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Abstract: The identification method of rice seedling rows based on machine vision is affected
by environmental factors that decrease the accuracy and the robustness of the rice seedling row
identification algorithm (e.g., ambient light transformation, similarity of weed and rice features, and
lack of seedlings in rice rows). To solve the problem of the above environmental factors, a Gaussian
Heatmap-based method is proposed for rice seedling row identification in this study. The proposed
method is a CNN model that comprises the High-Resolution Convolution Module of the feature
extraction model and the Gaussian Heatmap of the regression module of key points. The CNN
model is guided using Gaussian Heatmap generated by the continuity of rice row growth and the
distribution characteristics of rice in rice rows to learn the distribution characteristics of rice seedling
rows in the training process, and the positions of the coordinates of the respective key point are
accurately returned through the regression module. For the three rice scenarios (including normal
scene, missing seedling scene and weed scene), the PCK and average pixel offset of the model were
94.33%, 91.48%, 94.36% and 3.09, 3.13 and 3.05 pixels, respectively, for the proposed method, and the
forward inference speed of the model reached 22 FPS, which can meet the real-time requirements
and accuracy of agricultural machinery in field management.

Keywords: recognition of rice seedling rows; Gaussian Heatmap; CNN Model; key points

1. Introduction
1.1. Background

Rice is a critical food crop worldwide, with lower cultivated area and total produc-
tion than wheat. In China, rice is grown on approximately 30.08 million hectares, and its
production is nearly 211.86 million tonnes [1]. All aspects of rice cultivation (e.g., planting,
field management and harvesting) have been mechanized. In the management of the field,
water and fertilizer management, pest and disease control and weed control have created
a positive growing environment for rice that takes on a great significance in raising rice
production [2]. At present, the field management model is primarily divided into two types
of modes (including manual management and farm machinery management). The manual
management mode is subjected to the problems of large time cost and inefficiency. Ac-
cordingly, an increasing number of areas are gradually replacing the manual management
mode with a farm machinery management mode, such that the demand for mechanization
of rice field management is increasingly urgent. Moreover, its sustainable development
takes on a critical significance to the green quality of rice production and cost saving and
efficiency) [3].

The image sensor is capable of identifying rice seedlings in the working area ahead of
the farm machinery, which obtains the location information of the rice seedlings and builds
an accurate operating route for the farm machinery to navigate autonomously between
the crop rows [4]. As a result, accurate extraction of the center line of the crop rows in rice
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fields serves as a vital technology in the mechanization of rice field management, and a
prerequisite for improving the intelligence and automation of agricultural operations.

Rice seedling recognition is dependent on the color features and growth characteristics
of seedlings in the image, whereas image quality is often affected by multiple factors, as
follows: (1) the different growth postures of rice in the rice field, with branch and leaf
cover, which means that different crop rows cover each other in the image; (2) the lack
of seedlings in the sowing process which makes the spatial distribution characteristics of
crop rows incompletely represented; (3) weeds with similar color characteristics to rice
seedlings and growth characteristics, which makes it more difficult to segment weeds
and rice seedlings [5]; (4) unstable lighting conditions in the field, shadows of seedlings
under different weather conditions, and excessive light differences which generate more
image noises.

1.2. Literature Review

There have been two major approaches to crop row identification. The first approach
is based on machine vision and image processing. The color features and growth char-
acteristics of the crop are adopted to segment the crop from the background image and
extract information regarding the location of the crop. Tijmen Bakker et al. [6] proposed
an intelligent fusion method based on the grayscale Hough transform to recognize crop
rows for beet fields exhibiting high weed density. The collected images were transformed
through inverse projection, the images were grayed, and the crop information was extracted
from the segmented a priori image information, respectively. Lastly, the crop row straight
lines were extracted through Hough transform. The experiments have confirmed that the
method has a crop row localization error of 22 mm, though the method is subjected to the
problem of recognition error increasing when the camera is overexposed and the weed
density is too high; Ng Tong [7] applied the Artificial bee colony algorithm to rice row
recognition. The image was preprocessed with optimized 2G-R-B and Otsu to obtain a
feature map of rice seedlings, and the feature map was clustered using the Artificial bee
colony algorithm and least-squares method to extract rice rows in a straight line. The
experimental result has indicated that the recognition accuracy of this method is 91%, with
an average time consumption of 78.2 ms, which can meet the actual agricultural machinery
use requirements. Jiqing Chen et al. [8] solved the problem of high computational effort and
low accuracy of conventional algorithms using the Hough transform-based navigation line
extraction method for prediction points. Zenghong Ma et al. [9] proposed a crop root row
detection method for rice fields using linear clustering and supervised schools. First, the
crop information is extracted by a combination of vegetation index method and dynamic
threshold segmentation, followed by the use of the horizontal banding method to obtain
the number of crop rows in the image. Linear clustering algorithms and outlier detection
mechanisms are employed to obtain the actual crop rows in the image and remove invalid
rows on both sides of the image. Lastly, a parametric regression equation for the distance
between crop rows and crop roots is solved through supervised learning to obtain the
crop root rows. In brief, both machine vision and image processing-based methods are
dependent on the color characteristics of the crop, thus becoming highly sensitive to the
color characteristics of the crop. When the green features of the crop are more intense, the
segmentation of the background and the crop achieves good results. Besides, when the
environmental light source changes or the weed density is denser, the method’s results
tend to have more significant errors.

With the continued development of Deep Learning in a wide variety of fields over
the past few years, the AlexNet Network proposed by Krizhevsky et al. [10] in the Ima-
geNet [11] image classification competition has outperformed the conventional machine
vision-based methods in terms of accuracy in image classification. In the computer vision
field, Deep Learning has developed three mainstream directions in terms of the Convo-
lutional Neural Network, including (1) the target detection models (e.g., SSD [12], Fast
R-CNN [13], and YOLO [14–16]); (2) the semi-semantic segmentation models (e.g., U-
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Net [17] and DeepLab [18]); (3) the instance segmentation models (e.g., Mask R-CNN [19]
and YOLACT [20]). A growing number of scholars are applying Deep Learning to crop
row recognition because of Deep Learning’s robustness and strong feature extraction.
Wang [21] proposed a YOLOv3 [18]-based method for rice row seedling column detection.
The seedling detection frame output from the model was adaptively clustered, followed
by the extraction of center line feature points using the SUSAN algorithm with detection
frames based on the same row of seedlings, as well as the fitting of seedling center lines
using the least-squares method. The experimental results confirm that the algorithm takes
an average of 82.6ms to meet the real-time requirements of agricultural navigation in a
simulated paddy field environment; Shyam P. Adhikari et al. [22,23] presented a method
to detect crop rows in rice fields based on semantic graphics. The ESNet model with
an encoder-decoder structure was trained using simple semantic images for end-to-end
extraction of crop rows in a paddy field. The results have suggested that the method is
efficient in extracting crop row information accurately, thus guiding the weeder to navi-
gate autonomously along the crop rows in the paddy field; Wang Shanshan et al. [24,25]
proposed a method to identify rice seedling rows in accordance with the Neighborhood
Hough Transform of feature points. The feature points of rice seedlings were detected
through Fast R-CNN network, and the center line of the seedling rows was identified using
the Neighborhood Hough Transformation algorithm. The method effectively solves the
effect on crop row detection due to weed density, light intensity variation and seedling
row curvature variation in the paddy field, and then the team proposes the method of
rice seedling row detection through row vector grid-based classification. The problem
of image recognition of seedling location information is transformed into a row vector
network classification problem with global features. The method effectively reduces the
effect of degradation of captured image quality due to floating weeds in the paddy field
and farm machinery jittering, and it exhibits the features of low computational effort and
high accuracy compared with other types of networks. Accordingly, the above research
shows that the crop row recognition method using the Convolutional Neural Network can
overcome the problems of weak ability to extract color features and poor adaptability to
the environment in conventional image processing.

1.3. Contributions

Outdoor crop row detection in rice fields is affected by a wide variety of factors (e.g.,
weed density in the rice growing environment, unstable lighting conditions in the farmland,
water reflections and lack of seedlings in the crop rows). Although the conventional
methods of machine vision and image processing to recognize rice seedling rows from
color features and threshold segmentation are capable of extracting the information of crop
rows in farmland relatively accurately, there are the problems of poor robustness and low
accuracy rates in complex farmland environments, which cannot meet the requirements of
practical agricultural machinery in field operation. However, the Convolutional Neural
Network has the ability to overcome the shortcomings of the conventional image processing
methods by achieving outstanding extraction of features in both normal and complex
environments. Generally, the object detection model is used to accurately identify and
locate rice seedlings. The characteristic points of the seedlings are grouped into a particular
crop row by means of a classification or clustering algorithm. Eventually, the center line
of each row is detected in accordance with the feature points of the respective cluster
after clustering.

However, the above methods have the problem of single-feature information by
relying only on the Convolutional Neural Network or machine vision depending on the
crop growth characteristics and color features extracted, such that a method is proposed
for rice seedling row recognition based on a Gaussian Heatmap. The CNN Model consists
of the Feature Extraction Module, the Heatmap Regression Module, and the Grid Offset
Module. The method takes the rice seedling image as the CNN model input and the key
points on the center line of the crop rows as the output. Through transforming the rows
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of rice seedlings in the image into a scatter plot with continuity distribution features, the
CNN Model is led to learn the color features and continuity distribution features of rice
seedlings during training.

The rest of the paper is as follows: the proposed methodology is explained in Section 2,
and the experiments and results analysis of the CNN model on the relevant dataset are
described in Section 3. The conclusion is included in Section 4.

2. Materials and Methods

In the present section, rice seedling row identification based on a Gaussian Heatmap is
introduced. To be specific, image acquisition and annotation, the structure of the Network
Model and the definition of the loss function are elucidated.

2.1. Image Acquisition

Generally, weeds growth between the 25th and 30th day following the transplanting of
the rice seedlings. Thus, the camera was installed at a distance of approximately 1.2 m from
the ground to simulate the image scenario during the actual farming operation, and the
angle between the camera and the horizontal plane was 35–60 degrees to capture the images
of the rice seedlings. The images were taken on the 30th day after transplanting, when the
height of the rice seedlings was nearly 18–22 cm, and the row spacing of the rice seedlings
was 25 cm. A total of 2608 images were captured using the Eimage Seiki DFK 21BU04
color camera(The Imaging Source, Taipei, Taiwan Province, China) at an image resolution
of 640 * 480 under cloudy and sunny skies in an unmanned farm rice field (as shown on
Figure 1) at the Teaching and Research Base of South China Agricultural University in
Zengcheng District, Guangzhou City, Guangdong Province, China, in April 2022. Figure 2
presents the different images taken of rice seedlings. Figure 2a presents an image of a rice
seedling under clear skies. As depicted in the figure, the seedlings and the weeds at the
boundary of the rice field overlapped each other. Figure 2b presents an image of a rice
seedling under a cloudy sky. As depicted in the figure, the weeds and seedlings had similar
color characteristics, the weeds and seedlings were overlapping each other in the image,
and there were missing seedlings in the crop row. The red circles in Figure 2 represent the
location of weeds, and the blue circles represent the location of lacking seedlings.

Agriculture 2022, 12, 1736 4 of 19 
 

 

of the Feature Extraction Module, the Heatmap Regression Module, and the Grid Offset 
Module. The method takes the rice seedling image as the CNN model input and the key 
points on the center line of the crop rows as the output. Through transforming the rows 
of rice seedlings in the image into a scatter plot with continuity distribution features, the 
CNN Model is led to learn the color features and continuity distribution features of rice 
seedlings during training. 

The rest of the paper is as follows: the proposed methodology is explained in Section 
2, and the experiments and results analysis of the CNN model on the relevant dataset are 
described in Section 3. The conclusion is included in Section 4. 

2. Materials and Methods 
In the present section, rice seedling row identification based on a Gaussian Heatmap 

is introduced. To be specific, image acquisition and annotation, the structure of the Net-
work Model and the definition of the loss function are elucidated. 

2.1. Image Acquisition 
Generally, weeds growth between the 25th and 30th day following the transplanting 

of the rice seedlings. Thus, the camera was installed at a distance of approximately 1.2 m 
from the ground to simulate the image scenario during the actual farming operation, and 
the angle between the camera and the horizontal plane was 35–60 degrees to capture the 
images of the rice seedlings. The images were taken on the 30th day after transplanting, 
when the height of the rice seedlings was nearly 18–22 cm, and the row spacing of the rice 
seedlings was 25 cm. A total of 2608 images were captured using the Eimage Seiki DFK 
21BU04 color camera(The Imaging Source, Taipei, Taiwan Province, China) at an image 
resolution of 640 * 480 under cloudy and sunny skies in an unmanned farm rice field (as 
shown on Figure 1) at the Teaching and Research Base of South China Agricultural Uni-
versity in Zengcheng District, Guangzhou City, Guangdong Province, China, in April 
2022. Figure 2 presents the different images taken of rice seedlings. Figure 2a presents an 
image of a rice seedling under clear skies. As depicted in the figure, the seedlings and the 
weeds at the boundary of the rice field overlapped each other. Figure 2b presents an image 
of a rice seedling under a cloudy sky. As depicted in the figure, the weeds and seedlings 
had similar color characteristics, the weeds and seedlings were overlapping each other in 
the image, and there were missing seedlings in the crop row. The red circles in Figure 2 
represent the location of weeds, and the blue circles represent the location of lacking seed-
lings. 

 
Figure 1. Data acquisition field. Figure 1. Data acquisition field.



Agriculture 2022, 12, 1736 5 of 17
Agriculture 2022, 12, 1736 5 of 19 
 

 

  
(a) (b) 

Figure 2. Images of rice seedlings: (a) Images of rice seedlings under sunny skies; (b) Images of rice 
seedlings under cloudy skies; The red circles represent the location of weeds; The blue circles rep-
resent the location of lacking seedlings. 

2.2. Generation Dataset 
The proposed CNN Model takes the key points on the center line of the crop rows as 

the output. Therefore, according to the distribution pattern of the rice seedling rows in the 
image, the generated dataset was labelled with the following rules: (1) the position of the 
crop row’s center points were set to the roots of the rice seedlings; (2) the center line of the 
crop rows were labelled using the method of broken lines; (3) equal distance horizontal 
splines were used for the broken lines to cut to generate the scatter plot with continuous 
distribution characteristics; (4) the corresponding Heatmap was generated from the scat-
ter plot and the 2D Gaussian function (Formula (1)) and the generated Heatmap was pre-
sented as the dataset for the rice seedling rows. Figure 3a illustrates the use of the broken 
lines to label the rice seedling rows, Figure 3b presents the annotated key point image, 
and Figure 3c represents the generated Heatmap. The Gaussian function is described as 
follows: 

𝑔(𝑥, 𝑦) = 12𝜋𝜎ଶ 𝑒ି(௫మା௬మ)ଶఙమ  (1)

where 𝜎 in Formula 1 represents the radius of the Gaussian kernel, 𝑥 and 𝑦 repre-
sent the central coordinate points of the template match. 
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2.2. Generation Dataset

The proposed CNN Model takes the key points on the center line of the crop rows as
the output. Therefore, according to the distribution pattern of the rice seedling rows in the
image, the generated dataset was labelled with the following rules: (1) the position of the
crop row’s center points were set to the roots of the rice seedlings; (2) the center line of the
crop rows were labelled using the method of broken lines; (3) equal distance horizontal
splines were used for the broken lines to cut to generate the scatter plot with continuous
distribution characteristics; (4) the corresponding Heatmap was generated from the scatter
plot and the 2D Gaussian function (Formula (1)) and the generated Heatmap was presented
as the dataset for the rice seedling rows. Figure 3a illustrates the use of the broken lines
to label the rice seedling rows, Figure 3b presents the annotated key point image, and
Figure 3c represents the generated Heatmap. The Gaussian function is described as follows:

g(x, y) =
1

2πσ2 e−
(x2+y2)

2σ2 (1)

where σ in Formula (1) represents the radius of the Gaussian kernel, x and y represent the
central coordinate points of the template match.

Agriculture 2022, 12, 1736 6 of 19

(a) 

(b) 

(c)
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pared with the first method, the second method is dependent on the strong feature extrac-
tion property of the convolutional neural network, allowing the convolutional neural net-
work to learn the global feature correlation between key points, and in addition using a 
Gaussian function to generate a “soft annotation” based on the 2D Gaussian Heatmap 
annotation. Thus, the convolutional neural networks are enabled to learn more accurately
and adequately. However, as depicted in the schematic diagram of the Gaussian Heatmap 

Figure 3. Labelling styles: (a) Use broken lines to label the rice seedling rows; (b) Image of key points
after labelling; (c) Generated Heatmaps.



Agriculture 2022, 12, 1736 6 of 17

2.3. Network Architecture

In this study, a method is proposed to identify rows of rice seedlings based on a
Gaussian Heatmap by inputting images of seedlings in a paddy field and outputting all key
points on the respective row from a network model. There are currently two mainstream
methods for learning the absolute coordinates of the respective key point on the image
using the Convolutional Neural Network [26]. The first method refers to a direct regression
of the absolute coordinates of the respective key point based on full connectivity, which
enables end-to-end full differential training but lacks spatial generalization capability.
When the key points in the dataset are concentrated at a certain location in the image,
only the information of local features in the image will be activated in the fully connected
layer. On that basis, the Neural Network will not be trained accurately and adequately on
the global features, besides possibly making the network overfit. The second method is
based on the 2D Gaussian Heatmap to obtain the exact coordinates of the key points, which
are generated by the convolutional layer, while the absolute position of the key points
refers to the position where the Heatmap is significantly activated. Compared with the
first method, the second method is dependent on the strong feature extraction property of
the convolutional neural network, allowing the convolutional neural network to learn the
global feature correlation between key points, and in addition using a Gaussian function
to generate a “soft annotation” based on the 2D Gaussian Heatmap annotation. Thus,
the convolutional neural networks are enabled to learn more accurately and adequately.
However, as depicted in the schematic diagram of the Gaussian Heatmap error in Figure 4,
typical 2D Gaussian Heatmap resolution accounts for 1/4 of the original input image
resolution. When the coordinates of the selected key points are mapped to the original
image size through upsampling after filtering, there is an error between the remapped
coordinates and the Ground Truth coordinates.
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Accordingly, a method is proposed in this study for a Gaussian Heatmap-based key
point regression module based on a Gaussian Heatmap and the Grid Offset Module in
accordance with the YOLO series of the Object Detection Network. YOLO adopts an
Anchor-based frame and Grid Offset Module to accurately localize the centroid position of
target points in an image. The method requires predicting the offset of the respective grid
point in the x-axis and y-axis directions, thus keeping the reference value of the predicted
offset within a small range, which is beneficial for increasing the network learning accuracy.
On that basis, a Gaussian Heatmap is combined with the Grid Offset Module. Figure 5
depicts a schematic diagram of the Gaussian Heatmap and the Grid Offset Module. The
Gaussian Heatmap outputs the coordinate position of the respective key point, and the
Grid Offset Module finds the offset in the x-axis and y-axis directions of the corresponding
grid position to be in accordance with the coordinate position of the key point and obtains
the exact coordinate position of the key point after upsampling.
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In order to improve the accuracy of the model prediction results while preventing
the problem of disappearance or explosion of the gradient as the model reaches deeper
layers, we use HRNet_w18 [27] as the backbone feature extraction network of the model in
this study. As showed in Figure 6 of Network Model, the HRNet_w18 backbone feature
extraction network comprises the Stem Net Module, the Basic Conv Module, as well as
the High-Resolution Convolution Module. To be specific, (1) the Stem Net Module and
Basic Conv Module perform high-resolution feature extraction on the input image. (2) The
High-Resolution Convolution Module strengthens and extracts the feature layers; its core
function is to use convolution and stacking at multiple resolutions to keep the input features
significantly activated at different resolutions during the forward inference of the network,
and the perceptual field is capable of effectively enhancing the network’s ability to extract
features in the global space, so that the feature layers can also have the characteristics of
guaranteed high-resolution and strong activation of features when the network is deep. As
shown in Stage 2, Stage 3 and Stage 4 in Figure 6, the High-Resolution Convolution module
takes the output of the previous convolution as input and performs Basic Block 4 times on
the input feature layers, respectively (as shown in Figure 7). Basic Block mainly includes
2 convolution layers and 1 skip module; the feature layers are fused with the original
feature layers after 2 convolutions to enhance the information of the extracted features
while avoiding disappearance and explosion of the gradient. Moreover, in the final stage of
the High-Resolution Convolution Module, the feature layers with low resolution are fused
with the feature layers with high-resolution by upsampling, while the feature layers with
high-resolution are fused with the feature layers with low resolution by downsampling.
The model is extended in width while being deepened, making the model more accurate for
the extraction of features. (3) The Multi-Scale Fusion Module accounts for fusing the feature
layers that have gone through the high-resolution convolution module from low-to-high
stacking and outputting the feature layers with high resolution. (4) The Output Module
creates Heatmap branches and Grid Offsets Model from the High-Resolution Convolution
Module, followed by use of the above-proposed regression key point absolute position
method to extract the key point positions of the respective row in the image. Table 1 presents
the sizes of the input and output layers for each feature layer from the proposed model.
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Table 1. Lists the inputs and outputs of the network modules.

Layers Stem Net Basic Conv Stage 2 Stage 3 Stage 4 Concatenate Feature Heatmap Offset Model

Input Size H ×W × 3 H
4 ×

W
4 × 64

[H
4 ×

W
4 × 18

H
8 ×

W
8 × 36

]  H
4 ×

W
4 × 18

H
8 ×

W
8 × 36

H
16 ×

W
16 × 72




H
4 ×

W
4 × 18

H
8 ×

W
8 × 36

H
16 ×

W
16 × 72

H
32 ×

W
32 × 144




H
4 ×

W
4 × 18

H
8 ×

W
8 × 36

H
16 ×

W
16 × 72

H
32 ×

W
32 × 144

 H
4 ×

W
4 × 128 H

4 ×
W
4 × 128

Output Size H
4 ×

W
4 × 64 H

4 ×
W
4 × 256

 H
4 ×

W
4 × 18

H
8 ×

W
8 × 36

H
16 ×

W
16 × 72




H
4 ×

W
4 × 18

H
8 ×

W
8 × 36

H
16 ×

W
16 × 72

H
32 ×

W
32 × 144




H
4 ×

W
4 × 18

H
8 ×

W
8 × 36

H
16 ×

W
16 × 72

H
32 ×

W
32 × 144

 H
4 ×

W
4 × 128 H

4 ×
W
4 × 1 H

4 ×
W
4 × 2

2.4. Loss Functions

The Network Loss Function used in this study consists of two main components,
including: Heatmap Loss and Grid Offset Loss.

For Heatmap Loss, the network should result in a series of consecutive point sets after
forward inference of the network since the network ends up with a result of consecutive
key points on the respective crop row on the image. However, the above contiguous points
account for a relatively small number of pixels on the whole image, leaving an imbalance
in the number of positive and negative samples of key points at the pixel level of the image.
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When the number of negative samples is significantly larger than that of positive samples,
the direction of network optimization is shifted, and it becomes more difficult to train the
network. Thus, an improved Focal Loss [28] is employed as the loss function for the heat
map based on the method of calculating loss for Gaussian Heatmap in CenterNet [29]. The
loss function formula is expressed as follows:

LHeatmap = − 1
N ∑

xyc

{ (
1− Ŷxyc

)α log
(
Ŷxyc

)
, i f Yxyc = 1(

1−Yxyc
)β(Ŷxyc

)α log
(
1− Ŷxyc

)
, otherwise

(2)

where N denotes the number of key points in the image; xyc represents all coordinate
points on the Heatmap; Ŷxyc is the predicted result of the network model; Yxyc denotes the
Ground Truth; α and β represent the hyperparameters of Focal Loss, which are 2 and 4,
respectively.

Since the labelling format is a point-labelling format based on Gaussian functions,
there are two different cases for the Focal Loss calculation.

(1) For the coordinate point at Yxyc = 1, i.e., the point at the center of the Gaussian
kernel. When Ŷxyc is close to 1, i.e., the point is an easily divisible sample and the calculated
value of the scale factor

(
1− Ŷxyc

)α is a smaller value, thus fine-tuning the network as a
whole. In contrast, when Ŷxyc tends to 0, i.e., the point is a difficult sample, the calculated
value of the scale factor

(
1− Ŷxyc

)α is a larger value, thus increasing the training weight of
the network for this one point.

(2) Likewise, for coordinate points of Yxyc 6= 1, i.e., points that are not the center of
the Gaussian kernel, the loss values of positive and negative samples are penalized using
a scale factor

(
Ŷxyc

)α, while the loss weight of negative samples around the center of the

kernel is reduced by a distance factor
(
1−Yxyc

)β.
For the Grid Offset Loss, since the feature layer undergoes 4-fold downsampling

during network forward inference which results in discretization errors in the coordinate
positions of key points, the L1 regularized loss function is adopted to calculate the loss
values for the offsets of the predicted centroids as follows:

Lo f f est =
1
N

N

∑
k=1

∣∣∣Ŝpk − sk

∣∣∣ (3)

where N denotes the number of key points in the image; Ŝpk is the predicted result of
the network model; sk is the Ground Truth. Lo f f est is only for the calculation of the key
point position offset error loss; other offset losses that are not key point positions are not
calculated. The loss function formula is expressed as follows:

L = LHeatmap + Lo f f est (4)

3. Experiments and Results

In this section, we mainly describe the experiments performed on the proposed method
on the rice seedling row dataset, with the main contents including: (1) experimental setup;
(2) ablation experiments; (3) analysis of experimental results.

3.1. Experimental Setup
3.1.1. Description of the Dataset

To evaluate the model approach proposed in this study, a rice row dataset was set,
including 2608 images of rice rows in different weed environments. 90% of the dataset
images served as the training set and validation set for the network, with the ratio of the
training set to the validation set at 9:1. The remaining 10% of the dataset images served as
the test set. In addition, the rice row dataset comprised three scenarios (including normal
scenario, missing seedlings scenario and weed scenario), with a uniform resolution of
640 * 480, and the number of rice rows to be identified in the respective image was 4 to 6.
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3.1.2. Hardware and Software Setup

The hardware configuration employed for training all models in this study included
the AMD Ryzen5 3600 processor at 3.6Ghz (Advanced Micro Devices, Inc., Santa Clara, CA,
USA), GDDR4 memory with 16GB of RAM and the NVIDIA GeForce GTX 1650 graphics
card with 4GB of video memory (NVIDIA, Santa Clara, CA, USA). The Deep Learning
environment was built using CUDA 10.1, CUDNN 7.6.5, Python 3.8, as well as TensorFlow-
GPU 2.3.0 (Google, Mountain View, CA, USA). The training parameters of the model were
as follows: the initial learning rate of the network reached 0.001; the learning rate decreased
in this mode as stratification decreased learning rate; the decay weight factor of 0.0001; the
optimizer was the Adam algorithm; with a momentum factor of 0.9, the initial number
of iterations was set to 100 epochs; the Gaussian kernel radius size was set to 5; and the
training set was to stop early when the loss value of the training set did not decrease.

3.1.3. Model Evaluation Criteria

The following three metrics were employed as evaluation criteria for all models in
this study. This includes PCK (Percentage of Correct Key points) [30], APO (Average Pixel
Offset), and Network Inference Speed.

PCK is defined as follows:

PCK =
1
|τ|∑τ

δ(

∣∣∣∣∣
∣∣∣∣∣x f

p − y f
p

∣∣∣∣∣
∣∣∣∣∣2 < σ) (5)

where τ in formula 5 represents the number of actual true values, δ denotes whether the
key point matches the true value, x f

p expresses the location of the model prediction key,

y f
p is the Ground Truth that the Predict Result matches, and σ is the matching threshold.

In this study, since the number of points predicted by the network model will generally
be greater than the number of true values, the Hungarian matching algorithm [31] was
used to match the Ground Truth and the Predict Result. The model predicted all the
predicted points and all the points of the true value through the Eulerian distance to build
the corresponding cost matrix, and thus that the respective true value matched only one
predicted value. The coordinates of a point in the image predicted by the model were
set to x f

p

(
Xpredict, Ypredict

)
, and the coordinates of the true value it matches were set to

y f
p(XTrue, YTrue). If the Eulerian distance between the two is less than a set threshold σ,

the prediction is considered correct; otherwise, the prediction is incorrect. PCK represents
the number of correct results predicted by the model as a proportion of the number of
true values.

APO is defined as follows:

APO =
N

∑
i=1

1
N

(√∣∣∣Xpredict − XTrue

∣∣∣2 + ∣∣∣Ypredict −YTrue

∣∣∣2) (6)

where N denotes the number of key points after a successful match; (XTrue, YTrue) represent
the Ground Truth;

(
Xpredict, Ypredict

)
are the coordinates of the Predict Result matching the

Ground Truth after passing the Hungarian matching algorithm. This metric reflects the
average offset of the model at the pixel level of the predicted points. If the average offset
is smaller, the more accurate the model prediction will be considered; otherwise, the less
accurate the model prediction will be considered.

Network Inference Speed is the time taken to count the time for the input image to
the network model, the network model to compute the inference, as well as the network to
output the result. If the time is shorter, the model is considered have a higher efficiency
and higher real-time performance in forward inference.
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3.2. Ablation Experiment

In the present section, the following main ablation experiments were performed:
(1) comparison of different horizontal spline settings on model prediction performance;
(2) comparison of different backbone network models on model prediction performance;
(3) comparison with state-of-the-art object detection models.

3.2.1. Comparison of Model Prediction Performance with Different Number of
Horizontal Splines

The method uses horizontal spline cuts for the folded segments in the annotated
image to obtain a series of key point maps. Accordingly, the different location and spacing
distribution relationships of individual key points also had different effects on the method
proposed in this study. The effect of cutting the fold segments with different numbers of
horizontal splines on the performance of the algorithm model was explored. Since the
resolution of the images used was 640 * 480, the number of horizontal strips was set to 20,
30, 40, 50 and 60, i.e., 24, 16, 12, 9 and 8 pixels between the key points, to train the network
model. The network model was trained with the same parameters as in Section 3.1.2 above,
and the results are listed in the Table 2.

Table 2. Comparisons of Model Performance Using Different Horizontal Splines.

Number of Horizontal Splines 20 30 40 50 60

PCK (%) 93.294 91.392 93.726 66.22 49.217
APO (Pixel) 3.195 3.277 3.08 3.572 3.175

From the results in Table 2, the algorithm’s prediction results were poor when the
number of horizontal strips was 50 and 60, i.e., the interval between key points was 8
and 9 pixels, respectively, and the PCK of the network model was 66.22% and 49.217,
respectively, with an Average Pixel Offset of 3.572 and 3.175 pixels. When the number
of horizontal strips was 40, i.e., the interval between key points was 12, the PCK and
APO were 93.726% and 3.08 pixels, respectively, when the number of horizontal strips
was set to 20 and 30, i.e., 24 and 16 pixels between key points, with 91.392%, 3.277 pixels.
Compared with the group set to 40 horizontal strips, the PCK decreased by 0.432% and
2.334% respectively, and APO differed by 0.115 and 0.197 pixels respectively. Thus, when
the number of horizontal strips is set too high, the key points will be lost in the upsampling,
thus reducing the prediction performance of the network and the completion rate of the
network. The network prediction results are not spatially continuous. Accordingly, in this
study, we choose to set 40 horizontal strips to cut the folded segments of the image in
Figure 1 to obtain the optimal prediction results.

3.2.2. Comparison of Model Prediction Performance of Different Backbone Networks

In the second ablation experiment, the prediction performance of different backbone
feature extraction networks was compared to network models, where the performance
metrics included PCK, APO, Number of Network Parameters, as well as Network Infer-
ence Speed. The backbone feature extraction networks applied included HRNet_w18,
HRNet_w32, HRNet_w48, ResNet50 [32], VGG16 [33] and CSPDarkNet53 [34]. Table 3 lists
the comparison results. As depicted in Table 2, HRNet networks outperformed ResNet50,
VGG16 and CspDarkNet53 in PCK, APO and Network Inference Speed. Furthermore, HR-
Net with different channel counts improved the PCK by 50.814% to 54.004% over ResNet50,
VGG16, and CspDarkNet53 networks, respectively, and improved the APO by 0.939 to
1.45 pixels.
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Table 3. Comparison of model prediction performance by different backbone networks.

Backbone PCK (%) APO (Pixel) Total Param Run Time (ms)

HRNet_w18 93.726 3.08 10,219,687 45.4
HRNet_w32 91.498 3.279 30,470,211 63.8
HRNet_w48 92.072 3.291 67,069,507 102

ResNet50 40.684 4.288 25,921,155 51.8
CspDarknet53 39.837 4.23 27,832,867 56.0

VGG16 39.722 4.53 15,305,219 51.5

Moreover, the prediction performance of HRNet structures with different number of
channels was compared. The results indicated that the number of HRNet_w18 parameters
decreased by 66.5%~84.7% compared with HRNet_w32 and HRNet_w48, respectively,
and the HRNet_w18 structure achieved the optimal prediction performance in the rice
row test set. When the pixel threshold was at 10 pixels, the HRNet_w18’s PCK and APO
were 93.726% and 3.08 pixels, respectively. Furthermore, the average prediction time of
HRNet_w18 was 45.4 ms, i.e., 22FPS. Although HRNet_w32 and HRNet_w48 had more
complex and deeper High-resolution Convolution Module, their prediction performance
was lower than that of the HRNet_w18 structure. The PCK and APO of HRNet_w32 and
HRNet_w48 were 91.498%, 92.072% and 3.279 pixels, 3.291 pixels respectively, which are
2.228%, 1.654% and 0.199 pixels, 0.211 pixels different from HRNet_w18, and the average
prediction times are 63.8ms and 102ms respectively, which are 1.4 times and 2.24 times of
HRNet_w18. Therefore, we choose HRNet_w18 as the backbone feature extraction network
for the model in this paper.

3.2.3. Comparison with State-of-the-Art Object Detection Models

Due to the better recognition and localization effect of object detection models, most
crop row recognition methods based on Deep Learning have used object detection models
in recent years. State-of-the-art object detection mainly includes: (1) One-stage models,
mainly including YOLOV4, SSD [12], etc.; (2) Two-stage models, which include Faster
RCNN [13], etc.; (3) Anchor-free models, for instance, FCOS [35], etc. The CNN Models
proposed in this paper was compared with the state-of-the-art models mentioned above.
The comparison results are shown in Table 4. From Table 4, it can been obtained that the
proposed method performs better than the above state-of-the-art object detection models
for both PCK and APO metrics in the test set. Moreover, except for SSD, the CNN model
proposed achieves 1 to 3 times faster Network Inference Speed than the other models.

Table 4. Comparison with state-of-the-art object detection models.

Method Backbone PCK (%) APO (Pixel) Total Param Run Time (ms)

FCOS ResNet50 46.06 4.216 32,212,190 88.8
Faster RCNN ResNet50 27.557 5.226 137,057,234 152.1

SSD VGG16 30.139 5.319 26,285,486 29.1
Yolov4 CSPdarknet53 76.952 4.666 64,429,405 60.8

Our method HRNet_w18 93.726 3.08 10,219,687 45.4

3.3. Analysis of Experimental Results
3.3.1. Visualizing Network Results

The Gaussian Heatmap based rice row recognition method proposed in this study
is an end-to-end network, i.e., the input image is input, and the network automatically
recognizes the information from the key points of the respective row. The visualization
network is used in this study as a non-parametric method to account for the extraction of
different features in the middle layer of the model during forward inference [36].

In this study, the rice row images in the three scenarios mentioned above are used
as model input, and the high-resolution feature layer and Heatmap feature layer in the
output layers of Basic Conv, Stage 2, Stage 3 and Stage 4 in Table 1 above are visualized and
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analyzed respectively, and the feature visualization results of the intermediate layer are
obtained by calculating the convolution layers of the different channels and accumulating
them. Figure 8 shows that the first image on the left is the original image of the input model,
and the second to sixth images correspond to the visualization results of Basic Conv, Stage
2, Stage 3, Stage 4 and Heatmap layers. The visualization results show that Basci Conv and
Stage 2 in the shallow network learn the green features and edge features of the rice rows
in the image; Stage 3 learns more complex features such as the distinction between rice
rows and weeds, as well as the distinction between rice rows and the background; Stage
4 in the deeper network extracts the continuous relationships and position relationships
of key points in the respective rice row. The final output of the Heatmap layer shows the
results of the model learning compared to the original ma. As shown in Figure 8, the green
pixels represent the locations of the key points in the rice rows in the original map, which
are the areas with strong negative activation in the Heatmap layer, while the blue pixels
represent the locations of the background in the original map, which are the areas with
strong negative activation.
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The visualization results show that the proposed method can enable the network
to effectively learn the color features and spatial distribution features of the rice rows.
Compared with conventional image processing algorithms, the Gaussian Heatmap-based
rice row recognition method can effectively reduce the effect of weeds or missing seedlings
in rice rows on the effectiveness of rice row recognition.

3.3.2. Performance of Network Models in Different Rice Environments

In the Test Set, there were 261 images, of which 104 were in the Normal scene, 97 were
with weeds in the rice rows, and 64 were with lack of seedlings in the rice rows. In this
study, the network prediction results of the Test Set of rice row images for each of the above
three scenarios were compared. The comparison results are listed in Table 5.

Table 5. Comparison of network prediction results in the three environments.

Scene Normal Lack of Seedlings Weeds

PCK (%) 94.33 91.48 94.36
APO (Pixel) 3.09 3.13 3.05
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As depicted in Table 5, among the three tested sceneries, the sceneries with lack of
seedlings had the lowest PCK of the network prediction results, with a PCK of 91.48%. The
other two scenarios, the Normal scene and the Weed scene, had closer PCKs of 94.33% and
94.36%, respectively. Additionally, APO was relatively similar for all three scenes tested, at
3.09, 3.05 and 3.13 pixels, respectively.

Figure 9 shows the test results for the three scenes, where Figure 9a–c show the test
results for the Normal scene, Weed scene and Lack of seedlings scene respectively. The black
points in the figure are the results of the key points predicted by the model. As depicted
in Figure 9, the key points predicted by the model in the three scenarios had uniform and
continuous distribution on the image, and the respective key point was distributed on the
rice rows. This suggests that the model proposed in this study has effectively learned the
color characteristics and spatial distribution characteristics of the rice rows. As depicted
in Figure 9b, the red circle shows that in the longer rice rows, the proposed method is
capable of effectively separating the rice rows though it is already difficult to distinguish
different rice rows visually at the far end. In the weed scene, as depicted in Figure 9b
yellow circles, although the weeds and rice rows at the edges of the image had similar
color characteristics and were masked to varying degrees from the rice rows in the image,
the model also produced more accurate rice row recognition results based on the spatial
distributivity of the rice rows. In the case of a missing seedling scenario, as shown in the
green circle in Figure 9c, the methodology also obtains relatively accurate results when crop
row continuity features are incomplete due to the lack of seedlings. The network model
also performed well in curved rice rows as shown in the blue circle in Figure 9c.
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3.3.3. Analysis of the Reasons for Mistaken Prediction Results

We have analyzed cases where the model prediction accuracy was low in a seedling-
deficient environment and a weedy environment. Figure 10a,b present the two cases where
low prediction accuracy occurred. The black pixels in the figure represent the model
prediction results, and the green pixels represent the real key points marked. In the missing
rice environment, shown in the yellow circle in Figure 10a, when the distribution of rice in
the rows was sparse and the color characteristics of the rice were blurred, there was a small
pixel deviation between the Ground Truth and the model-predicted key points, with an
average pixel offset of no more than 15 pixels. In the weedy environment, as presented in
the red circle in Figure 10b, when there was a small area of weeds at the edge of the image
that obscures the position of the rice rows, there was a large pixel deviation between the
Ground Truth and the model-predicted key points, with an average pixel offset of no more
than 25 pixels. At this point, there was a large deviation between the crop rows predicted
by the model and the actual crop rows.
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Figure 10. Examples of wrong predictions in two environments: (a) Lack of seedlings; (b) Weeds; The
yellow circles represent where the rice rows are sparsely distributed; The red circle represents the
place covered by weeds.

4. Conclusions

In this study, we propose a new method for identification of rice seedling rows. First,
we have analyzed the research on recognition of rice seedling rows in recent years, and
summarized the strengths and weaknesses of different methods, including the conventional
machine vision and the Convolutional Neural Network, in the recognition of crop rows.
It was found that the above-mentioned research have the problem of single information
of features for the extraction of rice seedling rows, therefore, a method of rice seedling
row recognition based on a Gaussian Heatmap is proposed. Secondly, the rice seedling
row dataset was built by field photography in different environments such as Normal
scene, Lack of seedling scene and Weed scene. The annotation of rice row key points is
obtained by cutting the respective rice row with a horizontal spline. To further strengthen
the extraction of features while avoiding the problem of disappearance and explosion of
gradients, the CNN model based on a feature extraction network with the High-Resolution
Convolution Module and the Gaussian Heatmap-based key point regression module is
built. In addition, the CNN Model uses Focal loss and L1 regularization as the Heatmap
loss function and the Grid Offset loss function which can effectively decrease the effect of
imbalance between positive and negative samples in the prediction results, thus leading the
model to learn the characteristics of color and continuity distribution of rice seedling rows.

The visualization analysis confirms that the model can effectively learn the color
characteristics and spatial distribution of rice rows on the image, effectively reducing the
effect of recognizing rice rows due to changes in ambient light, weed cover in rice rows or
rice rows missing seedlings and others, and the model exhibits better robustness for rice
rows in different environments.
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The visualization analysis confirms that the CNN Model is capable of combining the
extracted information from each of the various feature layers with different resolutions,
including the distribution of rice seedling rows and the differentiation between rice rows
and the background, in a complex farming environment where there are ambient light
changes, weed cover in the rice field, or widespread lack of seedlings in the rice field,
resulting in a highly accurate and continuous distribution of rice seedling row features.
Therefore, the model is considered to effectively learn the color characteristics and spatial
distribution of rice rows on the image, effectively reducing the effect of recognizing rice
rows due to changes in ambient light, weed cover in rice rows or rice rows missing seedlings
and others, and the model exhibits better robustness for rice rows in different environments.

The results of the proposed model on the rice row dataset suggest that when the model
employs HRNet_w18 as the feature extraction network and cuts the rice row fold annotation
with 40 horizontal splines, the model is capable of achieving a PCK of 93.726% and APO of
3.08 pixels, and the Network Inference Speed of 22 FPS. Moreover, the proposed model
performs significantly better than the current object detection models in terms of evaluation
metrics in the test set by comparing with the state-of-the-art object detection model.

In conclusion, the model proposed in this study converts the problem of recognition
of rice seedling rows into the recognition of feature points with continuous distribution
characteristics in rice seedling rows, and achieves the end-to-end output of the model,
while simplifying the flow of the algorithm. The experimental results proved that the
model could satisfy the practical agricultural machinery in row operation for the crop rows
to be identified in real time and accurately.

In the future, there will be focus on converting the model results to practical navigation
center lines for farm machinery and deploying the model on edge computing devices such
as the NVIDIA Jetson Tx2, to achieve high-quality navigation for farm machinery in
the field.
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