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Abstract: This study was aimed at revealing the usefulness of the combination of image analysis and
artificial intelligence in assessing the quality of red currants in terms of external structure changes
under the influence of different storage conditions. Red currants after harvest were subjected to
storage at room temperature and at a lower temperature in the refrigerator for one week and two
weeks. The statistically significant differences in selected image textures as a result of prolonged
storage were determined for both samples stored in the room and the refrigerator. However, the
changes in the structure of the red currant samples stored at room temperature were greater than
for storage in the refrigerator. Distinguishing samples using models built using machine learning
algorithms confirmed the usefulness of selected textures to assess the influence of storage conditions
and time on red currants. Unstored red currants, samples stored at room temperature for one week,
and those stored at room temperature for two weeks were classified with an accuracy of 99–100%,
and unstored samples, fruit stored in the refrigerator for one week, and that stored in the refrigerator
for two weeks were correctly distinguished at an accuracy of 97–100%, depending on the algorithm.
Models developed for distinguishing red currants stored at room temperature and in the refrigerator
for one week provided an accuracy of 99–100%, and for the classification of red currants stored at
room temperature and in the refrigerator for two weeks, an accuracy equal to 100% for all used
algorithms was determined.

Keywords: stored red currants; room temperature; refrigerator; digital imaging; artificial intelligence

1. Introduction

The genus Ribes belonging to the Grossulariaceae family includes mainly deciduous
or semievergreen shrubs. The species of Ribes are widely distributed in temperate and cold
regions of the Northern Hemisphere, such as northern Europe, and northern and central
Asia [1]. From the genus Ribes including more than 150 species, only a few species are
cultivated for red currant production. Red currant (Ribes rubrum L.) is native to Western
Europe. It is cultivated in both commercial plantations and home gardens in regions with
moderate temperatures. Poland is one of the main producers of currants. The cultivation
of currant is not demanding and gives producers high profitability [2,3]. Currant is a
commercially important but relatively young crop. The first red currant crops appeared at
the beginning of the 15th century, and it was widely cultivated in gardens in the 16th cen-
tury [4]. Red currant has become popular and spread as a result of the demand for berries
due to their high therapeutic effect, as well as technological efficiency, and economically
valuable characteristics [5]. Red currant provides healthful and delicious fruits which are
a rich source of organic acids, vitamins, and phenolics with antioxidant and antiradical
properties [6,7]. Red currant is characterized by the presence of several important phenolic
compounds, such as gallic acid, rutin, syringic acid, cinnamic acid, (+)-catechin, ferulic
acid, and chlorogenic acid [8]. Due to the presence of phenolics, intakes of red currant may
be associated with a reduced risk of, among others, heart disease, cancer, and stroke [6].
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Currants can be an ingredient in functional foods or dietary supplements [9]. Red currant
can be consumed fresh and in processed forms in jam, marmalade, jelly, ice cream, fruit
juice, or dried fruit [6].

Currants are soft berries. Although organoleptic characteristics of fresh berries are
generally accepted by consumers and can be successful in the fresh market, their shelf
life is usually short [10]. Red currants are also susceptible to microbial spoilage [11].
Defects in fruit during the storage process can also be the result of physiological disorders
or mechanical damage [12]. Fresh fruits are highly perishable, and different pre- and
postharvest factors can affect their quality and shelf life during storage [13]. Often, raw
materials and their products are stored in a frozen state or at a low temperature. Due to
the need to extend the shelf life of currants through proper storage or processing, there is
also a need to assess the quality of fruit subjected to these processes [14]. Food product
quality mainly based on color and firmness can be important both to consumers and
trade. Currants after harvest may be exposed to changes in firmness caused by moisture
loss over time depending on storage temperature. Firmness can be related to structuring
material, cell turgor, or shape and size of cells. Color changes can be caused by the tissue
structure [15]. Relationships between firmness, tissue microstructure, and optical properties
during storage were confirmed and it was reported that optical properties can be used to
evaluate the changes in fruit microstructure during post-harvest storage [16,17].

Machine vision involving imaging techniques can be useful in detecting external
quality parameters of fruit [18]. Generally, the importance of machine vision in agriculture
has increased, including non-destructive quality control, inspection of external features
of fruit, and classification based on texture, color, shape, size, and presence of damage.
The changes in textures can be related to color differences and can be used to detect
external defects [19]. Machine vision involving color image processing can provide high
classification accuracy and allow the detection of slight changes in an objective, inexpensive,
easy, and fast manner. Image texture as a function of spatial variation in pixel values can
provide numerical data from the image of the object and can even specify the changes
difficult to perceive visually [20–22]. The combination of imaging and machine learning
can be used to monitor the changes in fruit quality throughout storage [23]. Artificial
intelligence can support decision-making to predict the highest quality of fruit and define
sales strategies [24]. The previous literature data indicated high effectiveness of various
deep learning and traditional machine learning algorithms to classify samples with an
accuracy reaching 100% [25–28].

The objective of this study was to reveal the usefulness of the combination of image
analysis and artificial intelligence in assessing the quality of red currant in terms of ex-
ternal structure changes under the influence of different storage conditions. The applied
procedure is a great novelty for the detection of fruit quality during storage. Due to the
use of image features from different color channels R, G, B, L, a, b, X, Y, and Z to build
models using machine learning algorithms, fruit quality monitoring was carried out in a
non-destructive, objective, and effective manner.

2. Materials and Methods
2.1. Material

The red currants were collected from the local garden located in northeastern Poland.
Red currants have been grown in the garden for several years. This study generally aimed
to demonstrate the usefulness of image analysis and artificial intelligence in assessing the
quality of stored red currant. Therefore, one random cultivar was used in the experiments
without considering the characteristics and genetic origin of this cultivar. The only visual
criterion for selecting a cultivar was large, fully developed fruit in a given growing season.
The red currants were harvested at the stage in which fruit were richly colored, juicy, and
firm. These features were assessed organoleptically. From each bunch of red currants,
several undamaged fruits with stems were sampled, to obtain a total of 400 fruits. In the
storage experiments, fruit with stems was used so that the structure of the fruit was not
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damaged during the removal of fruit from the bunches. Individual fruits separated from
the bunches were used to ensure the same storage conditions for each fruit. Therefore,
red currants were stored as a single layer of fruit. Fruit storage was carried out in plastic
boxes with perforated walls. The obtained sample was divided into two parts of 200 red
currants intended for storage in different conditions. The first part of the 200 fruits was
stored at a room temperature of 23 ± 1 ◦C and the second part of the 200 fruits was placed
in the refrigerator (Beko, Istanbul, Turkey) at a temperature of 4 ◦C. Unstored samples,
both intended to be stored at room temperature and in a refrigerator, were imaged. Then,
the same samples were imaged every week. After two weeks, when very distinct changes
in the appearance (size and shape changes such as wrinkling, visible losses of mass and
water, and color changes such as fruit darkening) of fruit stored in the room were noticed,
indicating complete damage to the structure of most of the red currants, the experiment
was stopped.

2.2. Image Analysis

The unstored red currants and then stored for one week and two weeks were imaged
using a digital camera (Auto White Balance, Optical Image Stabilization, 8x digital zoom, F
2.4) and lighting (24 LED, Related Output Power of 2.2 W, Related Input current of 0.07 A,
Related Input Voltage of AC110-240 V/50–60 Hz). Color calibration of the digital camera
was carried out. Imaging was performed in a box. Red currants were placed individually
on a background so as not to touch each other. Fifty objects were included in each of the
images. Red currant images were obtained under room conditions. In total, the following
were acquired:

- 200 imaged unstored red currants intended for storage at room temperature;
- 200 imaged red currants stored at room temperature for one week;
- 200 imaged red currants stored at room temperature for two weeks;
- 200 imaged unstored red currants intended for storage in the refrigerator;
- 200 imaged red currants stored in the refrigerator for one week;
- 200 imaged red currants stored in the refrigerator for two weeks.

The images of red currants directly after harvest are presented in Figure 1. Whole
undamaged fully colored red currants are visible.
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Figure 1. Exemplary images of unstored red currants at the beginning of the experiments.

The images of samples stored at room temperature for one week and two weeks are
shown in Figure 2. The progressive damage to the outer structure of the fruit with more
visible dents and wrinkles is noticeable with increasing storage time. Different levels of
fruit damage are also visible in the case of red currants stored in a refrigerator for one week
and two weeks (Figure 3).
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Figure 3. Images of sample red currants stored in the refrigerator for one week (a) and two weeks (b).

Red currant images were processed using the MaZda software (Łódź University of
Technology, Institute of Electronics, Łódź, Poland) [29–31]. Before image processing, the
background of the images was changed to black with an intensity of 0. This step was
performed to facilitate the segmentation of the images into fruit and background and the
determination of the regions of interest (ROIs). The file format of images was changed to
BMP. Then, images were converted to different color channels R, G, B, L, a, b, X, Y, and Z
using MaZda. Color channels R (red), G (green), and B (blue) belonged to the RGB color
space, color channels L (lightness from black to white), a (red for positive values and green
for negative), and b (yellow for positive values and blue for negative) were from the Lab
color space, and color channels X (a component of color information), Y (lightness), and
Z (a component of color information) were from the XYZ color space [32]. The image
segmentation into fruit and the background was performed based on the intensity of pixel
brightness. The black background had an intensity of 0, whereas each ROI including the
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whole red currant was lighter with an intensity greater than 0. The procedure for the color
conversion and ROI determination is presented in Figure 4.
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The texture information was extracted based on the run-length matrix (parameters:
run length nonuniformity, grey level nonuniformity, long run emphasis, short run empha-
sis, fraction of image in runs for 4 directions), co-occurrence matrix (parameters: angular
second moment, contrast, correlation, sum of squares, inverse difference moment, sum
average, sum variance, sum entropy, entropy, difference variance, difference entropy for
5 between-pixel distances for 4 directions), gradient map (parameters: absolute gradient
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mean, absolute gradient variance, absolute gradient skewness, absolute gradient kurtosis,
percentage of pixels with nonzero gradient), histogram (parameters: histogram’s mean,
histogram’s variance, histogram’s skewness, histogram’s kurtosis, 1% percentile, 10%
percentile, 50% percentile, 90% percentile, 99% percentile), Haar wavelet transform (param-
eters: wavelet energy at 5 scales within four frequency bands), and autoregressive model
(parameters: Teta1, Teta2, Teta3, Teta4, Sigma) after transforming ROI images. For each
ROI, 1629 texture parameters were determined including 181 textures for each of the color
channels R, G, B, L, a, b, X, Y, and Z.

2.3. Statistical Analysis

Statistical analysis of obtained data was performed using STATISTICA 13.3 (StatSoft
Polska Sp. z o.o., Kraków, Poland) and WEKA software (Machine Learning Group, Uni-
versity of Waikato). STATISTICA software was used to perform the mean comparison of
selected textures from each color channel of R, G, B, L, a, b, X, Y, and Z. The normality of
the distribution was checked using Shapiro–Wilk, Lilliefors, and Kolmogorov–Smirnov
tests, and the homogeneity of variance—using Brown-Forsythe and Levene’s tests. The
means were compared using the Newman-Keuls parametric test at a significance level of
p ≤ 0.05. The differences in parameters of RHMean, GHMean, BHMean, LHMean, aHMean,
bHMean, XHMean, YHMean, and ZHMean were analyzed between unstored red currants
and red currants stored at room temperature for one week vs. red currants stored at room
temperature for two weeks, as well as unstored red currants vs. red currants stored in the
refrigerator for one week vs. red currants stored in the refrigerator for two weeks. As a
result, the statistically significant influence of storage time on changes in the mean values
of selected texture parameters was determined.

The classification of samples was carried out using WEKA software [33,34]. The
analysis for four different datasets was performed. Models based on combined selected
image textures from color channels R, G, B, L, a, b, X, Y, and Z were built for distinguishing:

(1) unstored red currants intended for storage at room temperature (200 cases), red
currants stored at room temperature for one week (200 cases), and red currants stored
at room temperature for two weeks (200 cases);

(2) unstored red currants intended for storage in the refrigerator (200 cases), red currants
stored in the refrigerator for one week (200 cases), and red currants stored in the
refrigerator for two weeks (200 cases);

(3) red currants stored at room temperature for one week (200 cases) and red currants
stored in the refrigerator for one week (200 cases);

(4) red currants stored at room temperature for two weeks (200 cases) and red currants
stored in the refrigerator for two weeks (200 cases).

In the case of each classification, the textures with the highest discriminative power
were selected using the Ranker with OneR attribute evaluator. Selected textures were
used to develop models using the machine learning algorithms belonging to different
groups, such as JRip (Java repeated incremental pruning) and PART from the group of
Rules; J48, Random Forest, and LMT (Logistic Model Tree) from the group of Trees; Logit
Boost, Multi Class Classifier, Filtered Classifier, and Random Committee from the group
of Meta; Logistic, SMO (Sequential Minimal Optimization), RBF (Radial Basis Function)
Classifier and Multilayer Perfection from the group of Functions; and Naive Bayes and
Bayes Net from the group of Bayes. The classification of samples was carried out using
a test mode of 10-fold cross-validation. For each classification, a dataset was randomly
divided into 10 parts, including nine parts as the training sets and one part as the test set.
Each of the ten parts was considered as the test set in turn and the remaining nine parts—as
the training sets. Thus, the learning was carried out 10 times with different training sets and
the average of 10 estimates was calculated. The most effective machine learning algorithms
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were selected based on the highest accuracies and values of Precision (Equation (1)), Recall
(Equation (2)), and F-Measure (Equation (3)) [25,35].

Precision = TP/(TP + FP) (1)

Recall = TP/(TP + FN) (2)

F−Measure = 2TP/(2TP + FP + FN) (3)

TP: True Positive; FP: False Positive; FN: False Negative.

3. Results and Discussion

The influence of storage conditions and time on red currants was assessed in an
objective and non-destructive manner considering the statistically significant differences in
the mean of the selected texture parameters and the results of the classification of samples
performed using models built based on image textures using machine learning algorithms.
Firstly, the changes in texture HMean for each color channel, such as RHMean (channel
R), GHMean (channel G), BHMean (channel B), LHMean (channel L), aHMean (channel a),
bHMean (channel b), XHMean (channel X), YHMean (channel Y), and ZHMean (channel Z),
caused by storage time were analyzed separately for samples stored at room temperature
(Figure 5) and in the refrigerator (Figure 6). The differences in texture parameters as a
result of prolonged storage were observed for both samples stored in the room and the
refrigerator. However, despite the same trends, the changes in the red currant samples
stored at room temperature were greater, and statistically significant differences between
the samples were observed for more parameters.

Red currants stored at room temperature (Figure 5) were characterized by a statistically
significant decrease in the values of RHMean, LHMean, aHMean, bHMean, XHMean,
YHMean, and ZHMean with increasing storage time. All three red currant samples—
unstored, stored at room temperature for one week, and stored at room temperature for
two weeks—formed separate homogeneous groups. Meanwhile, in the case of GHMean
and BHMean, an increase in the values was observed with increasing time of red currant
storage. For the texture of GHMean, each sample was included in a separate homogenous
group, and in the case of BHMean, samples stored at room temperature for one week and
two weeks formed one homogenous group with statistically significantly higher values
than for unstored red currants.

In the case of red currants stored in the refrigerator (Figure 6), a decrease in the
values of RHMean, LHMean, aHMean, bHMean, XHMean, YHMean, and ZHMean and
an increase in the values of GHMean and BHMean with increasing storage time were
also observed. However, unstored red currants and samples stored in the refrigerator for
one week and two weeks created three separate homogenous groups with statistically
significantly different values only in the case of aHMean, bHMean, XHMean, and GHMean.
For BHMean, storage of red currant in the refrigerator for one week resulted in a statistically
significant increase in the value of this texture, and the extension of the storage time did not
cause any further significant changes. In the case of red currants stored in the refrigerator
for one week, no statistically significant changes in RHMean, LHMean, and YHMean were
observed compared to the unstored sample examined at the beginning of the experiment.
For the ZHMean texture, no statistically significant differences were found, and all three
samples were included in one homogenous group. The obtained results may indicate that
changes in the external structure of red currants manifested in changes in the values of
the textures of the outer surface were smaller for the samples stored in the refrigerator
(Figure 6) than for the samples stored at room temperature (Figure 5).
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Figure 5. The changes in the values of selected image textures of red currants stored at room
temperature. a, b, c—the same letters on one graph denote no statistical differences between samples.

Distinguishing samples using models based on image textures developed using var-
ious traditional machine learning algorithms also revealed the influence of both storage
conditions and time on the external structure of red currants. This paper presents the
results for selected algorithms that provided the most satisfactory results. In the case of
the storage of red currants at room temperature (Table 1), an average accuracy of 100%,
and the values of Precision, Recall and F-Measure equal to 1.000 for each class (unstored,
stored for one week and stored for two weeks) were achieved for most of the applied
algorithms. In the case of each group of machine learning algorithms, examined samples
were completely correctly classified using selected algorithms, such as PART from the group
of Rules, Random Forest from the group of Trees, Multi Class Classifier from the group of
Meta, SMO from the group of Functions, and Naive Bayes from the group of Bayes. By
using these algorithms to build models, all 200 cases of unstored red currants were correctly
classified as unstored ones, all 200 cases of red currants stored at room temperature for one
week were correctly classified as stored at room temperature for one week, and all 200 cases
from the actual class of samples stored at room temperature for two weeks were correctly
included in the predicted class of red currants stored at room temperature for two weeks. In
the case of the RBF Classifier from the group of Functions, an average accuracy of 99% was
observed. The unstored red currants were completely correctly (100%) distinguished from
other classes and the values of Precision, Recall and F-Measure of 1.000 were determined.
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For both classes of red currants stored at room temperature for one week and two weeks,
an accuracy of 98% and Precision, Recall and F-Measure of 0.980 were found. Overall, 2% of
cases belonging to the actual class of red currants stored at room temperature for one week
were incorrectly included in the class of red currants stored at room temperature for two
weeks, and 2% of cases from the actual class of samples stored at room temperature for two
weeks were incorrectly classified as red currants stored at room temperature for one week.
Very high correctness of classification reaching 100% and the values of Precision, Recall
and F-Measure of up to 1.000 for most algorithms proved the great influence of the storage
time on the textures of the outer surface of the red currants stored at room temperature.
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Table 1. The results of the classification of unstored red currants, and fruit stored at room temperature
for one week, and stored at room temperature for two weeks based on models combining selected
textures from color channels R, G, B, L, a, b, X, Y, and Z developed using machine learning algorithms
from different groups.

Algorithm
Predicted Class (%)

Actual
Class

Average
Accuracy

(%)
Precision Recall F-MeasureUnstored Room

1 Week
Room

2 Weeks

PART
(Rules)

100 0 0 unstored
100

1.000 1.000 1.000

0 100 0 room
1 week 1.000 1.000 1.000

0 0 100 room
2 weeks 1.000 1.000 1.000

Random
Forest
(Trees)

100 0 0 unstored
100

1.000 1.000 1.000

0 100 0 room
1 week 1.000 1.000 1.000

0 0 100 room
2 weeks 1.000 1.000 1.000

Multi Class
Classifier

(Meta)

100 0 0 unstored
100

1.000 1.000 1.000

0 100 0 room
1 week 1.000 1.000 1.000

0 0 100 room
2 weeks 1.000 1.000 1.000

RBF
Classifier

(Functions)

100 0 0 unstored
99

1.000 1.000 1.000

0 98 2 room
1 week 0.980 0.980 0.980

0 2 98 room
2 weeks 0.980 0.980 0.980

SMO
(Functions)

100 0 0 unstored
100

1.000 1.000 1.000

0 100 0 room
1 week 1.000 1.000 1.000

0 0 100 room
2 weeks 1.000 1.000 1.000

Naive
Bayes

(Bayes)

100 0 0 unstored
100

1.000 1.000 1.000

0 100 0 room
1 week 1.000 1.000 1.000

0 0 100 room
2 weeks 1.000 1.000 1.000

Storage in the refrigerator resulted in lower correctness of the classification of un-
stored red currants, and samples stored for one week, and stored for two weeks for some
algorithms (Table 2) than in the case of samples stored at room temperature (Table 1). It
may indicate less noticeable changes in the structure of the fruit caused by storage at a
low temperature in the refrigerator. In the case of the storage in the refrigerator (Table 2),
the average accuracy of 100% and the Precision, Recall and F-Measure of 1.000 were only
obtained for the models built using two (SMO and Naive Bayes) out of seven machine
learning algorithms. An average accuracy equal to 99% was observed for models built
using Random Forest and Multi Class Classifier. However, in the case of the Random
Forest algorithm, unstored red currants and those stored in the refrigerator for one week
were distinguished from each other and fruit stored in the refrigerator for two weeks with
accuracies of 100%, whereas for Multi Class Classifier, only unstored red currants were
correctly classified in 100% of cases. In the case of other machine learning algorithms, an
accuracy of 98% was found for RBF Classifier and 97% for PART.
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Table 2. The performance metrics of the classification of unstored red currants, and samples stored in
the refrigerator for one week, and stored in the refrigerator for two weeks using models built using
various machine learning algorithms based on combined selected textures from color channels R, G,
B, L, a, b, X, Y, and Z.

Algorithm
Predicted Class (%)

Actual
Class

Average
Accuracy

(%)
Precision Recall F-MeasureUnstored Refrigerator

1 Week
Refrigerator

2 Weeks

PART
(Rules)

96 4 0 unstored
97

1.000 0.960 0.980

0 100 0 refrigerator
1 week 0.926 1.000 0.962

0 4 96 refrigerator
2 weeks 1.000 0.960 0.980

Random
Forest
(Trees)

100 0 0 unstored
99

1.000 1.000 1.000

0 100 0 refrigerator
1 week 0.980 1.000 0.990

0 2 98 refrigerator
2 weeks 1.000 0.980 0.990

Multi Class
Classifier

(Meta)

100 0 0 unstored
99

0.980 1.000 0.990

2 98 0 refrigerator
1 week 0.980 0.980 0.980

0 2 98 refrigerator
2 weeks 1.000 0.980 0.990

RBF
Classifier

(Functions)

100 0 0 unstored
98

0.980 1.000 0.990

2 96 2 refrigerator
1 week 0.980 0.960 0.970

0 2 98 refrigerator
2 weeks 0.980 0.980 0.980

SMO
(Functions)

100 0 0 unstored
100

1.000 1.000 1.000

0 100 0 refrigerator
1 week 1.000 1.000 1.000

0 0 100 refrigerator
2 weeks 1.000 1.000 1.000

Naive
Bayes

(Bayes)

100 0 0 start
100

1.000 1.000 1.000

0 100 0 refrigerator
1 week 1.000 1.000 1.000

0 0 100 refrigerator
2 weeks 1.000 1.000 1.000

After revealing that time affects the textures of the images of red currants (Tables 1
and 2), in the next stages of analysis, the influence of storage conditions was carefully
assessed (Tables 3 and 4). The differences in selected textures from color channels R, G, B, L,
a, b, X, Y, and Z allowed for building models distinguishing red currants stored at room
temperature for one week and stored in the refrigerator for one week with an accuracy
of 100% and the Precision, Recall, and F-Measure of 1.000 for the PART, Random Forest,
Multi Class Classifier, RBF Classifier, and SMO machine learning algorithms and 99% for
Naive Bayes (Table 3). In the case of Naive Bayes, the accuracy for red currants stored at
room temperature for one week was 100% and for samples stored in the refrigerator for one
week—98% and the remaining 2% of cases were classified as stored at room temperature.
The values of Precision (0.980 for samples stored in the room and 1.000 for samples stored
in the refrigerator), Recall (1.000 for samples stored in the room and 0.980 for samples
stored in the refrigerator), and F-Measure (0.990 for both samples) were also high.
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Table 3. The accuracies and other performance metrics for classifying red currants stored at room
temperature for one week and stored in the refrigerator for one week based on selected textures from
color channels R, G, B, L, a, b, X, Y, and Z.

Algorithm
Predicted Class (%)

Actual Class
Average

Accuracy (%) Precision Recall F-MeasureRoom
1 Week

Refrigerator
1 Week

PART
Random Forest

Multi Class Classifier
RBF Classifier

SMO

100 0 room
1 week 100

1.000 1.000 1.000

0 100 refrigerator
1 week 1.000 1.000 1.000

Naive Bayes 100 0
room

1 week 99 0.980 1.000 0.990

2 98 refrigerator
1 week 1.000 0.980 0.990

Table 4. The confusion matrices, average accuracies and the values of Precision, Recall and F-Measure
of the classification of red currants stored at room temperature for two weeks and stored in the
refrigerator for two weeks for models including selected textures from color channels R, G, B, L, a, b,
X, Y, and Z.

Algorithm
Predicted Class (%)

Actual Class
Average

Accuracy (%) Precision Recall F-MeasureRoom
2 Weeks

Refrigerator
2 Weeks

PART Random Forest Multi
Class Classifier RBF Classifier

SMO Naive Bayes

100 0 room
2 weeks 100

1.000 1.000 1.000

0 100 refrigerator
2 weeks 1.000 1.000 1.000

Red currants stored at room temperature for two weeks and stored in the refrigerator
for two weeks were completely different in terms of the selected textures of the outer
surface (Table 4). All applied machine learning algorithms of PART, Random Forest, Multi
Class Classifier, RBF Classifier, SMO, and Naive Bayes distinguished both samples with an
accuracy of 100% and Precision, Recall, and F-Measure of 1.000.

The combination of image processing and machine learning proved to be effective
to monitor the changes in red currants during storage. The obtained results may be of
great practical importance. Due to the short shelf life, currants are available in fresh form
for a short time in the year. Storage, especially at a lower temperature or freezing, can
allow for extending their shelf life [36,37]. The significance of the present work is related to
developing innovative models using image features to detect the changes in red currant
quality during storage. Due to the use of image analysis and artificial intelligence, even
slight changes were identified in a non-destructive, easy, fast, and inexpensive manner with
high accuracy. The correct detection of the changes in fruit structure during storage can con-
tribute to the selection of stored red currants with the desired properties for consumption
or processing and the rejection of unusable fruit.

Nowadays, the demand for high-quality fruit products and automatic high-throughput
quality detection is increasing. Extending the shelf life of berries can provide new options
to producers and consumers. The detection and prediction of berry quality using advanced
artificial intelligence-based techniques can be considered the important direction of modern
food processing. However, techniques involving image processing and artificial intelligence
are not commonly used in all aspects of commercial berry preservation [38]. Therefore, the
undertaken own study expanded the scope of the application of the approach combining
image processing and artificial intelligence and indicated new research directions for
developed procedures of fruit quality monitoring. Additionally, in the case of a decrease in
the number of farmers, the workforce can be replaced by technology [39]. Furthermore,
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machine vision can ensure quicker and more accurate identification of quality changes in
berries than manual evaluation [40]. Manual inspection is more laborious, error-prone, and
time-consuming than non-destructive imaging techniques based on pattern recognition
to assess the berry damages [41]. The importance of classifying fruit samples based on
their external quality parameters using imaging and machine learning models is great
for agroindustry and agribusiness [42]. In the present study, the classification of red
currant berries was assessed considering the accuracy, Precision, Recall, and F-Measure
for the models developed based on image textures using machine learning algorithms.
This increases the importance of the research carried out. In practical applications, the
identification of damaged berries using Recall, Precision, and F-Measure is rarely used by
investigators engaged in agricultural engineering. However, these evaluation indicators
are very important. Considering only the classification accuracy is not enough. Using
more performance metrics can contribute to making more effective decisions and reduce
economic losses [43]. The obtained own results confirmed that the influence of storage
technologies on the external structure of red currants can be assessed using image analysis
and machine learning. This could allow the development of robust models to predict
the maintenance of optimal fruit structure during storage under various conditions. The
developed procedures can be useful for farmers and food processors who are unable to
process all raw materials at once and need to store them before processing. The proposed
approach can be used in practice to develop vision systems to predict changes in the quality
of stored red currants and to assess the suitability of stored raw materials for consumer
consumption and processing.

4. Conclusions

Image analysis combined with artificial intelligence proved to be effective to monitor
the changes in stored red currants. The use of models based on features from different color
channels R, G, B, L, a, b, X, Y, and Z of digital images developed using various machine
learning algorithms for the detection of fruit quality during storage is a great novelty of this
study and allowed for performing research in an objective, non-destructive and effective
manner. Statistically significant changes in selected texture parameters of the outer surface
of red currants as a result of increasing storage time were found for samples stored at
room temperature and in the refrigerator. Using machine learning models, the completely
correct classification (100% accuracies) of samples stored under different conditions was
achieved. Due to the promising results, further research could be undertaken to develop
vision systems for predicting quality changes in stored red currants and assessing the
suitability of stored raw materials for consumer consumption and processing.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sun, Q.; Wang, N.; Xu, W.; Zhou, H. Genus Ribes Linn. (Grossulariaceae): A comprehensive review of traditional uses,

phytochemistry, pharmacology and clinical applications. J. Ethnopharmacol. 2021, 276, 114166. [CrossRef] [PubMed]
2. Djordjevic, B.; Rakonjac, V.; Fotiric Aksic, M.; Savikin, K.; Vulic, T. Pomological and biochemical characterization of European

currant berry (Ribes sp.) cultivars. Sci. Hortic. 2014, 165, 156–162. [CrossRef]
3. Djordjevic, B.S.; Djurovic, D.B.; Zec, G.D.; Meland, M.O.; Fotiric Aksic, M.M. Effects of shoot age on biological and chemical

properties of red currant (Ribes rubrum L.) cultivars. Folia Hortic. 2020, 32, 291–305. [CrossRef]
4. Pikunova, A.; Goryunova, S.; Goryunov, D.; Golyaeva, O.; Dolzhikova, M.; Pavlenko, A. Genetic Diversity and Pedigree Analysis

of Red Currant Germplasm. Plants 2022, 11, 1623. [CrossRef] [PubMed]

http://doi.org/10.1016/j.jep.2021.114166
http://www.ncbi.nlm.nih.gov/pubmed/33940086
http://doi.org/10.1016/j.scienta.2013.11.014
http://doi.org/10.2478/fhort-2020-0026
http://doi.org/10.3390/plants11131623
http://www.ncbi.nlm.nih.gov/pubmed/35807575


Agriculture 2022, 12, 1730 14 of 15
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