
Citation: Lekakis, E.; Zaikos, A.;

Polychronidis, A.; Efthimiou, C.;

Pourikas, I.; Mamouka, T. Evaluation

of Different Modelling Techniques

with Fusion of Satellite, Soil and

Agro-Meteorological Data for the

Assessment of Durum Wheat Yield

under a Large Scale Application.

Agriculture 2022, 12, 1635.

https://doi.org/10.3390/

agriculture12101635

Academic Editors:

Dionissios Kalivas, Christos Chalkias,

Thomas Alexandridis, Konstantinos

X. Soulis and Emmanouil Psomiadis

Received: 15 September 2022

Accepted: 5 October 2022

Published: 8 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

Evaluation of Different Modelling Techniques with Fusion of
Satellite, Soil and Agro-Meteorological Data for the Assessment
of Durum Wheat Yield under a Large Scale Application
Emmanuel Lekakis 1,* , Athanasios Zaikos 2, Alexios Polychronidis 2, Christos Efthimiou 2, Ioannis Pourikas 3

and Theano Mamouka 1

1 AgroApps P.C., Koritsas 34, 55133 Thessaloniki, Greece
2 Big Blue Data Academy, Gennadiou 14, 13343 Fyli, Greece
3 Melissa Kikizas, Larisas-Farsalon Rd, 41110 Larisa, Greece
* Correspondence: mlekakis@agroapps.gr

Abstract: Food and feed production must be increased or maintained in order to meet the demands
of the earth’s population. Under this scenario, the question that arises is how to address the demand
for agricultural products given that the pressures on land use have already increased. In addition,
it is obvious that climate change will have a serious negative impact and threaten the productivity
and sustainability of food production systems. Therefore, understanding and predicting the outcome
of crop production, while considering adaptation and sustainability, is essential. The need for
information on decision making at all levels, from crop management to adaptation strategies, is
constantly increasing and methods for providing such information are urgently needed in a relatively
short period of time. Thus arises the need to use effective data, such as satellite and meteorological
data, but also operational tools, to assess crop yields over local, regional, national, and global scales.
In this work, three modeling approaches built on a fusion of satellite-derived vegetation indices, agro-
meteorological indicators, and crop phenology are tested and evaluated in terms of data intensiveness
for the prediction of wheat yields in large scale applications. The obtained results indicated that
medium input data intensity methods are effective tools for yield assessments. The methods, namely,
a semi-empirical regression model, a machine learning regression model, and a process-based model,
provided high to moderate accuracies by fully relying on freely available datasets as sources of input
data. The findings are comparable with those reported in the literature for detailed field experiments,
thereby introducing a promising framework that can support operational platforms for dynamic
yield forecasting, operating at the administrative or regional unit scale.

Keywords: yield prediction; data fusion; machine learning; publicly available datasets; AquaCrop

1. Introduction

It is obvious that climate change will have a serious negative impact and will threaten
the productivity and sustainability of food production systems [1,2]. Statistical analysis
of crop yield data indicates it may already be doing so [3,4]. Therefore, understanding
and predicting crop production outcomes and identifying changing patterns in major
cereals such as wheat, and under various climate scenarios and farm management practices
geared towards adaptation and sustainability, is of the essence. Hence, the need for the
development and efficient use of tools such as models to project food crop cultivation under
various scenarios and time scales comes to light. Adaptation strategies are probably the only
means by which food availability and stability can be maintained or increased to meet future
food security needs [5,6]. Reducing the so-called ‘adaptation deficit’, that is, the exposure
and sensitivity to the present-day climate variability and observed change, is an important
dimension of long-term adaptation planning [7–9]. In this context, crop monitoring and
in-season yield forecasting play major roles in anticipating supply anomalies, enabling
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well-informed adaptive policy actions and market adjustments, preventing food crises and
market disruptions, and contributing to overall increased food security [10]. The predicted
yields before harvest over large geographic regions, such as countries and continents, are
essential to decision-makers when determining potential yield reductions, food prices, and
import-export decisions [11,12]. Therefore, constructing a generalized yield prediction
model suitable for many regions is of great significance to food security.

The need for information on agricultural decision making at all levels, from farm
management to adaptation strategies and relief schemes, is constantly increasing and
methods for supplying such information in relatively shorter time frames are urgently
required. The simulation of crop growth and yield is ideal for the diagnosis of the effects
of different management decisions and extreme circumstances of future weather events.
Model-based global estimates show that even incremental adaptation strategies could
result in mean yield increases of ~7% at any level of warming [1,13,14]. This suggests that
substantial opportunities may exist if more significant (i.e., systemic and transformational)
changes in cropping systems are implemented through yield modelling [6].

The planning of measures for food security requires critical information for deter-
mining crop health and productivity, such as the monitoring of several indicators related
to crop management, as well as growth and yield. To achieve this, the direct or indirect
measurement of several variables in space and time is required. Satellite remote sensing, in
addition to the in situ observation networks, is being increasingly used to provide informa-
tion on these variables at multiple spatial and temporal scales, independent of geopolitical
boundaries. Remote sensing has been demonstrated to be an effective tool for monitoring
crop growth and predicting yields over local, regional, national, and global scales [15–17],
and there are two primary methods used: the assimilation of remote-sensing data into
crop growth models [18,19], and using remote-sensing data as inputs for empirical and
machine learning (ML) methods [20–23]. The former retrieves yield by simulating crop
growth processes using a series of mathematical equations that describe crops’ physical
and physiological processes. The latter method only needs to identify the relationships
between remote-sensing data and yields.

Process-oriented crop growth models have been extensively applied to simulate and
predict production around the world. Among the existing crop models, AquaCrop is used
for the estimation of crop yield under multiple environments. It is a crop water productivity
model developed by the Land and Water Division of the FAO (Food and Agriculture
Organization) in 2009 [24,25]. It simulates yield responses to the water level of crops, crop
growth stages, biomass accumulation, and yield. Empirical regression models predict
outputs by relating remote-sensing data, usually vegetation indices, and measured output
at different times and spatial scales. Crop yield predictions have been made possible using
data from a single satellite image at the peak of crop development, which encompasses
the critical period for production [26,27] or from a time series of images and vegetation
indices [20,28]. A main drawback of empirical models that estimate yield from spectral data
is that their application is limited to the regions for which they were calibrated. However,
these empirical models are often preferred because they require fewer data and are simple
to implement at the regional scale [29]. As an immediate successor to regression models,
ML can be used to analyze the hierarchical and non-linear relationships between predictor
variables and response variables, and usually performs better than traditional regression
methods regarding the goodness of fit. ML can effectively analyze spectral data and account
for factors that affect yield, such as management practices, environmental conditions, and
crop variety, and it is widely used in yield prediction [12,30,31].

Most modeling approaches require a substantial number of input data, which creates
a limitation in their usefulness for research purposes and other decision-making activities.
Additionally, studies support that they are not suitable for predicting crop yields at a large
scale because of the massive requirements for inputs and calibration data [32,33]. It is
considered ideal for a model to at least have information about soil composition, weather,
and management practices. Still, more often than not, these data are not accessible or
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available [6,34]. However, with the introduction of publicly available datasets, the advance-
ment of computational ability, and the development of massive data-processing technology,
the integration of data with different spatial and temporal resolutions into empirical and
semi-empirical processes, crop growth models, and lately ML techniques, has enabled
operational as well as large-scale applications [35,36]. Such freely available products are
the satellite and agro-meteorological data provided by the Copernicus program. The
Sentinel-2 mission, launched by the European Space Agency as part of the Copernicus
program, has been a great step forward for continuous crop monitoring. ERA5-Land and
ERA-5 climate reanalysis agro-meteorological data are generated by the European Centre
for Medium-Range Weather Forecasts and are freely distributed through the Copernicus
Climate Data Store. They include hourly data at the surface level consisting of most of
the essential meteorological variables that affect crop development and yield. Finally,
SoilGrids [37] produces maps of soil properties for the entire globe at a medium spatial
resolution (250 m) using state-of-the-art ML methods to generate the necessary models.
As inputs, it takes soil observations and environmental covariates describing vegetation,
terrain morphology, climate, geology, and hydrology. Thanks to the characteristics of new
technologies and freely available data, commercial services have already been developed
for operational applications that make it possible to predict yield at national, regional,
parcel, and pixel levels.

The objective of this study is to test a number of methods that could potentially be
used under an operational framework for a continuous in-season and/or post-season wheat
yield assessment by including the short- and long-term effects of meteorological events on
crop production and fully exploring Copernicus data sets. Three modelling approaches,
namely, a process-based crop growth model, a regression semi-empirical model, and an
ML approach, are evaluated with respect to estimating the yield of 184 durum wheat
parcels in two distinct regions for two growing seasons. In addition to the timeliness
and spatial scale, yield predictions also depend on rapid methods and accessible data.
The essential point of these methods is that they are built on a fusion of freely available
satellite-derived vegetation indices, agrometeorological variables, soil, and crop phenology
data without the need for a detailed input dataset. The examined methods enable in-
season or post season predictions of anticipated yields over large geographic regions to
understand grain-related self-sufficiency, climate change, and sustainable socioeconomic
and ecological development.

2. Materials and Methods
2.1. Study Sites and Parcels’ Data

Data from a total of 184 durum wheat parcels (Triticum turgidum subsp. durum)
were used to evaluate the three modeling approaches. The parcels were located in the
prefectures of Kozani (n = 22), northern Greece, and Larisa (n = 162), central Greece. The
crops were established during the 2019/20 (n = 70 Larisa) and 2020/21 (n = 114 Larisa and
Kozani) growing seasons, under contractual farming (Figure 1). In these regions, wheat
and barley are the main winter crops (sown from October to December and harvested
from mid-June to early July) grown in rotation with summer crops (e.g., cotton, maize, and
sunflowers) [38]. Winter wheat is cultivated under rainfed conditions, but when water
is available for irrigation, it is applied during flowering. This study included irrigated
parcels (one irrigation event: n = 45 parcels; two irrigation events: n = 12 parcels). The
irrigations were applied in their vast majority during the 2020–2021 growing season and
only in Larisa region.
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Figure 1. Study areas and parcels.

The climate of the selected sites can be broken down into two sub-types: (i) a low-
land Mediterranean climate with drier summers and colder winters, and (ii) a continental
Mediterranean climate with some of the continental climate characteristics typical of Balkan
regions further north. This climatic variability found in Greece can be attributed to the com-
plex topography. The rainfall pattern typical of Mediterranean coastal areas is characterized
by dry spells in summer and a rainy season from mid-autumn to mid-spring [39].

The size of the parcels ranged from 0.1 to 10.5 ha. The geospatial data such as the
location and perimeter of the fields; the final amount of production, which ranged from 500 to
6740 kg ha−1; the sowing dates (3 November 2019 to 9 December 2019 and 25 October 2020
to 8 October 2020); the harvest dates (8 June to 31 June); and the irrigation dates and events
were provided by Melissa Kikizas, SA. Rainfall during the 2019/20 growing season amounted
to 509 mm in Larisa, while in 2020/21 it amounted to 450 mm in Kozani and Larisa, with
significant variations in rain distribution between the two years and the two areas, especially
during the flowering period (April–May). The average maximum daily temperature during
the 2020/21 growing season in Kozani was 14.5 ◦C (−7.1 to 33.5 ◦C) and 15.8 ◦C (–0.9 to
32.4 ◦C) in Larisa, while in 2019/20 in Larisa it was 17.4 ◦C (5.2 to 38.4 ◦C). Based on official
data, the average observed durum wheat yield in the region of Kozani is 2300 kg ha−1, while
for Larisa it is 3500 kg ha−1.

Crop management included conventional soil tillage followed by seedbed prepara-
tion mainly with disc harrow and cultivator. Parcels were fertilized with approximately
120–150 kg N ha−1 applied in split doses (60% before sowing as ammonium phosphate
and 40% at the end of tillering stage as ammonium nitrate). Plant diseases and weeds were
controlled by applying recommended fungicides (mainly in Larisa) and herbicides, at the
doses suggested by their manufacturers.

2.2. Agro-Meteorological and Soil Data

Gridded agro-meteorological data for the 2019/20 and 2020/21 growing seasons at
a deg resolution of 0.1 × 0.1 (approx. 12.5 km) and of 0.25 × 0.25 (approx. 25 km) were
derived from the ERA5-Land and ERA5 re-analysis, respectively, generated by the European
Centre for Medium-Range Weather Forecasts and freely distributed through the Copernicus
Climate Data Store. They included hourly data consisting of 2 m air temperature, total
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precipitation (at surface level), and all the necessary variables to obtain the reference
evapotranspiration (ETo) values with the Penman–Monteith equation proposed by the
FAO56-PM. These parameters were aggregated into daily means and/or sums using
Climate Data Operator (CDO) software [40]. Additionally, minimum and maximum daily
air temperatures were derived. The growing degree days (GDD) of wheat were calculated
by simple arithmetic accumulation of daily mean temperature above the base temperature
value of 0 ◦C considered for wheat crop. GDD (◦C) were calculated as suggested by [41]:

GDD =
Tmax + Tmin

2
− Tb (1)

where Tmax and Tmin are the daily maximum and minimum temperature (◦C), and Tb is the
base temperature.

The soils’ physical properties for the 184 durum wheat fields were obtained from
the SoilGrids database. SoilGrids is considered a convenient solution to obtain soil data
because it is a gridded multiple depth dataset at a 250 m spatial resolution and it is available
worldwide [42]. Soil information obtained from SoilGrids has been used in prior studies as
a proxy for the determination of soil hydraulic properties [36,43,44]. The SoilGrids REST
(representational state transfer) application-programming interface was used to request
the products sand, silt, clay, bulk density, and organic carbon content at five standard
layers (5–15, 15–30, 30–60, 60–100, and 100–200 cm). These soil properties were used to
calculate soil water constants (field capacity, θFC, permanent wilting point, θPWP, and
saturated hydraulic conductivity, Ksat) with the application of pedotransfer functions [45],
representative of the soil profile layers (0–15, 15–30, 30–60, 60–100, and 100–200 cm).

2.3. Satellite Data

An average number of 25 and 22 cloud-free multispectral high-resolution images
from Sentinel-2A and 2B were acquired during 2019/20 and 2020/21 wheat-growing
seasons, respectively. The multi spectral instrument (MSI) on board the Sentinel-2A/2B
captures data at 10, 20, and 60 m of spatial resolution over 13 spectral bands with a
high temporal resolution of five days at the equator. Individual Sentinel-2, Level 2A
granules were acquired from Copernicus Open Access Hub (https://scihub.copernicus.
eu/), already ortho-rectified in UTM/WGS84 (image tiles of 100 × 100 km2). In order
to obtain homogeneous and comparable products as time series, the vegetation indices
NDVI (Normalized Difference Vegetation Index) and GreenWDRVI (Wide Dynamic Range
Vegetation Index) were calculated based on atmospherically corrected Level-2A-Bottom-
of-Atmosphere reflectance data. The images were cropped to the polygons’ (parcels’)
geometry. NDVI and GreenWDRVI averages were assessed for pixels falling within each
parcel, after excluding pixels affected by boundary effects. The equations to obtain the
NDVI and the GreenWDRVI are as follows [46,47]:

NDVI =
NIR − Red
NIR + Red

(2)

GreenWDRVI =
a·NIR − Green
α·NIR + Green

+
1 − α

1 + a
(3)

where Red is the B4 band of Sentinel-2 MSI, Green is the B3 band, NIR is the near-infrared
B8 band of Sentinel-2 MSI, and a is a chlorophyll absorption coefficient, equal to 0.1. A
2nd-order polynomial relating the GreenWDRVI and LAI (Leaf Area Index) [48] of wheat
was used prior to determining the canopy cover:

LAI = 5.7 · GreenWDRVI2 + 1.7 · GreenWDRVI − 0.08 (4)

https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
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Lastly, the canopy cover of wheat was estimated throughout the growing season with
the exponential equation [49]:

CCRS(%) = 94 · [1 − exp(−0.43·LAI)]0.52 (5)

where CCRS is the canopy cover derived from spectral data.
According to the NDVI and reflected phenology, the wheat parcels were classified under

4 different growth dynamics patterns: 1. presenting a high initial growth rate; 2. a moderate
initial growth rate; 3. a low initial growth rate; and 4. a very low initial growth rate observed
in the Kozani region. A range of the average per parcel NDVI time series from the middle of
November until the beginning of July is displayed in Figure 2a–d.

NDVI values assumed an upward trend from early December to the middle of April
showing a high variability as the crop cycle progressed, with the highest being observed
during the early reproductive stages. NDVI peak values and major ground cover were
reached at different dates, even within the same year and region. Afterwards, a gradual
decrease followed until early June and towards the harvest. It was noted that in almost all
parcels a similar phenology was observed during the reproductive and maturity stages.
A preliminary data analysis revealed that the wheat variety had little effect on the initial
canopy development; thus, the growth rates were mainly affected by factors such as climatic
conditions, soil properties, and to a lesser extent anthropogenic activities (e.g., sowing
dates). The significant difference that is shown in the very low initial growth rate class
[Figure 2d] is explained by the prevailing weather conditions in the Kozani region. Kozani
has been built between the mountain ranges of Vermio, Burino, and Pieria, at an altitude
of 720 m above sea level, whereas Larisa has an average altitude of 70 m above sea level
and a typical Mediterranean climate with higher temperatures over the first months of the
season, which allow for faster crop development during the initial wheat stages.
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Figure 2. (a–d) Reflected phenology, expressed as the NDVI for the 2019/20 and 2020/21 cropping
seasons, versus time of the (a) high initial growth rate wheat parcels (n = 53), (Larisa region),
(b) moderate initial growth rate wheat parcels (n = 68) (Larisa region), (c) low initial growth rate
wheat parcels (n = 41) (Larisa region), (d) very low initial growth rate wheat parcels (n = 22) (Kozani
region). The black line is the representative–average line of the growth rate.

2.4. Yield Prediction with a Semi-Empirical Regression Model Based on Sentinel-2-Derived NDVI

Biomass is traditionally estimated through destructive, time-consuming, in situ meth-
ods; more recent estimates are based on remotely sensed data, such as vegetation indices
(Vis). Many previous studies have examined approaches for within-season and post-season
biomass and/or yield estimation using Vis [10,18,28,50,51]. In this study, relationships
between Sentinel-2-derived NDVI and above-ground biomass were explored in order to
determine the transfer function with the best fit for wheat yield estimation and to examine
whether its results could be reproduced for different years and locations. To this aim,
biomass data were collected for calibration and validation. The sampling campaign was
conducted during the 2019/20 growing season. In situ above-ground biomass was collected
from 10 parcels in the region of Larisa (Figure 3).

Measurements were conducted at weekly intervals during the wheat-growing season
(October–May). At each parcel, 5 representative plants were collected from 3 randomly
selected sampling sites; the plants were separated into leaves, stems, and grains and
were dried in an oven for 48 h at 65 ◦C. The total dry biomass weight was averaged and
multiplied by the number of plants per m2 to calculate the biomass per square meter at
each sampling point.
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Cloud/shadow free Sentinel-2 images from sowing until harvest date were selected.
For each measurement date, values of NDVI were extracted from the beginning of the
growing season until the day plant biomass was measured. Sentinel-2 images within
±3 days of the ground data collection dates were considered acceptable.

The transfer functions were based on the cumulative VI approach, and in accordance
with [20], the NDVI index was selected. NDVI is closely related to the vegetation vigor
and has been recognized for its ability to monitor crops and as an estimator of crop yields
since early 1980s. NDVI has an asymptotic non-linear relationship with the green LAI of
some crops. A variation in LAI implies different intercepted radiation that, according to the
radiation use efficiency, is directly related to the production of biomass that will determine
the possible yield [52].

For each sampling parcel, the area under the curve, formed by the day of the year
(DOY) and NDVI curve, was calculated through numerical integration, representing the
value of the cumulative NDVI [20,53]. Several power transfer functions between cumu-
lative NDVI and biomass were produced as regression functions. The derived models
were evaluated using goodness-of-fit criteria, namely, coefficient of determination (R2),
the root mean square error (RMSE), and the normalized RMSE (nRMSE) (see Section 2.6.1.
Equations (8)–(10)). These measures indicate the degree of association between predicted
and estimated values of the same parameter and give an indication of prediction effi-
ciency [54,55]. In addition, Richter at al. [56] recommended this combined set of measures
(R2, RMSE, and nRMSE), amongst others, for the comprehensive quantification of veg-
etation biophysical models’ performance. The cumulative NDVI showed a moderate
performance for the estimation of total dry above-ground biomass of durum wheat (RMSE:
389.4 kg ha−1, nRMSE: 24.6%, R2: 0.68), yielding a power regression equation of the form:

Biomass
(

gm−2
)
= 3.1375·

[∫ d2

d1

NDVItdt
]1.2874

(6)

where NDVIt represents the NDVI curve, d1 is the first day of the integral that coincides
with the sowing date, and d2 is the harvest date. Yield was calculated by the equation:

Yield
(

gm−2
)
= 0.42·Biomass (7)

where 0.42 is the harvest index of durum wheat, selected as a representative of the dynamics
of modern wheat varieties grown under Mediterranean conditions, such as the ones used
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in this study [57,58]. Previous studies have also reported similar results by fitting power or
exponential regression equations to pairs of spectral indices and measured biomass [18,20].

The estimation accuracy of this transfer function, and its potential to be applied in
different areas (regions of Larisa and Kozani) and different years (2019/20, 2020/21) was
examined against yield data from the 184 wheat parcels.

2.5. Yield Prediction with a Machine Learning Data Fusion Model

Meteorological phenomena have the potential to significantly influence crop growth
and yield [59]. In rainfed production systems such as those that include winter wheat,
climate variability is responsible for as much as 80% of the variability in the agricultural
production [60]. Consequently, understanding how the growth and development of rainfed
wheat respond to climate variability, and employing various meteorological variables for
early gross estimates of final yield, is of great importance for agricultural policy and market
planning [22,61]. Simultaneously, biotic, genotypic, and management factors influencing
crop growth reflected in crop phenology and development can be detected from satellite
images. Therefore, the inclusion of remote-sensing observations can improve yield pre-
diction by providing an opportunity for the real-time monitoring of crop growth status.
ML algorithms have been widely used in crop yield prediction. ML regression models that
use meteorological parameters (e.g., precipitation and temperature), remote sensing, soil
conditions, and agricultural practices as explanatory variables have shown adequate ability
to predict wheat yields [22,23,62,63].

In this study, weather data were combined with remotely sensed VIs for predicting
field-scale wheat yields, adopting a number of ML regression algorithms, along with two time
aggregation intervals (disaggregated or aggregated data) and two feature selection methods
(based on Pearson Correlation Coefficient or SHAP feature importance). The regression
algorithms used the following dependent variables: daily meteorological data (Tmin, Tmax,
Tavg, ETo, and Precipitation), the average NDVI (NDVIavg) of the parcel, and whether or not
irrigation was applied. Only parcels and yield data for the 2019/20 and 2020/21 growing
seasons in the Larisa region (n = 162) were included in the inputs. The independent variable
was the yield of the parcels in kg ha−1. NDVIavg values were linearly interpolated to generate
a daily time-step NDVI time series. Then, the growing season was divided into crop growth
stages based on the cumulative GDD (0–700 Pre-Tillering, 700–1000 Tillering, 1000–1450 Stem
Elongation, 1450–1700 Booting, and 1700–2300 Flowering). Data from sowing to the end of
flowering were used, aiming to predict the yield approximately one month before harvest.
Then, two methods of aggregating the data were tested. The first received the average value of
the input data throughout the selected growing period, while the second received the average
value of the data for each crop growth stage separately. It was decided to follow the second
method, as it showed slightly better interpretability.

Machine learning algorithms were fitted to the data using Scikit-learn, an open-source
ML library. Nine estimators were evaluated, including: LR (Linear Regression), Ridge
Regression (RR), Lasso (Least absolute shrinkage and selection operator), SVR (Support
Vector Regression), KNN (K-Nearest Neighbors Regression), Decision Tree (DT), Random
Forest Regression (RF), Gradient-Boosting Decision Tree Regression (GBDT), and eXtreme
Gradient-Boosting Regression (XGBoost). LR is regarded as the benchmark statistical
model. RR and Lasso apply L2 (squared magnitude of coefficients) or L1 (absolute value of
the magnitude of coefficients) penalty terms to minimize overfitting and shrink the less
important coefficients, respectively. SVR can minimize the error by making a hyperplane
and maximizing the margin between predicted and observed values. KNN is a type of
instance-based method that locates the k-closest points known to the model around an
input sample to make the prediction. DT is an upside-down tree-like structure model that
makes binary decisions to partition the data from the root node to the leaf nodes. RF is a
bagging-based ensemble-learning technique combining a large set of decision trees that
are built by selecting random features from the training dataset. GBDT and XGBoost are
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two implementations of ensemble methods based on gradient-boosting trees that make
predictions sequentially and try to combine the weak predictive tree models.

2.6. Yield Prediction with a Process-Based Crop Growth Model: AquaCrop

AquaCrop simulates crop yield in four steps: crop development, crop transpiration,
biomass production, and yield formation. It calculates the daily soil water balance and di-
vides evapotranspiration into soil evaporation and crop transpiration. AquaCrop describes
the foliage development of the crop by the canopy cover (CCAC), which is the fraction
of soil surface covered by the green canopy. Transpiration is a function of canopy cover,
while evaporation is proportional to the area of soil not covered by vegetation. The canopy
cover is multiplied by the reference evapotranspiration (ETo) and the crop coefficient (Kc)
to calculate potential crop transpiration. Actual transpiration (Ta) is calculated starting
from the potential by accounting for water stress. Then, Ta is used for the calculation of
crop biomass through its multiplication with water productivity normalized for climate.
By using a harvest index, crop yield is obtained by the biomass [19,24,64,65]. A further
detailed conceptual description of AquaCrop is available in Raes et al. [66], Raes et al. [66],
and Steduto et al. [24]. Model parameters are grouped into two classes: conservative and
non-conservative. Cultivar-specific or less conservative parameters vary depending on
crop and field management, soil type, and climate (sowing date and density, length of crop
cycle and phenological stages, maximum canopy cover, etc.). Conservative crop parameters
do not change materially with time, management practices, and geographic location. The
canopy growth (CGC) and canopy decline (CDC) coefficients are considered two of the
most important conservative parameters to calibrate the CCAC [67].

In this study, a number of non-conservative parameters were calibrated with regard to
local management information, such as sowing dates and plant densities, flowering date
and duration, and the onset of senescence and maturity. These parameters are provided in
Table 1. The model was applied under Calendar Days (CD) mode. Water stress was the
only growth-limiting factor considered during AquaCrop implementation. Soil data were
retrieved from the SoilGrids database, up to a soil profile depth of 2 m, for each parcel.

Table 1. User-specific parameters used in simulation.

Parameter Units Default Minimum, Medium,
and Full Data Input

Soil surface covered by an individual seedling at (90%) recover cm2/plant 1.50 1.50
Number of plants per hectare Hm−2 4,500,000 2,500,000

Maximum canopy cover (CCx) % 96 90–93
Calendar Days: from sowing to emergence d 13 13

Calendar Days: from sowing to maximum rooting depth d 93 93
Calendar Days: from sowing to start senescence d 158 178

Calendar Days: from sowing to maturity (length of crop cycle) d 197 221
Calendar Days: from sowing to flowering d 127 150

Length of the flowering stage (days) d 15 20
Maximum effective rooting depth m 1.5 0.3

Reference Harvest Index (HIo) % 48 42
Water productivity (WP) gm-2 15 17

Three runs were performed per parcel containing different levels of information:

1. CGC and CDC retrieved from AquaCrop default values on wheat without considering
any irrigation event (minimum data input);

2. CGC and CDC calibrated to the canopy cover derived from remote-sensing data
(CCRS) without considering any irrigation event (medium data input);

3. CGC and CDC calibrated to CCRS, including the irrigation events (one event:
n = 45 parcels; two events: n = 12 parcels) applied during the 2020/21 growing season
(full data input).
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The purpose of the selected simulations was to investigate the potential of AquaCrop
to predict biomass and yield under a minimum, medium, and full input data scheme.

Canopy cover data can be derived from empirical relations with different VIs based
on satellite measurements in the optical and near-infrared bands. In particular, the 30 m
Landsat data [68], the 10 m Sentinel-2 data [69], and the 3 m PlanetScope data [70,71]
have been extensively used in agricultural applications [72]. Many studies assimilated
directly [19,73] or adjusted [67,74] canopy cover in AquaCrop, either from field measure-
ments or remote-sensing data. In this study, representative CCRS curves of the different
wheat growth classes were selected to calibrate the CGC and CDC, thereby enabling a
full exploitation of satellite data. During calibration, these parameters were varied until
satisfactory agreement was achieved between CCRS and simulated CCAC, verified by the
statistical metrics panel of AquaCrop (Figure 4). The calibrated values are provided in
Table 2. The same value was kept for the CDC in all classes, since the reduction in NDVI in
the wheat parcels follows approximately the same trend during senescence.
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Table 2. Calibrated conservative parameters of AquaCrop used in simulation.

Conservative Parameters Units Default Medium and Full Data Input Scheme

Canopy growth
coefficient (CGC) Fractiond−1 0.049

High Initial Growth class 0.085
Moderate Initial Growth class 0.069

Low Initial Growth class 0.054
Very low Initial Growth class 0.035

Canopy decline
coefficient (CDC) Fractiond−1 0.0718

High Initial Growth class

0.0605
Moderate Initial Growth class

Low Initial Growth class
Very low Initial Growth class

2.6.1. Performance Evaluation Metrics

The ability of AquaCrop to predict yield was assessed by adopting a number of
statistical metrics. The Model Efficiency (ME) [75], the coefficient of determination (R2),
the root-mean-square error (RMSE), the normalized RMSE (nRMSE), the bias, and the
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Willmott’s index of agreement (d) [76] were selected as performance evaluation metrics.
These metrics are mathematically expressed as:

ME = 1 − ∑n
i=1(xi − yi)

2

∑n
i=1
(
xi − xavg

)2 (8)

R2 =

(
∑n

i=1 yi − yavg
)2(

∑n
i=1 xi − yavg

)2 (9)

RMSE =

√(
∑n

i=1 xi − yavg
)2

n
(10)

nRMSE =

√(
∑n

i=1 xi − yavg
)2

n

/
yavg

(11)

ias =
1
n ∑n

i=1(yi − xi) (12)

d = 1 − ∑n
i=1(yi − xi)

2

∑n
i=1
(∣∣yi − xavg

∣∣+ ∣∣xi − xavg
∣∣)2 (13)

where xi is the ith measurement, yi is the corresponding model estimate, yavg is the mean
value of the model estimates, xavg is the mean value of the measurements, and n is the
number of samples. Generally, the larger R2 is, the better the model’s fit is. The ME is a
measure of the mean square to the observed variance. The smaller the departure from
(xi–xavg), the higher the performance efficiency of the model. Values of ME range between
1 and –∞, where ME = 1 denotes perfect model fit and ME = 0 means that the error is
the same magnitude as the observed variance and the observed mean value is as good
a predictor as the model. The ME has no lower limit. The RMSE and the bias have the
same unit as that of the variable being simulated. The closer the RMSE is to zero, the
better the model’s simulation performance. The range of the nRMSE metric generally
defines the model’s accuracy. A value of nRMSE < 10% indicates that the estimated and
measured values are highly consistent, the range 10% < nRMSE < 20% indicates good con-
sistency, while the range 20% ≤ nRMSE < 30% indicates medium consistency, and finally
nRMSE ≥ 30% indicates poor consistency. The bias refers to the tendency of overestimation
or underestimation and d represents the ratio of the mean square error and the potential
error (1 indicates a perfect match, and 0 indicates no agreement).

3. Results
3.1. Evaluation of the Semi-Empirical Regression Model

The wheat yield datasets from the 2019/20 and 2020/21 growing seasons were selected
to validate the estimation accuracy of the derived transfer function. The statistical analysis,
presented in Table 3, revealed moderately strong correlations (RMSE, nRMSE, and R2 equal
to 1076 kg ha−1, 28.5%, and 0.26, respectively) between the estimated and measured wheat
yields. The RMSE range of 697 to 444 kg ha−1 and nRMSE values as high as 27% have
been reported [28] for rainfed wheat and barley yield estimations with the cumulative
NDVI approach applied to Spain. Linear models relating the MODIS NDVI and wheat
yield, calibrated with different growing season data in Argentina, resulted in a wide range
of R2 values from 0.08 to 0.69 when applied for inter-annual yield estimation [29]. The
researchers supported that the inter-annual variation observed indicates the influence of
agrometeorological conditions on the yield estimation by the NDVI. A previous study [77]
used NDVI and weather data to estimate the wheat yield in Morocco and found that the
NDVI appeared to contain most of the information on rainfall and explained most of the
grain yield variability.
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Table 3. Statistical evaluation of the transfer function (n = 184).

Statistical Metric Units Results

Average estimates kg ha−1 3720
Average measured kg ha−1 3774

std estimates kg ha−1 811
std measured kg ha−1 1252

Value range estimates kg ha−1 1450–5320
Value range measured kg ha−1 500–6740

RMSE kg ha−1 1076
nRMSE % 28.5

R2 – 0.26

In this study, environmental and management—rather than genotype—factors were
considered significant for explaining the variability in the final received yield, both within
the same region and between regions (Larisa and Kozani). The predictability of the grain
yield by the transfer function was affected by these factors, which reflect differences in
yield formation, as a main response to the limited water availability during flowering and
grain filling (2020/21 growing season). However, these differences could not be reflected
in the wheat canopies with high and moderate initial growth rates (n = 121). This is also
evident in the statistical results received after the exclusion of irrigated parcels. In this case,
the calculated metrics only slightly improved (RMSE, nRMSE, and R2 equal to 983 kg ha−1,
28.6%, and 0.37, respectively). This indicates that any management decision received
slightly before or during flowering to improve the final yield (irrigation and/or growth
regulators) did not result in an equal adjustment of the phenology curve because the NDVI
had already reached high values by that time. The NDVI increased until the onset of
flowering, receiving the highest values by early to mid-April, while also determining most
of the cumulative NDVI, which is calculated by the area under the curve.

Studies support that at the grain-filling stage, the NDVI decreases up to 0.3 because
the crop becomes stressed and its capacity to absorb PAR is reduced [78]. Since the area
under the curve becomes considerably steep after the reproductive stage, the contribution
of the cumulative NDVI in Equation (6) becomes minimal during this time period, hardly
affecting the final estimated yield. Therefore, this method is able to predict the final yield’s
magnitude approximately 40 days before harvest. The calculations continue throughout
the growing season and the prediction improves as new cloud-free satellite images become
available until harvest. The results demonstrate a clear potential to operationally predict
the levels of the final yield when reaching the end of the growing season. Though the
prediction accuracy can be characterized as low with 20% < nRMSE < 30%, the estimated
biomass can be interpreted to yield, which can then be visualized per pixel in productivity
maps immediately after sowing. The real-time acquisition and spatial continuity of remote-
sensing data can effectively enhance the applicability of such regression relationships
between biomass and spectral indices at regional scales. Furthermore, the estimated
biomass can be used to optimize the crop parameters used in crop growth models to obtain
the optimal simulated biomass.

3.2. Evaluation of the Machine Learning Estimator

Due to the small sample size (n = 162 parcels), as well as the structure of the data, it
was decided to evaluate the models using the Leave-One-Out Cross Validation (LOO CV)
method, as the separation into training/testing validation would lead to biased subsets.
Both data aggregation methods were tested in terms of accuracy: 1. using the mean
parameter values from sowing until approximately one month prior to harvest as inputs
and 2. using the mean values of the pre-determined crop growth stages as inputs. The
coefficient of determination, R2

train, and RMSEtrain (Equations (9) and (10)) between the
predicted yield and the observed yield were used for the models’ performance evaluation.
Firstly, the LOO CV based on the training data was evaluated, because this procedure can
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estimate the robustness and generalization of the models. Secondly, the same evaluation
method based on the test data was implemented (R2

test and RMSEtest). After fitting the ML
estimators to the input data, the statistical criteria were calculated and the ones with the
best performance are provided in Table 4.

Table 4. Statistical evaluation of yield estimates with the best-performing ML algorithms for parcels
in the region of Larisa (n = 162).

Data Aggregation Algorithm RMSEtest
(kg ha−1)

Std(RMSE)
(kg ha−1) R2

test
RMSEtrain
(kg ha−1) R2

train

Mean parameter values from
sowing until one month

prior to harvest

Random
Forest (RF) 558.6 393.1 0.64 207.2 0.95

Mean parameter values using as
input the mean values of each

crop growth stage

eXtreme Gradient
Boosting

(XGBoost)
526 376.3 0.68 0.001 1

An attempt was made to select features both by the criterion of the importance that
the respective model assigns to the features (feature importance) and with the SHAP
values. Although features that did not make a significant contribution to performance
prediction and are theoretically a source of noise were removed, both the interpretability
and prediction accuracy decreased.

From the statistical evaluation of the above findings regarding the performance of the
ML algorithms with respect to the estimation of yield, the phenomenon of overfitting is
evident. That is, while the model trains well on existing data, it fails to reliably predict
new data that is unknown to it. This phenomenon is due both to the small size of the
dataset compared to the complexity of the problem and to its structure. The results from
this approach suggest that the ensemble learning methods RF and XGBoost achieve the
best performance and this finding is in agreement with previous studies. Ruan et al. [63]
included eleven statistical and machine learning techniques for predicting field-scale wheat
yield and found that the two ensemble learning models RF and XGBoost were most accurate
in prediction, with R2 values in the range of 0.74–0.78 and RMSE values in the range of
780–850 kg ha−1. Cao et al. [79] adopted MLR, XGBoost, RF, and SVR algorithms and
three datasets including MODIS EVI, climate data, and the subseasonal-to-seasonal (S2S)
atmospheric prediction data to estimate winter wheat yield. The results showed that among
the four models, XGBoost possessed the highest skill with the S2S prediction as inputs, with
an R2 of 0.85 and an RMSE of 780 kg ha−1. Ang et al. [80] employed the RF and AdaBoost
algorithms to estimate oil palm yield prediction from multi-temporal remote-sensing data.
The results of the study revealed that the RF model outperformed the AdaBoost model.
Kamir et al. [81] used nine base learners and two ensemble (average ensemble and Bayesian
fusion) methods to estimate wheat yields across the Australian wheat belt from climate data
and satellite image time series. The results showed that SVR with a radial basis function
emerged as the single best learner with an R2 of 0.77 and RMSE of 550 kg ha−1 at the pixel
level, and the ensemble techniques did not show a significant advantage over the single
best model.

3.3. Evaluation of AquaCrop for Yield Prediction

AquaCrop was evaluated for yield prediction under a minimum, medium, and full
data input scheme. The calculated statistical metrics that were employed to evaluate the
goodness of fit in these approaches are summarized in Table 5. The reason to follow a
minimum data requirements framework was to investigate whether the model has the
potential to provide safe results through a simplified approach with respect to data inten-
siveness. Winter wheat is a typical rainfed crop for Greece and the Mediterranean region
in general [82]; however, in order to achieve high yields, farmers apply water, usually
originating from deep boreholes that are used for irrigation purposes. Data on the timing



Agriculture 2022, 12, 1635 15 of 23

and amount of applied water is scarce, leading inevitably to yield simulation uncertainties
in regional and large-scale applications. The aim of this approach was to reduce the cali-
bration workload and facilitate simulation when the parcel-level management conditions
are unknown—especially irrigation events, since zero fertility stress was assumed and
crop phenology was provided as a common characteristic of the studied wheat varieties.
Previous studies have also investigated the potential of AquaCrop to estimate biomass
and yield under limited field-based data availability [72,83]. A successful minimum or at
least medium input simulation could encourage the regional implementation of the model,
which could drive in-season and post-season adaptation strategies for food security. How-
ever, in the case of a minimum data requirements scheme, the statistical metrics between
the measured and simulated values (Table 5) revealed that AquaCrop could not simulate
wheat yield successfully. This is indicated by the low values of the ME, bias, d, and R2 of
−0.4, −70.6, 0.485, and 0.05, respectively, as well as a high absolute and relative magnitude
of difference between the simulated and measured final yields (RMSE = 1500 kg ha−1 and
nRMSE = 39.6%). The under-calibrated model significantly underestimated yield, which
can be attributed to the limited rainfall and heat stress during the flowering and grain-filling
stages in 2020/21 that resulted in the prediction of very low yields. The high yield levels
obtained by irrigation (>4500 kg ha−1) during 2020/21 could not be achieved by the model
running under rainfed mode, leading to large prediction inaccuracies.

Table 5. Statistical evaluation of yield estimates with AquaCrop (n = 184).

Statistical Metric Units Minimum
Data Requirements

Medium
Data Requirements

Full
Data Requirements

Average estimates kg ha−1 3080 3110 3731
Average measured kg ha−1 3774 3774 3774

std estimates kg ha−1 757 1067 1150
std measured kg ha−1 1252 1252 1252

Value range estimates kg ha−1 850–4670 750–4810 750–6370
Value range measured kg ha−1 500–6740 500–6740 500–6740

ME − −0.4 0.4 0.8
RMSE kg ha−1 1500 996 569

nRMSE % 39.6 26.5 15.1
bias kg ha−1 −70.6 −38.6 −4.31

d − 0.485 0.827 0.942
R2 − 0.05 0.50 0.80

On the other hand, a medium data requirements scheme was applied, based on a
calibrated simulation of canopy cover, because it is central to AquaCrop performance,
as it affects the rate of transpiration and, consequently, biomass accumulation and final
yield prediction. The calibration of CCAC led to a significant improvement of the statistical
metrics. Specifically, the tendency to underestimate was reduced from −70.6 to −38.6 and
the R2 increased from 0.05 to 0.50, thus indicating that the calibrated CCAC model better
explained the variance of the observed yield values. The estimation errors also decreased,
with the nRMSE decreasing from 39.6% to 26.5%, the RMSE decreasing from 1500 kg ha−1

to 996 kg ha−1, and the ME increasing significantly from −0.4 to 0.4.
In spite of the improved accuracy obtained with the calibration of the CCAC, the re-

sults still discourage the large-scale and limited data availability applications of the model.
However, by excluding the irrigated parcels from the statistical analysis (Table 6), the results
obtained with the CCAC calibration improved significantly and became comparable with
those reported in previous studies. The RMSE values of 616 kg ha−1 and ME of 0.80 are
consistent with the ranges reported by Xing et al. [84] (330 to 580 kg ha−1), as well as the
model efficiencies of 0.78 when the researchers applied AquaCrop for wheat yield simula-
tion. RMSE values of 580 kg ha−1 (nRMSE = 11.9%) were also calculated by Iqbal et al. [85]
who applied AquaCrop for three years of wheat cultivation. A study conducted to assess
the performance of AquaCrop to simulate the spring wheat yield in Western Canada [86]
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produced R2 and RMSE values of 0.66 and 743 kg ha−1, respectively. Lower RMSE values
of 320 kg ha−1 and ME of 0.82 were found for a grain yield simulation under varying water
regimes on winter wheat in Turkey [87]. RMSE, nRMSE, and R2 values of 550 kg ha−1, 8.77%,
and 0.82, respectively, were found by the assimilation of winter wheat biomass retrieved from
remote-sensing data via AquaCrop, in Beijing, China [18]. AquaCrop was calibrated and
evaluated for yield prediction in a field experiment of spring wheat for two growing seasons
in Egypt, producing RMSE, d, and R2 values of 555 kg ha−1, 0.93, and 0.84, respectively [88].

Table 6. Statistical evaluation of yield estimates with AquaCrop only for rainfed parcels (n = 127).

Statistical Metric Units Minimum
Data Requirements

Medium
Data Requirements

Average estimates kg ha−1 320 343
Average measured kg ha−1 345 345

std estimates kg ha−1 600 1128
std measured kg ha−1 1233 1233

Value range estimates kg ha−1 1500–3200 750–6220
Value range
measured kg ha−1 1250–6700 1250–6700

ME – 0.2 0.8
RMSE kg ha−1 1086 616

nRMSE % 31.5 17.9
bias kg ha−1 −24.4 1.3

d – 0.623 0.930
R2 – 0.27 0.75

Figure 5a,b show the linear correlation between simulated and observed grain yield for
the 127 rainfed wheat parcels. In the calibrated CCAC, the linear trendline deviates slightly
from the desirable straight line, x = y, and thus has a high coefficient of determination, R2,
at 0.75.

Although there was a rather extensive simplification employed to make the model
less data intensive, the metrics of Table 6 clearly indicate the need for a careful calibration
of the CCAC to reduce errors and bias when simulating grain yield. In fact, in this case,
it is remarkable that the CCAC calibration very successfully simulates a wide range of
yields, from the very low (750 kg ha−1) to high (6220 kg ha−1) levels, obtained from rainfed
parcels. The adjustment of the CGC, CDC, and CCx shows a great potential for simulating
yields of different wheat varieties with varying growth patterns under multiyear and
multi-environmental conditions.

Finally, a full data input scheme was evaluated, which combined the calibrated CCAC
with actual irrigation data. Due to the precipitation scarcity during the 2020/21 growing
season, irrigation was applied to wheat during spring to secure the wheat’s water demands.
The irrigation events took place between April and early May, before and during flowering.
The results show that a very good agreement was obtained by AquaCrop regarding the
simulation of the grain yield for the 184 wheat parcels, excelling in performance all studied
cases. This is attributed to the high potential of AquaCrop, as a water-driven model, to
predict elevated yield levels with a detailed soil water regime. Several authors [74,89–92]
have reported very good simulation results with AquaCrop applied for irrigated crops,
compared to rainfed and water deficit treatments.

The results suggest that AquaCrop can be implemented as a convenient model for
deciding whether wheat is rainfed or irrigated during dryer growing seasons, provided
that the records of the timing and amount of irrigation are available from the farmers. If
such records are unavailable, remote sensing can still be a solution for detecting irrigation
events [93,94], thereby either partially or fully automating the process of crop growth
simulation. AquaCrop offers a balance between accuracy obtained with mechanistic
models and robustness, and can be a valuable tool for yield prediction, particularly since it
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requires a relatively small number of explicit data that can be readily available or easily
interpreted to obtain valuable information [74,86].
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4. Discussion

In this study, three modeling approaches were investigated and evaluated with respect
to their potential for in-season or post-season in-field yield estimation, as well as their
applicability at a large scale. Remotely sensed satellite data are often used to retrieve varia-
tions in vegetation states by providing realistic information on photosynthesis, phenology,
disturbances, recovery, and human interventions [95,96]. The remotely sensed extraction of
winter wheat growth patterns and phenology has a strong foundation in the three studied
modeling approaches. Many previous works supported that the use of calibration tech-
niques based on remote sensing improves yield assessments from crop growth models such
as AquaCrop [91,97]. The most logical pathway for a systematic calibration of AquaCrop
is first and foremost to ensure a sound prediction of canopy cover. The key user-input
parameters for this purpose are the coefficients defining the canopy development, with
particular attention to its shape. In this study, the canopy cover data were derived from
empirical relations, with spectral vegetation indices acquired from satellite images covering
184 wheat parcels. The yield prediction via AquaCrop significantly improved when a
proper calibration of the CCAC curve parameters (CGC, CDC, and CCx) was performed,
based on the wheat growth rates reflected in the NDVI. Different hybrids/varieties of the
same crop often show some similarities regarding the relative development and duration of
growth stages, despite discrepancies in the length of the growing seasons. This implies that
the parameter values calibrated for one crop hybrid/variety could potentially be useful
for the simulation of another with some adjustment, which may reduce the burden of
parameter calibration [83]. To this aim, this work provided pairs of values for the difficult-
to-determine canopy parameters for the further testing and use of the model with a wide
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range of wheat varieties and growth habits in response to environmental, management, or
genotypic factors, as well as biotic or edaphic stresses. The calibrated AquaCrop results,
although obtained with a medium data input load, were comparable with those reported
in the literature for more detailed field experiments and treatments. It is challenging for
simulation models to find relevance in real world agriculture; however, the current work
suggests that the combined simplicity and accuracy of AquaCrop [98] make the model an
indispensable tool within decision support systems for a broad usage by end-users.

Large scale applications require intensive field work and in situ campaigns that are
known to require a large number of personnel, a high degree of logistical support, machin-
ery and equipment, and, thus, huge budgets, which increase with the increasing area of
the study site. In this context, apart from the identified significant contribution of remote
sensing, the findings of this study also prove that gridded datasets on soil, such as Soil-
Grids, as well as environmental conditions, such as ERA5-Land and ERA5 reanalysis, can
operationally be employed for large scale applications through a wide range of modeling
approaches. These datasets are the result of multiyear research, present improved accuracy
and resolution of spatially explicit data, are updated regularly, and are freely available
from different initiations and official online websites. The coupling of these datasets for the
simulation of the durum wheat yield in 184 parcels presented high prediction accuracies,
which are similar to those found in the literature using detailed weather station meteoro-
logical data or soils’ physical properties derived from laboratory-analyzed soil samples as
inputs. SoilGrids and ERA5-Land or re-analysis data can support operational platforms
for dynamic crop monitoring and yield forecasting operating at the administrative level
by government agencies, non-governmental organizations, farmers’ unions, agri-food in-
dustries, and consultants [35,36]. With the advancement of computational ability, these
operational systems can acquire real-time satellite data; collect soil and agro-meteorological
products; perform preprocessing and analysis; run cloud-based machine learning algo-
rithms or crop growth models (e.g., AquaCrop-OS) [99]; perform in-season, post-season,
and even seasonal crop yield predictions; and generate the final outputs.

The other, less data-intensive approach studied in this work involves the development
and application of a semi-empirical transfer function for a yield assessment. Though
the prediction accuracy indicates medium consistency with the measured yield data, i.e.,
20% < nRMSE < 30%, the method is a good tool for predicting the levels of the final yield
before harvest, at a regional level. In addition to the timeliness and spatial scale, ideal
yield predictions also depend on rapid methods and accessible data. This method can fully
exploit Landsat and Sentinel-2 satellites that provide high spatial resolution imagery data
(10–30 m) with relatively short revisiting periods. This suggests that the method acquires
satellite data as they become available during the growing season and calculates biomass
and yield to provide dynamic yield forecasts at a fine scale. The method used in this study
allows researchers to predict wheat yield levels approximately 40 days before harvest at
the seed-filling stage. A common desire is to have in-season or post-season predictions
of anticipated yields over large geographic regions for various purposes, namely, (a) to
support the timely management of food shortages and strategic actions planning; (b) for the
identification of low productivity farms and parcels and, thus, as a basis for implementing
optimization strategies for the following season; (c) to facilitate the planning of harvesting
logistics, for example, to estimate the required number of transport vehicles, available silos,
or storage locations and, thus, to reduce the costs associated with the transportation and
storage of grain; (d) to optimize the price of the commodity according to its availability and
the harvested amounts; and (e) to inform decisions on trade, potential industry growth,
and investment [10]. In general, the NDVI transfer function perceived the temporal and
spatial variability in the study area; however, it was unable to identify the management
factors that promote yield because it relies on phenology and such actions are not followed
by relative adjustments on the spectral reflectance curves. Furthermore, the difficulty in
predicting low yield values as a result of environmental factors indicates the necessity of a
possible coupling with agrometeorological data in order to obtain scalability and additional
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accuracy in yield estimations. This requires further research, especially in order to use the
minimum number of inputs and available data.

ML methods are advantageous considering their high accuracy and wide applicability;
however, they often serve as a “black-box” method, as the resulting rules for obtaining the
results are often too complex or concealed to be readily interpreted. In addition, they rely
heavily on training samples (particularly deep learning algorithms), and the sample sizes
demanded are large. In this study, a number of machine learning methods were tested for
yield estimation. However, the number of training samples was considered low, leading to
overfitting of the data. This indicates that additional training data are required to further
improve the skill of the models. Furthermore, the aggregation approach and feature selec-
tion methods did not significantly affect the yield prediction performance for the selected
ML methods. As previous studies have illustrated [63,81], ML methods are promising
frameworks that can complement regional scale models and provide valuable insights
into understanding yield responses to environmental conditions; however, more reliable
publicly available data are needed to further enhance the accuracy and implementation of
large-scale yield prediction.

5. Conclusions

This study presents three methods of winter wheat yield estimation presenting differ-
ent levels of input data intensity based on predictors originating from open-access satellite
data, SoilGrids, ERA5-Land, and ERA5 climate reanalysis. These methods could poten-
tially be fully automated crop yield-forecasting systems, operating at the administrative
or regional unit scales. The methods were validated with 184 durum wheat yields in
two distinct regions in Greece, namely, Larisa and Kozani. The analyzed period covered
two growing seasons: 2019/20 and 2020/21; however, the availability of the data differed
among the regions. The main insights from this study are as follows: (i) medium input
data intensity models can provide high to moderate accuracies for yield estimation, thus
minimizing the time, cost, and labor of data acquisition; (ii) free access datasets are excellent
sources of input data for satisfying models’ requirements, especially ones running under
cloud-computing environments (e.g., DIAS or Amazon AWS), where these datasets are
directly accessible; (iii) remote sensing offers an unprecedented ability for the proper param-
eterization of the CCAC curve parameters of the AquaCrop model, leading to significantly
improved simulations of crop biomass and yield, under different environmental conditions;
(iv) the AquaCrop model, as well as the spectral index transfer function, can be used with a
high to acceptable degree of accuracy for the regional yield simulation of winter wheat, and
can serve as useful tools for assessing food security in the agricultural sector; (v) although
wheat is considered a rainfed crop, any irrigation event applied to promote yield cannot be
reflected on the spectral behavior of the canopies (especially ones performed slightly before
or during flowering) and, thus, records of time and the amount of water are required to
achieve high yield estimation accuracies; and (vi) due to the complex structure of machine
learning, it is still challenging to provide reliable estimates for final yield formation, since
more training data are required to reach high accuracies. In summary, the results indicated
that medium input data intensity methods are effective tools for operational, large scale
yield assessments of winter wheat. Although wheat is one of the key crops grown world-
wide, further studies are needed to verify these results for different crops and in different
ecological areas.

Author Contributions: Conceptualization, E.L.; methodology, E.L., A.Z., A.P., C.E.; software, E.L., A.Z.,
A.P., C.E.; validation, E.L., A.Z., A.P., C.E.; formal analysis, E.L., A.Z., A.P., C.E.; investigation, E.L.; data
curation, E.L., A.Z., A.P., C.E., T.M., I.P.; writing—original draft preparation, E.L.; writing—review and
editing, E.L., A.Z., A.P., C.E., T.M., I.P.; visualization, T.M.; All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.



Agriculture 2022, 12, 1635 20 of 23

References
1. Challinor, A.; Watson, J.; Lobell, D.; Howden, S.M.; Smith, D.R.; Chhetri, N. A meta-analysis of crop yield under climate change

and adaptation. Nat. Clim. Chang. 2014, 4, 287–291. [CrossRef]
2. Berry, P.; Yassin, F.; Belcher, K.; Lindenschmidt, K.-E. An Economic Assessment of Local Farm Multi-Purpose Surface Water

Retention Systems under Future Climate Uncertainty. Sustainability 2017, 9, 456. [CrossRef]
3. Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate trends and global crop production since 1980. Science 2011, 333, 616–620.

[CrossRef] [PubMed]
4. Mbow, C.; Rosenzweig, C.; Barioni, L.G.; Benton, T.G.; Herrero, M.; Krishnapillai, M.; Liwenga, E.; Pradhan, P.; Rivera-Ferre,

M.G.; Sapkota, T.; et al. Food Security. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land
Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J.,
Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.;
IPPC: Rome, Italy, 2019; Available online: https://www.ipcc.ch/srccl/download/ (accessed on 10 March 2021).

5. Ray, D.K.; Gerber, J.S.; MacDonald, G.K.; West, P.C. Climate variation explains a third of global crop yield variability. Nat.
Commun. 2015, 6, 5989. [CrossRef] [PubMed]

6. Kephe, P.N.; Ayisi, K.K.; Petja, B.M. Challenges and opportunities in crop simulation modelling under seasonal and projected
climate change scenarios for crop production in South Africa. Agric. Food Secur. 2021, 10, 10. [CrossRef]

7. Ziervogel, G.; New, M.; Archer van Garderen, E.; Midgley, G.; Taylor, A.; Hamann, R.; Stuart-Hill, S.; Myers, J.; Warburton, M.
Climate change impacts and adaptation in South Africa. WIREs Clim. Chang. 2014, 5, 605–620. [CrossRef]

8. Dilling, L.; Daly, M.E.; Travis, W.R.; Wilhelmi, O.V.; Klein, R.A. The dynamics of vulnerability: Why adapting to climate variability
will not always prepare us for climate change. WIREs Clim. Chang. 2015, 6, 413–425. [CrossRef]

9. Adger, W.N.; Brown, I.; Surminski, S. Advances in risk assessment for climate change adaptation policy. Philos. Trans. R. Soc. A
2018, 376, 20180106. [CrossRef] [PubMed]

10. Dimov, D.; Uhl, J.H.; Löw, F.; Seboka, G.N. Sugarcane yield estimation through remote sensing time series and phenology metrics.
Smart Agric. Technol. 2022, 2, 100046. [CrossRef]

11. Claessens, L.; Antle, J.M.; Stoorvogel, J.J.; Valdivia, R.O.; Thornton, P.K.; Herrero, M. A method for evaluating climate change
adaptation strategies for small-scale farmers using survey, experimental and modeled data. Agric. Syst. 2012, 111, 85–95.
[CrossRef]

12. Bian, C.; Shi, H.; Wu, S.; Zhang, K.; Wei, M.; Zhao, Y.; Sun, Y.; Zhuang, H.; Zhang, X.; Chen, S. Prediction of Field-Scale Wheat
Yield Using Machine Learning Method and Multi-Spectral UAV Data. Remote Sens. 2022, 14, 1474. [CrossRef]

13. Porter, C.H.; Villalobos, C.; Holzworth, D.; Nelson, R.; White, J.W.; Athanasiadis, I.N.; Zhang, M. Harmonization and translation
of crop modeling data to ensure interoperability. Environ. Model. Softw. 2014, 62, 495–508. [CrossRef]

14. Porter, J.R.; Xie, L.; Challinor, A.J.; Cochrane, K.; Howden, S.M.; Iqbal, M.M.; Lobell, D.B.; Travasso, M.I. Food security and food
production systems. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution
of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken,
D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge
University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 485–533.

15. Kowalik, W.; Dabrowska-Zielinska, K.; Meroni, M.; Raczka, T.U.; de Wit, A. Yield estimation using SPOT-VEGETATION products:
A case study of wheat in European countries. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 228–239. [CrossRef]

16. Azzari, G.; Jain, M.; Lobell, D.B. Towards fine resolution global maps of crop yields: Testing multiple methods and satellites in
three countries. Remote Sens. Environ. 2017, 202, 129–141. [CrossRef]

17. Liu, J.; Shang, J.; Qian, B.; Huffman, T.; Zhang, Y.; Dong, T.; Jing, Q.; Martin, T. Crop yield estimation using time-series MODIS
data and the effects of cropland masks in Ontario, Canada. Remote Sens. 2019, 11, 2419. [CrossRef]

18. Jin, X.; Kumar, L.; Li, Z.; Xu, X.; Yang, G.; Wang, J. Estimation of Winter Wheat Biomass and Yield by Combining the AquaCrop
Model and Field Hyperspectral Data. Remote Sens. 2016, 8, 972. [CrossRef]

19. Dalla Marta, A.; Chirico, G.B.; Falanga Bolognesi, S.; Mancini, M.; D’Urso, G.; Orlandini, S.; De Michele, C.; Altobelli, F. Integrating
Sentinel-2 Imagery with AquaCrop for Dynamic Assessment of Tomato Water Requirements in Southern Italy. Agronomy 2019,
9, 404. [CrossRef]

20. Kross, A.; McNairn, H.; Lapen, D.R.; Sunohara, M.; Champagne, C. Assessment of RapidEye vegetation indices for estimation of
leaf area index and biomass in corn and soybean crops. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 235–248. [CrossRef]

21. Saeed, U.; Dempewolf, J.; Becker-Reshef, I.; Khan, A.; Ahmad, A.; Wajid, S.A. Forecasting wheat yield from weather data and
MODIS NDVI using Random Forests for Punjab province, Pakistan. Int. J. Remote Sens. 2017, 38, 4831–4854. [CrossRef]

22. Zhou, W.; Liu, Y.; Ata-Ul-Karim, S.T.; Ge, Q.; Li, X.; Xiao, J. Integrating climate and satellite remote sensing data for predicting
county-level wheat yield in China using machine learning methods. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102861. [CrossRef]

23. Zhang, Y.; Liu, J.; Shen, W. A Review of Ensemble Learning Algorithms Used in Remote Sensing Applications. Appl. Sci. 2022,
12, 8654. [CrossRef]

24. Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop-the FAO crop model to simulate yield response to water: I. Concepts and
underlying principles. Agron. J. 2009, 101, 426–437. [CrossRef]

25. Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. AquaCrop-the FAO crop model to simulate yield response to water: II. Main
algorithms and software description. Agron. J. 2009, 101, 438–447. [CrossRef]

http://doi.org/10.1038/nclimate2153
http://doi.org/10.3390/su9030456
http://doi.org/10.1126/science.1204531
http://www.ncbi.nlm.nih.gov/pubmed/21551030
https://www.ipcc.ch/srccl/download/
http://doi.org/10.1038/ncomms6989
http://www.ncbi.nlm.nih.gov/pubmed/25609225
http://doi.org/10.1186/s40066-020-00283-5
http://doi.org/10.1002/wcc.295
http://doi.org/10.1002/wcc.341
http://doi.org/10.1098/rsta.2018.0106
http://www.ncbi.nlm.nih.gov/pubmed/29712800
http://doi.org/10.1016/j.atech.2022.100046
http://doi.org/10.1016/j.agsy.2012.05.003
http://doi.org/10.3390/rs14061474
http://doi.org/10.1016/j.envsoft.2014.09.004
http://doi.org/10.1016/j.jag.2014.03.011
http://doi.org/10.1016/j.rse.2017.04.014
http://doi.org/10.3390/rs11202419
http://doi.org/10.3390/rs8120972
http://doi.org/10.3390/agronomy9070404
http://doi.org/10.1016/j.jag.2014.08.002
http://doi.org/10.1080/01431161.2017.1323282
http://doi.org/10.1016/j.jag.2022.102861
http://doi.org/10.3390/app12178654
http://doi.org/10.2134/agronj2008.0139s
http://doi.org/10.2134/agronj2008.0140s


Agriculture 2022, 12, 1635 21 of 23

26. Lobell, D.B.; Asner, G.P.; Ortiz-Monasterio, J.I.; Benning, T.L. Remote Sensing of regional crop production in the Yaqui Valley,
Mexico: Estimates and uncertainties. Agric. Ecosyst. Environ. 2003, 94, 205–208. [CrossRef]

27. Becker-Reshef, I.; Vermote, E.; Lindeman, M.; Justice, C. A generalized regression-based model for forecasting winter wheat
yields in Kansas and Ukraine using MODIS data. Remote Sens. Environ. 2010, 114, 1312–1323. [CrossRef]

28. Lekakis, E.; Dimitrakos, A.; Oikonomopoulos, E.; Mygdakos, G.; Tsioutsia, I.M.; Kotsopoulos, S. Evaluation of a satellite drought
indicator approach and its potential for agricultural drought prediction and crop loss assessment. The case of BEACON project.
Int. J. Sustain. Agric. Manag. Inform. 2022, 8, 40–63. [CrossRef]

29. Lopresti, M.F.; Di Bella, C.M.; Degioanni, A.J. Relationship between MODIS-NDVI data and wheat yield: A case study in
Northern Buenos Aires province, Argentina. Inf. Process. Agric. 2015, 2, 73–84. [CrossRef]

30. Fang, P.; Zhang, X.; Wei, P.; Wang, Y.; Zhang, H.; Liu, F.; Zhao, J. The classification performance and mechanism of machine
learning algorithms in winter wheat mapping using Sentinel-2 10 m resolution imagery. Appl. Sci. 2020, 10, 5075. [CrossRef]

31. Zhang, L.; Zhang, Z.; Luo, Y.; Cao, J.; Xie, R.; Li, S. Integrating satellite-derived climatic and vegetation indices to predict
smallholder maize yield using deep learning. Agric. For. Meteorol. 2021, 311, 108666. [CrossRef]

32. Basso, B.; Liu, L. Seasonal crop yield forecast: Methods, applications, and accuracies. Adv. Agron. 2018, 154, 201–255. [CrossRef]
33. Li, Y.; Guan, K.; Yu, A.; Peng, B.; Zhao, L.; Li, B.; Peng, J. Toward building a transparent statistical model for improving crop yield

prediction: Modeling rainfed corn in the U.S. Field Crops Res. 2019, 234, 55–65. [CrossRef]
34. Jaafar, H.; Mourad, R. GYMEE: A Global Field-Scale Crop Yield and ET Mapper in Google Earth Engine Based on Landsat,

Weather, and Soil Data. Remote Sens. 2021, 13, 773. [CrossRef]
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