%–20%), and Gauss-

ian noise addition (variance σ = 0.05) for random image enhancement [21]. Figure 2 shows 

an example of the effect of data enhancement. The data enhancement method was only 

used in the training set. The expanded dataset contained 3355 images. Information regard-

ing weeds and peanuts in the image was annotated using the LabelImg software. The an-

notation format was Pascal VOC2007, and the file type was .xml. The dataset was catego-

rized into training and test sets. The number of pictures in each dataset is shown in Table 
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Figure 1. Shape and color of six weeds. (a) Portulaca oleracea, (b) Eleusine indica, (c) Chenopodium
album, (d) Amaranth blitum, (e) Abutilon thophrasti, (f) Calystegia hederacea.

2.1.2. Data Enhancement and Annotation

Overfitting in the training set caused by excessively small data sizes was prevented
using the following methods: image horizontal and vertical flip, brightness increase and
decrease (randomly increase or decrease the original brightness by 10%–20%), and Gaussian
noise addition (variance σ = 0.05) for random image enhancement [21]. Figure 2 shows an
example of the effect of data enhancement. The data enhancement method was only used in
the training set. The expanded dataset contained 3355 images. Information regarding weeds
and peanuts in the image was annotated using the LabelImg software. The annotation
format was Pascal VOC2007, and the file type was .xml. The dataset was categorized into
training and test sets. The number of pictures in each dataset is shown in Table 1.
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Table 1. Dataset after data enhancement.

Dataset Train Test Total

Original Images 700 155 855
Flip Horizontally 500 0 500

Flip Vertically 500 0 500
Brightness Increase 500 0 500
Brightness Decrease 500 0 500

Gauss Noise 500 0 500
Total Number 3200 155 3355

2.2. Methods
2.2.1. EM-YOLOv4-Tiny Network

YOLOv4-Tiny comprises four components: an input layer, a backbone network, an
FPN, and an output prediction layer. The images received were uniformly scaled to a size
of 416×416. The features were extracted from CSPDarkNet53-Tiny and then sent to the
FPN for feature fusion. The location and category information of the target was obtained
in the output prediction layer. CSPDarkNet53-Tiny primarily comprises a CBL module
and a cross-stage partial (CSP) module [22]. The CBL module comprises a convolutional
layer, batch normalization, and a Leaky Relu [23] activation function in series. It is the
smallest module in the overall network structure and is used for feature control splicing and
sampling. The CSP module is an improved residual network structure that can segment
the input feature map into two components: the main component stacks the residual, and
the other is fused in series with the main component after some processing. CSPDarkNet53-
Tiny contains three CSP modules: CSP1, CSP2, and CSP3. As the dimensions of the output
feature map are reduced, the location information in the CSP module becomes increasingly
vague, the detailed information becomes increasingly scarce, and the ability to detect smaller
targets is gradually weakened. To solve these problems, a path connected to the CSP2 layer
in the FPN was added, while the output characteristics of the CSP2 layer were fused with
the upsampling results in the channel dimension to form an output focused on the detection
of smaller targets. The EM-YOLOv4-Tiny network structure is shown in Figure 3.
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Figure 3. EM-YOLOv4-Tiny network Structure, where Conv is convolution, BN is batch normaliza-
tion, Leak Relu is activation function, Maxpool is maximum pooling, ResUnit is the residual unit,
Upsample is upsampling, ECA is efficient channel attention module, Contact is the feature fusion
method of adding channel numbers, Yolo Head is the prediction anchor, CBL is series fusion module
of Conv, BN, and Leak Relu, and CSP is cross-stage partial module.
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To further improve the detection accuracy, the ECA module was used repetitively to
process the effective features in the FPN. The attention module suppressed the background
information in the image and enhanced the key information through weight calibration [24].
Regarding the predicted output, the EM-YOLOv4-Tiny network yielded three outputs of
different scales, namely 13 × 13, 26 × 26, and 52 × 52.

2.2.2. ECA Attention Mechanisms

Multiscale prediction for hierarchical detection was utilized in this study to detect
smaller targets. Although shallow features have smaller receptive fields, which can enable
better detection of smaller targets, they result in considerable irrelevant noises, thus affect-
ing the network’s ability to assess the importance of information obtained from an image.
By introducing the ECA attention module into the neck section of YOLOv4-Tiny, the weed
features in the image could be further enhanced while irrelevant background weights were
suppressed.

In the ECA network, the input features were first pooled globally, and a single nu-
merical value was used to represent the characteristics of each channel. Next, a fast
one-dimensional convolution [25] of size k was performed to assign weights for each
channel to realize information exchange between channels. Finally, the weight proportion
of each channel was generated using the sigmoid function [26], and features with channel
attention were obtained by merging with the original input features. More details about
the ECA network can be found in Appendix A.

2.2.3. Use of Complete Intersection over Union Loss

Owing to the scale invariance and non-negativity of the IoU [27], the latter is typically
set as the bounding box loss function in conventional target detection networks. Specifically,
IoU refers to calculating the ratio of the prediction box and the real box, which can better
reflect the quality of the regression box. However, using IoU as the loss function still
has some problems. On the one hand, when the positions of two bounding boxes do not
intersect (IoU = 0), the loss function will become non-differentiable. On the other hand,
when the overlap rate of prediction frames is the same, IoU cannot accurately reflect the
location information of both.

Therefore, the CIoU [28] was used in this study as the loss function for training.
Additionally, the overlap degree and the distance between the prediction and real boxes
were considered comprehensively, and the aspect ratio of the prediction box was added
as a penalty term to stabilize the regression results. More details about CIoU loss can be
found in Appendix B.

2.2.4. Soft-NMS Algorithm for Filtering Prediction Boxes

For the output and prediction of YOLOv4-Tiny, the NMS algorithm filters redundant
prediction boxes around the target to be detected. The NMS algorithm deletes prediction
boxes whose confidence is below the preset threshold, filters boxes that belong to the same
category, and obtains the highest score in a specific area; hence, it effectively eliminates
redundant bounding boxes. However, in cases involving dense weed growth or severe
mutual occlusion between weeds and peanuts, the NMS algorithm deletes prediction boxes
that belong to other targets, thus resulting in missed detections. To solve this issue, the soft-
NMS instead of the original NMS was used in this study. When multiple prediction boxes
appeared around a weed, their scores were multiplied by a weighting function to weaken
those that overlapped with the box with the highest score. In this regard, the Gaussian [29]
function was used as the weighting function, and the calculation is as follows:

Scorei= Scorei·e
−IoU(Ci,B)

σ (1)

where Scorei represents the score of the current box, Ci represents the current bounding
box, and B represents the prediction box with the highest score. The greater the overlap
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between the prediction box and the box with the highest score, the stronger the weakening
ability of the weighting function and the lower the score assigned to it.

2.2.5. Model Performance Evaluation Indices

In this study, indices typically used in multiclass target detection models, such as
precision, recall rate, mean average precision (mAP), and F1 value, were used to evaluate
the model performance.

Precision indicates the proportion of correct detections in all the prediction boxes, and
Recall indicates the proportion of correctly detected label boxes in all label boxes.

Precision =
TP

TP + FP
, (2)

Recall =
TP

TP + FN
, (3)

where TP represents the number of correctly detected weeds; FP represents the number of
incorrectly detected weeds; and FN represents the number of missed detections of weeds.

AP represents the average precision of a class of detected objects, and mAP is the
mean average value of AP for all classes.

AP =
∫ 0

1
Precision d Recall, (4)

mAP =
1
N

N

∑
1

AP(k) (5)

The F1 value can be regarded as a harmonic mean of Precision and Recall, as follows:

F1 = 2 ×Precision × Recall
Precision + Recall

(6)

The evaluation indices selected in this study were calculated based on a threshold
of 0.5. In the follow-up experiments, the mAP was used as the primary performance
evaluation index of the model.

2.2.6. Model Training

The software and hardware environment of model training and testing are shown in
Table 2. In order to further improve the recognition accuracy of the model, this study used
a transfer learning method to initialize the weights of the model. Before model training, the
EM-YOLOv4-Tiny network was pretrained with the Pascal VOC dataset, and the weight file
with the highest map in the training results was used as the pretraining weight to initialize
the model. Meanwhile, the K-means [30] algorithm was used to cluster the anchor boxes in
the dataset, and a total of 9 anchor boxes with different sizes were obtained: (19, 31), (56, 62),
(90, 82), (103, 158), (149, 125), (175, 217), (250, 171), (241, 291), and (320, 335). This makes the
true size of the anchor frame closer to the size of the weed to be detected. During training,
the number of samples in each batch was set to 16, and the loading of the entire training
set was considered an iteration. The adaptive moment estimation algorithm was used to
optimize the model, the initial learning rate was set to 0.001, and the cosine annealing
algorithm was employed for attenuation. After 150 iterations, the model converged.



Agriculture 2022, 12, 1541 7 of 15

Table 2. Training and test environment configuration table.

Configuration Parameter

Operating System Ubuntu 18.04.1 LTS
CPU Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz
GPU NVIDIA Tesla T4

Accelerate Environment CUDA10.2 CuDNN7.6.5
Pytorch 1.2
Python 3.6.2

3. Results
3.1. Performance Evaluation of EM-YOLOv4-Tiny

Based on the standard of the MS COCO dataset provided by Microsoft, weeds with
a resolution lower than 32×32 were defined as smaller targets. Several types of weeds
exist in peanut fields, with some being smaller in morphological appearance than others.
The standard YOLOv4-Tiny network tends to misdetect when identifying smaller targets.
Based on the comparison results of EM-YOLOv4-Tiny and YOLOv4-Tiny using the same
test set as shown in Table 3, the recognition precision rates of the EM-YOLOv4-Tiny for
smaller targets and all targets were 89.65% and 94.54%, respectively, which surpassed the
precision rates of the original network by 10.12% and 6.83%, respectively. The improved
network combined the location and detailed information of the shallow-layer feature and
improved the ability to identify smaller weeds via the addition of a channel attention mech-
anism, which suppresses the abundant noise in smaller receptive fields. The recognition
performances before and after the network improvement are shown in Figure 4. The EM-
YOLOV4-Tiny network included a new scale output in the neck section while the backbone
network structure of the model remained unchanged, and the average inference time of
each image increased to only 4.4 ms, indicating that the proposed network maintained a
high inference speed while improving the recognition precision.

Table 3. Comparison of detection results of YOLOv4-Tiny and EM-YOLOv4-Tiny.

Models
mAP/%

Volume/MB Time/ms
Small Targets All Targets

YOLOv4-Tiny 79.53 87.71 22.4 6
EM-YOLOv4-Tiny 89.65 94.54 28.7 10.4
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3.2. Performance Comparison of Improved Methods

To further demonstrate the effectiveness of the improved method in enhancing the
model performance, different modules were benchmarked against the original YOLOv4-
Tiny target detection network. The results are shown in Table 4.

Table 4. Influence of different improved modules on YOLOv4-Tiny network.

Method Precision/% Recall/% mAP/% F1/% Time/ms

YOLOv4-Tiny 87.60 75.60 87.71 0.80 6.0
YOLOv4-Tiny + K-Means 91.80 74.80 88.90 0.82 6.0
YOLOv4-Tiny + K-Means+

Soft-NMS 88.16 84.91 90.37 0.86 6.0

YOLOv4-Tiny + K-Means+
Soft-NMS + scale3 95.40 82.90 93.72 0.89 9.0

YOLOv4-Tiny + K-Means+
Soft-NMS + scale3 +

ECA(EM-YOLOv4-Tiny)
96.7 85.90 94.54 0.90 10.4

scale3 represents an improved strategy for employing multiscale detection in the network.

After obtaining the anchor box using the K-means clustering algorithm, the mAP and
F1 values of the model were 1.2% and 2% higher than the original values, respectively,
indicating a better match in size between the anchor box and the target to be detected.
When using the soft-NMS algorithm to filter the prediction box, the recognition precision
decreased. Still, the recall rate increased by approximately 10%, indicating the effectiveness
of soft-NMS in improving missed detections. When a new functional layer was added
to focus on detecting smaller targets, the detection time increased slightly, but the mAP
and F1 values increased by approximately 3%. When the ECA attention mechanism was
introduced into the network, the noise caused by shallow features was reduced, and
Recall increased by 3%. In general, the proposed methods improved the weed detection
performance of the network.

3.3. Performance Comparison of Different Attention Mechanisms

To further verify the advantages of the channel attention mechanism used in this study,
under the same experimental conditions, the SE attention mechanism and CBAM attention
machine were used as controls at the same location as the network. The experimental
results are shown in Table 5.

Table 5. Performance comparison after using different attention modules.

Method Precision/% Recall/% mAP/% F1/% Time/ms

Base-SE 96.3 79.6 92.32 0.87 11
Base-CBAM 97.5 80.8 93.15 0.88 12

Base-ECA(EM-
YOLOv4-Tiny) 96.7 85.9 94.54 0.90 10.4

Base represents the combined model obtained by using methods of K-Means, multiscale strategy, and soft-NMS,
and its result can be found in Table 4.

Compared with the ECA attention network, the SE network uses a full connection
to realize information exchange between channels, which increases the computational
load and causes feature loss due to dimensionality reductions. The CBAM network is a
convolutional block attention module that introduces location information in the channel
dimension using the global maximum pool. However, it is limited to local range information
instead of long-range dependent information. As shown in Table 5, after different attention
mechanisms were added, each performance index improved compared with those of the
original model. Among them, the ECA attention module outperformed the others; its mAP
was higher than those of the other two attention modules by 2.22% and 1.39%, respectively,
implying that the ECA network is more suitable for the model used in this study.
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Similarly, in order to further explore the impact of the attention module on the weed
detection model, the grad cam method was used in this study to visually analyze the
features of the networks before and after adding the attention mechanism. From the
detection results in Figure 5, we know that when the attention mechanism module is not
added, the network will appear to pay attention to the background information when
performing the detection. In contrast, the network incorporating the attention mechanism
pays more attention to the information of the object to be detected through the recalibration
of the weights. Comparing the feature visualization results of the three attention networks,
the ECA network used in this study shades darker on the small target weeds in the images,
indicating more attention to the information of small targets.
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(b) represents the results of using the base model; (c) represents the results of using the base model and
the SE attention mechanism; (d) represents the results of using the base model and the CBAM attention
mechanism; (e) represents the results of using the base model and the ECA attention mechanism.

3.4. Comparison of Performance with Different Network Models

To verify the efficiency and practicability of the proposed model, several classical
target detection models, such as YOLOv4, YOLOv5s, and the Faster-RCNN, were used to
test the efficiency of weed detection. In the comparison experiments, strict control was
exerted over the parameters. Specifically, 416×416 images were used uniformly as the
input to the training network, and identical training and test sets were used throughout the
experiments. The results are shown in Table 6.

Table 6. Performance comparison results of multiple target detection networks.

Model mAP/% F1/% Time/ms Volume/MB Parameter/×106

Faster-RCNN 84.90 0.78 121 111.4 28.3
YOLOv4 89.76 0.80 25.2 234 64.0
YOLOv5s 87.78 0.86 15 27.1 7.1

Swin-Transformer 89.70 0.89 20.4 117.8 30.8
DETR 95.3 0.92 32.7 158.9 41

EM-YOLOv4-Tiny 94.54 0.90 10.4 27.8 6.8

As shown in Table 6, the average recognition accuracy of all types of networks for
weeds exceeded 85%. The mAP of the EM-YOLOv4-Tiny network proposed herein was
94.54%, and its F1 value was 0.9, which is higher than those of the other four target detection
networks. Because the test set contained a few smaller target weeds, the Faster-RCNN
network did not construct an image pyramid and was insensitive to the detection of smaller
targets, resulting in a low Recall and a mAP of only 87.71%. Compared with YOLOv4, the
proposed network introduced multiscale detection and the attention mechanism based on
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YOLOv4-Tiny, whose mAP and F1 were 4.78% and 10% higher than those of the YOLOv4
network, respectively. Moreover, the volume and number of parameters of the proposed
model were much smaller than those of the original YOLOv4 network, indicating that
the improved network preserved the merit of lightness. The lightweight YOLOv5s and
EM-YOLOv4-Tiny exhibited similar model volumes and testing times; however, the mAP
of YOLOv5s was only 87.78%, which was similar to that of the original YOLOv4-Tiny.
Although the lightweight network had a simple structure, it was susceptible to overlooking
occluded and smaller targets during detection.

Transformer-based target detection networks like Swin-Transformer and DETR were
also trained and tested on the dataset in this study. The recognition accuracy is generally
better than that of the CNN-based network. Still, the size of the model and the slow
detection speed is not conducive to the deployment and development of embedded devices.
It is worth mentioning that the Transformer structure is on an unstoppable trend to overtake
the CNN structure in the existing studies. In future research, this study will also consider
incorporating the Transformer structure into EM-YOLOv4-Tiny, working to improve the
accuracy of the model further.

3.5. Comparison of Performances under Different Scenarios

To evaluate the robustness of the model in different scenarios, three different datasets
were prepared based on the different growth densities of peanuts and weeds: single weed,
sparsely distributed weeds, and overgrown weeds. The test results obtained using the
proposed network on the three datasets are shown in Table 7 and Figure 6. The experimental
results show that the proposed model performed favorably in terms of weed detection
under different growing conditions and accurately located peanuts and various weeds
via boundary box regression. The average recognition accuracies of the three datasets
mentioned above were 98.48%, 98.16%, and 94.3%, respectively, with a mean value of
96.98%. When the density of peanuts and weeds was high, the model accurately identified
occluded weeds while demonstrating excellent recognition of small target weeds.

Table 7. Performance comparison results of models in different scenarios.

Scenarios Precision/% Recall/% mAP/% F1/%

Single Weed 94.67 96.03 98.48 0.95
Sparsely Distributed 95.97 93.21 98.16 0.94

Vigorous Growth 90.24 89.52 94.30 0.90
Mean 93.62 93.01 96.98 0.93
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4. Discussion
4.1. Deep Learning for Weed Detection

In this study, the target detection technology based on deep learning was used to
detect weeds in peanut fields and achieved good results. In similar weed detection work,
many researchers [31,32] used unmanned aerial vehicles (UAVs) with intelligent sensors
to detect weeds in the field. The UAV can cover a large area in a short time and generate
a weed map of the field to guide the weeding device to the designated area for weeding.
However, producing a weed map is very challenging due to the similarity of the crops and
the weeds. In contrast, deep learning technology can automatically learn the discriminant
characteristics between crops and weeds through a deep convolution neural network, which
can better solve the problem of weed detection in a complex environment. Hussain [33]
used the improved YOLOv3-Tiny network model to detect two kinds of weeds in the
wild blueberry field, and the F1 values of the two kinds were 0.97 and 0.90, respectively.
This also shows the great potential of the deep learning method in the field of weed
detection. However, the actual agricultural production environment is often changeable
and uncontrollable. The proposed method may also have certain limitations when the
application scenario changes, such as a large increase in weed species and extreme weather.
Although deep learning technology has a strong learning and adaptive ability, it must be
combined with many other technologies to contribute to agricultural development.

4.2. Challenge of Small Target Detection

Small target detection has always been a research hotspot in the field of target detection.
Multiscale detection and feature fusion are the most commonly used methods to solve
the problem of small target detection. In this study, the idea of multiscale detection
and the attention mechanism were introduced into YOLOv4-Tiny, which improved the
recognition ability of the model for small target weeds. The multiscale feature learning
method improves the sensitivity of the original network to small target detection by fusing
the details of shallow features. The attention module recalibrates the input features with
weights, which makes up for the defect that the receptive field of shallow features is
small and easily produces noise. However, the existing feature fusion methods, such
as concatenation, cannot fully take into account the feature information of the context,
which also leads to the model missing or falsely detecting weeds on some small targets. In
agricultural production, many application scenarios for small target detection will also exist.
The pests are too small and mostly have protective colors, making pest detection a challenge
in the pest control process. The accurate identification and positioning of small fruits and
vegetables is also key to fruit and vegetable picking. Therefore, small target detection
remains a more significant challenge in agriculture. Fortunately, the detection regarding
small targets has been ongoing. Wei et al. [34] used a Path Aggregation Feature Pyramid
Network (PAFPN) structure to fuse the multiscale features obtained by the Attention
Mechanism Network to get high-level multiscale semantic features. The global feature
fusion method, like PAFPN, is better than the local feature fusion method in small target
detection. Therefore, in subsequent research we will consider adding appropriate feature
fusion algorithms to our own networks to further improve the recognition ability of the
model for small targets.

4.3. Limitations and Shortcomings

Although the network proposed in this study can better identify weeds in peanut
fields, some noteworthy problems still need further research. First of all, the data in this
study only include weeds in the peanut seedling stage, and the collected area is only in
Henan Province, China. Future research will focus on collecting weed data in peanuts
in other growth stages and will cover as many regions as possible. Secondly, although
the network in this paper improves the recognition accuracy of the model compared with
the original YOLOv4-Tiny network, it also increases the volume of the model to a certain
extent. Zhang et al. [35] used the deep separation convolutional network to replace the
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original convolutional network, which not only improved the accuracy of the model but
also reduced the number of parameters and calculations of the network. In subsequent
research, we plan to introduce this method into the network of this paper. Finally, the
improvement strategy of the multiscale detection and the attention mechanism has been
proved to be highly practical in this study. Still, other advanced research continues, such as
on the Transformer [36], the Generative Adversarial Network [37], and so on, which have
attracted more and more attention. It is worth further exploring the introduction of these
technologies into our own network and improving the detection performance of the model.

5. Conclusions

To rapidly and accurately identify various types of weeds in peanut fields, a weed
recognition method named EM-YOLOv4-Tiny was proposed. Based on YOLOv4-Tiny,
multiscale detection and the attention mechanism were introduced, the CIoU was used as
the loss function for training, and the soft-NMS method was used to screen the prediction
box to improve the model performance in identifying small targets. The proposed model
shows better recognition accuracy than Faster-RCNN, YOLOv5s, YOLOv4, and Swin-
Transformer. In addition, the volume of the EM-YOLOv4-Tiny model was 28.7 M, and the
single detection time was 10.9 ms, which rendered the model suitable for the embedded
development of intelligent weeding robots.

In future work, this research will transplant the constructed model to a suitable
embedded device for testing and select an intelligent spraying device to complete the
precise weeding in the peanut field. In addition, the model will also be used in applica-
tions on smartphones so that farmers can better understand field information and make
timely decisions.
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Appendix A

The ECA network structure is shown in Figure A1. In the ECA network, a fast
one-dimensional convolution with a convolution kernel k was performed to realize local
cross-channel interactions, which reduced the computational workload and complexity of
the entire connection layer. A positive interaction occurred between the channel dimension
C and the convolution kernel size k, i.e., a larger C resulted in a larger k. The relationship
between the two can be expressed as follows:

C =∅(k) (A1)

C is typically measured in an exponential multiple of 2. Therefore, the relationship
between the two can be more reasonably expressed as follows:

C =∅(k)= 2(γ×k−b), (A2)
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Here,

k = ϕ(C) =

∣∣∣∣ log2(C)

r
+

b
γ

∣∣∣∣
odd

, (A3)

where |n|odd represents the odd number closest to n, with γ and b being 2 and 1, respectively.
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Figure A1. ECA network structure, where C is the channel dimension of the input data, H is the
height of the input data, and W is the width of the input data. GAP denotes global average pooling,
and k denotes the size of the convolution kernel using fast one-dimensional convolution.

Appendix B

As shown in Figure A2, the CIoU bounding box regression loss function directly
minimizes the normalized distance between the predicted box and the real target box,
taking into account the overlapping area of the detection box as well as the distance from
the center point of the detection box. The measurement parameter of the consistency of the
aspect ratio between the detection frame and the real target frame is also added to make
the model more inclined to optimize in the direction of the dense overlapping area.
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detection boxes.

The loss function of the CIoU is calculated as follows:

CIoULoss= 1 − CIoU = 1 − IoU +
ρ2(b, c)

d2 + av (A4)
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where d represents the distance between the diagonals of the smallest rectangle containing
the two boxes; b and c represent the coordinates of the central points of the real and
prediction boxes, respectively; ρ2(b, c) is the function for solving the Euclidean distance
between the two mentioned points; and av is the penalty term for border scale.

The a in Equation (7) is the parameter used to balance the ratio, and v is the parameter
that measures whether the ratio of the true frame is consistent with the predicted frame.
The calculation of both is as follows:

v =
4

π2

{
arctan

wc

hc −arctan
wb

hb

}2

(A5)

a =

{
0 , if IoU < 0.5

v
(1−IoU)+v , if IoU ≥ 0.5

, (A6)

where wc and hc represent the width and height of the prediction box, and wb and hb

represent the width and height of the real box.
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