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Abstract: Spodoptera frugiperda (fall armyworm, FAW) is a global agriculture pest. Adults have a
strong migratory ability and larvae feed on the host stalks, which pose a serious threat for maize
and other crops. Identification and counting of different instar larvae in the fields is important
for effective pest management and forecasting emergence and migration time of adults. Usually,
the technicians identify the larval instars according to the larva morphological features with the
naked eye or stereoscope in the lab. The manual identification method is complex, professional
and inefficient. In order to intelligently, quickly and accurately identify the larval instar, we design
a portable image acquisition device using a mobile phone with a macro lens and collect 1st-6th
instar larval images. The YOLOv4 detection method and improved MRES-UNet++ segmentation
methods are used to locate the larvae and segment the background. The larval length and head
capsule width are automatically measured by some graphics algorithms, and the larval image features
are extracted by SIFT descriptors. The random forest model improved by Boruta feature selection
and grid search method is used to identify the larval instars of FAWs. The test results show that
high-definition images can be easily collected by using the portable device (Shenzhen, China). The
MRES-UNet++ segmentation method can accurately segment the larvae from the background. The
average measurement error of the head capsule width and body length of moth larvae is less than 5%,
and the overall identification accuracy of 1st–6th instar larvae reached 92.22%. Our method provides
a convenient, intelligent and accurate tool for technicians to identify the larval instars of FAWs.

Keywords: Spodoptera frugiperda; larval instar; automatic identification; background segmentation;
improved random forest; Boruta feature selection

1. Introduction

Spodoptera frugiperda (fall armyworm, FAW) has become a major global agricultural
pest according to the Food and Agriculture Organization of the United Nations (FAO) [1–3].
The FAW shows strong migratory, dispersal, and productive abilities. The FAW can migrate
over long distances with the wind and the larvae have the characteristics of wide suitable
areas, overeating damage and strong insecticide resistance [4,5]. The larvae feed on the
leaves, stems and reproductive organs of 186 plant species, and cause economic losses to
maize, rice, sorghum, sugarcane, wheat and vegetable crops [6]. Real-time and accurate
monitoring of FAWs in fields is necessary to ensure accurate forecasting and early warning,
and to reduce its yield loss [7]. Usually, population monitoring of lepidoptera insect pests in
the fields involves all development stages of insect pests, including the egg, different instars
of larvae, pupa and adults. Among them, identification and counting of different instar
larvae in the fields is very important for the effective pest management and forecasting
emergence and migration time of adults. In the larval stage of the S. frugiperda, the larval
motion range is limited, and the distribution in the field is relatively centralized, which
can reduce the cost of prevention in this period. Through the analysis of the larval instars,
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it is helpful to find out their growth law and release the early warning information of
pests in advance so as to carry out the corresponding measures of prevention and control.
However, the identification of larval instars needs the higher professional technicians to
identify them according to the morphological features and size of the pest larvae, which is
time-consuming and complicated [8].

The FAW larvae have a typical growth and development pattern of lepidopteran larvae,
that is, the periodic molting. Usually, the identification method of lepidopteran larval
instars relies on the technicians to visually evaluate them in fields or use the stereoscope to
measure the head capsule width as the main or even the sole judgement criterion in labs.
The length, the colors and the patches of the larval head, chest and abdomen of larvae are
often taken as the supplementary reference information [9]. Some insect larvae show some
significant characteristic changes in different instars, which make it easy to distinguish the
larval instars and to obtain a higher accuracy rate [10,11]. The FAW larvae may feed on
different crops under different field conditions. It results in the different growth rates and
individual variation, which makes it difficult to accurately determine the larval instars only
by a single feature, such as head capsule width, body length and body color [12].

With the rapid development of image processing technology and artificial intelli-
gence, some progress has been made on image-based pest and larval identification [13–18].
Ye et al. [19] used the ResNet-Locust-BN model to identify two locust species and instars.
A Batch Normalization (BN) layer was added before the convolutional layer for feature
normalization, and the learning rate and activation function were adjusted. The overall
accuracy of this model in identifying East Asian migratory locust (3rd instar, 5th instar,
adult) was 90.3%. Johari et al. [20] used a hyperspectral camera to collect images of the
second to fifth instar larvae of the bagworm indoors, and used the threshold segmentation
method to separate the worms. Then, morphological features such as wavelength, spectral
reflectance, insect length, and insect body area in different spectral regions were extracted
to identify larval instars. Zhang et al. [21] performed the 3D imaging by scanning wheat
grains infected by rice weevil, and used the optimized support vector machine algorithm
to identify the instar of rice weevils. The machine-based algorithm could identify the
instars of grain pests, and the classification accuracy rate of young and old larvae was
95%, which has a certain improvement in method compared with manual morphological
index analysis. However, the above methods also have some limitations. Larval instar
identification methods based on deep learning often require a lot of calculation costs, and
does not have good explanatory power; the larval instar identification method based on
3D imaging requires the expensive hardware equipment and its portability is poor, which
makes it difficult to operate in the field.

To solve the problem mentioned above, we propose the corresponding solutions. To
easily collect the images of pests, we design a portable larval image capturing device to
collect the larval images of the S. frugiperda. Meanwhile, to automatically identify the
larval instars of FAWs, we propose an automatic larval instar identification method based
on improved random forest, which mainly uses the parameter optimization strategy of
RandomizedSearchCV [22] and GridSerachCV [23] to obtain the best n_ estimators and
max_ depth for getting the model of optimal auc and average identification accuracy. In
addition, in order to realize the automatic calculation of larval body length, head capsule
width and other morphological characteristics, we propose an improved larval automatic
segmentation algorithm – MRES-UNet++. The self-attention module, atrous convolution
and bicubic interpolation methods are used to optimize the UNet++ network to improve
the MIoU (Mean Intersection over Union) and edge smoothness.

2. Materials and Methods
2.1. Identification Pipeline of Larval Instars

The automatic identification pipeline of larval instars of FAW is shown in Figure 1.
The self-designed portable image capturing device is used to collect larva images of FAWs.
The 1st–6th instar larvae in images are located and segmented. The body length and head
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capsule width of the larvae are automatically measured and the local features of the larvae
are extracted. The larval instar of S. frugiperda is automatically identified by the improved
random forest model.
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Figure 1. The identification pipeline of FAW larval instars.

2.2. Collection of Larva Images

The image capturing device used in this paper is mainly composed of a container
for placing the larvae and grid paper, a macro lens (APEXEL, Shenzhen in China), and a
mobile phone. The grid paper is marked with a 10 mm × 10 mm grey square block as the
criteria for calculating the larval geometric size. The macro lens adopts 4.3× magnification,
which is installed on the camera of the phone to magnify the larva in the image.

A total of 210 newly hatched larvae of S. frugiperda were separately placed in a feeding
tray filled with fresh corn leaves, and kept in a growth chamber under 25 ± 1 ◦C and
70 ± 10% relative humidity. All the larvae after each molting were put on the grid paper,
which was placed at the bottom of the square container for collecting larva images. The
larvae were then placed back on the original feeding tray for feeding. Fresh leaves were
added regularly until the larvae pupate. The molting date was recorded as the next instar.
There were six instars in total under this experimental condition (Figure 2).

With this image capturing device, 1376 FAW larval images were taken in total, and
the training set and test set were divided according to the ratio of 7:3 for training and
testing images.
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Figure 2. Images of 1st-6th instar larvae of FAW.

2.3. Image-Based Identification Method of FAW Larval Instars

First, YOLOv4 is used to locate the larvae of FAW in the image. We then use the
improved segmentation model to achieve the larva region. The larval image features are
extracted and the dimension reduction is performed. Finally, the improved random forest
model is used to identify the larval instars. Figure 3 shows the identification procedure of
FAW larval instars based on the image processing and machine learning model.
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Figure 3. The architecture of FAW larval instar identification method.

2.3.1. Location and Segmentation of Larva Region

In order to obtain a better larva segmentation performance, the target detection model
YOLOV4 [24] was used to locate the FAW larvae in one image.

After locating the larva region, an improved image segmentation algorithm named
MRES-UNet++ is proposed to get the larva region for the following feature extraction. The
network of MRES-UNet++ is showed in Figure 4.
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Figure 4. The architecture of MRES-UNet++ for segmenting the FAW larva.

To extract the larval region in images, MRES-UNet++ is improved on the basis of
UNet++ [25–27], which mainly involves the preprocessing module, feature encoding (fea-
ture extraction and down sampling), and feature decoding. In the preprocessing module,
in order to improve generalization ability and robustness of the semantic segmentation
model, a multi-scale details enhancement algorithm [28] named Retinex is added to the
original workflow, which eliminates the shadow and made details more visible. In the
feature encoding stage, we replace the backbone network in the encoder with the improved
ResNet34 network structure. For the purpose of reducing the information loss in the down-
sampling process, this paper adds three steps of dilated convolution before and after the
residual structure to enlarge the receptive field. The Group Normalization (GN) layer is
inserted into each convolutional layer to calculate the mean value and variance of each
channel, which reduces the calculation deviation when the input parameters are normal-
ized, so as to solve the problem of distribution changes when the parameters between
layers were updated during training. The improved ResNet34 residual structure is shown
in Figure 5. Furthermore, to extract more information in ROI (which is an area where
target pixels may exist) in the images, this paper adds an ECA module based on effective
channel attention [29] in the downsampling process. The ECA module can capture the
information correlation between channels and enhance the ability to extract information in
the shallow neural layer. In addition, during upsampling, the parallel module scSE [30] is
added to improve the smoothness of the image contour edge when the spatial information
is calibrated, which can promote the fine-grained image segmentation.
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2.3.2. Image Feature Extraction

The FAW larvae often present the bending state after being placed on the insect
container. An automatic algorithm is proposed for measuring larval body length based
on the larva mask images and an optimized skeleton refinement algorithm [31,32]. First,
we perform the Euclidean distance transformation to obtain the distance values of all
foreground pixels and skeleton pixels. After sorting the distance values, the distance
field of the image is established, and then the target corrosion operation is performed by
constructing a 3 × 3 structure (kernel, one pixel block for image processing operation), and
the foreground pixels are extracted from the edge. After erosion, the skeleton lines are
obtained and topological relationships in image space are established. When a bifurcation
point is encountered during the corrosion process, it is required to determine whether
the topological relationship in the 3 × 3 grid is destroyed, that is, to remove the center
point pixel and observe the connectivity of the remaining pixels. If it is not connected, the
corrosion operation should continue at the bifurcation. The central axis of the larval body
without bifurcation points is obtained, and the topological continuity is always maintained,
which is a new mesh pruning algorithm. The comparison of the effect before and after
pruning is shown in Figure 6. The actual body length of the larvae is calculated according
to a square on the image with 1cm side length.
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In order to automatically obtain the head capsule width of larvae, the MRES-UNet++
segmentation model is used to extract the binary image of the larval head. The contour is
then smoothed to extract the head edge and the maximum circumscribed circle of the edge
contour is drawn. The diameter is approximated as the width of the larval head capsule
according to the square side length. The schematic diagram of the head capsule width
calculation is shown in Figure 7.
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Figure 7. Example of calculating head capsule width.

Because the body color of FAW larvae which feed on different crops differ greatly, we
extract the texture features for identifying the FAW larval instars. In order to achieve the
clearer texture features, the Retinex detail enhancement algorithm [33] is used to enhance
the images. In Figure 8, the texture features of the insect body are more obvious and more
abundant. The Gray Level Concurrence Matrix (GLCM) [34,35] is used to extract its texture
features. In order to improve the extraction speed of texture features, the gray levels are
compressed from 256 to 64.
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Figure 8. The enhancement effect of Retinex algorithm. (A) before enhancement; (B) after enhancement.

Nine grayscale matrix statistic values (mean, entropy, contrast, correlation, autocorre-
lation, homogeneity, and energy) are calculated, and the average value of the above four
directions are taken as the texture feature for the grayscale combination to describe the
grayscale relationship and spatial features between image pixels. The extraction effect of
specific texture parameters is shown in Figure 9.
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Figure 9. Nine texture feature maps of a FAW larva.

The SIFT features [36–38], as one of the important algorithms for image feature match-
ing, is also commonly used in image classification with the characteristics of high robustness
and fast calculation speed. Compared with single edge features or gradient features, it has
stronger stability and is suitable for key point matching of multi-scale targets. It is not easily
affected by illumination, target orientation, deformation differences, etc. It mainly scales
the image by setting the scale factors of three scales, and then performs Gaussian blurring
and subtracts the images to obtain a set of multi-scale difference images. After comparing
the pixel values of the 3 × 3 pixel blocks of each three images to find the extreme point, it is
described by the position, gradient direction and gradient size. A total of 128 dimensional
features of SIFT are extracted.

2.3.3. Dimension Reduction of the Feature Vector

In order to improve the algorithm efficiency, the Boruta feature selection algorithm [39]
is improved to reduce the dimension of the 139 dimensional feature vector. Initially,
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80%, 100%, and 50% eigenvalues from original feature set R are extracted according to
different feature types (geometry, sift) for random sorting and create a shadow feature
set S. Then, R and S are combined to a new feature set N (N = [R, S]). Taking the set N
as the input, the highest importance (Z-score) of all shadow features is selected as the
reference value Max_shadow, and compared with the original features. Among them, the
importance value which is higher than Max_shadow is marked once and retained. We
set the number of iterations to conduct experiments, continuously create the new shadow
features to generate new feature structures for feature importance comparison, and remove
unimportant features until all remaining features are marked as passed. Finally, 44 valid
features are remained.

2.3.4. Identification Model of FAW Larval Instars Based on an Improved Random
Forest Model

In machine learning, there are many classification methods, such as logical regression,
decision tree, SVM [40], random forest [41], etc. In the multi classification, the SVM and
random forest algorithms are normally used. The SVM method supervises and learns the
data features, finding an optimal classification hyperplane, and maximizes the interval
between different classifications. By using nonlinear mapping, the linear non-separable
problem in low-dimensional space is transformed into a linear separable problem in high
-dimensional space to solve. The SVM method requires a complex parameter tuning
process and is less interpretable. And yet the random forest algorithm does not need to
adjust too many parameters, which can solve the multi classification problem well. The
random forest model [41,42], as an ensemble learning of decision tree and bagging methods,
has a good anti-noise ability and excellent stability. In the model training process, each
decision tree is trained by randomly sampling the training set for many times, and the
used eigenvalues are also randomly and not repeatedly extracted, according to a certain
proportion, to ensure that each decision tree can output the stable judgment results. By
injecting random disturbances, the correlation between each decision tree is decreased, and
the anti-interference ability of the entire model is enhanced.

The steps of general random forest are as follows.
(1) Bootstrap resampling [43]. A certain proportion of samples are randomly selected

from the training set to construct the feature subset, and the samples that are not drawn are
used as the verification set to verify the correctness of the model.

(2) Decision tree generation. By Using the CART algorithm [44], partial discrete
features are randomly extracted to obtain feature subsets, and the optimal features in the
feature subsets are selected as decision tree nodes in each iteration so that the decision tree
can continuously split and grow without pruning as much as possible.

(3) Iterative verification. Upon repeating steps 1 and 2, the number of repetitions
is generally the number of decision trees. The hyperparameter space is constructed in
the iterative process, and the parameters are adjusted according to the influence of the
hyperparameters on the accuracy.

(4) Comprehensive voting. The voting strategy [45] of majority voting is adopted
to comprehensively analyze the classification results of each decision tree, and the final
training model is obtained to predict the final classification result.

In order to prevent over-fitting and enhance the identification ability and stability
of the model, in step (3), the RandomizedSearchCV [46] and GridSerachCV [23] methods
were proposed to optimize hyperparameters, and the number of iterations of the learner
was dynamically adjusted according to the training situation. The RandomizedSearchCV
algorithm [22] is used for randomly searching to narrow the parameter selection range of
the hyperparameter space for a rough search, and then the GridSerachCV algorithm [23]
is used for fine searching to construct the optimal hyperparameter set. The combination
of the two algorithms quickly and efficiently finds the optimal parameters and expands
the search scope. Furthermore, a 10-fold cross validation was conducted to optimize the
hyperparameter space and the most suitable combination of hyperparameters was obtained.
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In this paper, a parameter search is performed by setting the ranges of the two parameters of
n_estimators ([10, 300], stride = 10; [60, 70], stride = 1), and max_depth ([1, 15], stride = 1),
and finally the optimal hyperparameter combination is obtained, that is, n_estimators = 62
and max_depth = 7, making the model have the best average identification accuracy and
auc, and improve average precision, average recall, and average F1 value. The improved
random forest method is shown in Figure 10.
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2.4. Evaluation Method
2.4.1. Evaluation Metrics for Larva Region Segmentation

The performance of the segmentation algorithm for FAW larvae was evaluated by
the metrics PA (pixel accuracy), MIoU (mean intersection-over-union ratio), and FWIoU
(Frequency Weighted Intersection over Union). The formulas are as follows.

PA =
∑1

i=0 pii

∑1
i=0 ∑1

j=0 pij
(1)

MIoU =
1

1 + 1

1

∑
i=0

pii

∑1
j=0 pij + ∑1

j=0 pji − pii
(2)

FWIoU =
1

∑1
i=0 ∑1

j=0 pij

1

∑
i=0

∑1
j=0 pij pii

∑1
j=0 pij + ∑1

j=0 pji − pii
(3)

where pii represents the total number of pixels when the real label is i and the predictive
classification is also i. pij represents the total number of pixels when the true label is i and
the predictive classification is j. pji represents the total number of pixels when the true label
is j and the predictive classification is i.

2.4.2. Evaluation Protocol of Larval Instar Identification

In order to evaluate the effect of the improved random forest model on the larval
instar identification of S. frugiperda, Pre (precision), Rec (recall), and F1 (f1-score), Acc
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(accuracy), AUC (area under curve) were used as the evaluation indicators of this model.
The calculation formulas are shown in (4)–(8).

Pre =
TP

TP + FP
(4)

Rec =
TP

TP + FN
(5)

F1 =
2PR

P + R
(6)

Acc =
TP + TN

TP + TN + FP + FN
(7)

AUC = ∑
i∈(P+N)

(TPRi + TPRi−1) ∗ (FPRi − FPRi−1)

2
(8)

where Pre represents the precision, Rec represents the recall or TPR (true positive rate), and
F1 denotes the F1-score, which is regarded as a harmonic mean of model precision and
recall. TP (true positive) means the number of larvae in which the instars are correctly
identified. FP (false positive) indicates the number of larvae in which the instars are
wrongly identified. FN (false negative) denotes the number of larvae in which the instars
are wrongly judged as other instars. TN (true negative) refers to the number of correctly
identified larvae in other instars when calculating the recognition of certain instars in the
test set. Acc (accuracy) indicates the proportion of correctly identified larvae in the total
images. In the formula of AUC (area under curve), that is the area under ROC curve, which
is an index to measure the performance of the model. In this formula, P denotes the number
of positive samples N indicates the number of negative samples, and i refers to a certain
iteration in the calculation process of AUC. FPR (false positive rate) denotes the proportion
of wrongly identified larvae.

3. Results
3.1. Segmentation Results

In order to verify the segmentation effect of the MRES-UNet++ network model, UNet,
UNet++ and DeepLabv3+ models were trained and tested on the same training and testing
sets, and were compared with MRES-UNet++. The segmentation results of four models are
shown in Table 1.

Table 1. The segmentation effect of four models.

Models PA (%) MIoU (%) FWIoU (%)

DeepLabv3+ 95.63 84.62 92.20
UNet 95.06 83.29 91.37

UNet++ 96.10 87.66 93.65
MRES-UNet++ 98.39 93.82 96.89

The results show that the PA, MIoU and FWIoU of the UNet, UNet++ and DeepLabv3+
models are fairly close. However, the MRES-UNet++ model achieves the best effect in
above four segmentation models. Compared to the UNet++, the PA, MIoU and FWIoU of
MRES-UNet++ model increase 2.29%, 6.16% and 3.24% respectively. The segmentation
results of four models and GT (ground truth) are shown in Figure 11. We can see that the
segmentation effects of the MRES-UNet++ are closest to that of GT.
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3.2. Result and Analysis of Larval Instar Identification

A total of 139 feature variables are obtained by using the above feature extraction
methods. After feature selection, 44 effective and highly significant features were remained.

To compare with our improved random forest [42], SVM [40] and random forest
models were trained and tested on the same training set and testing set. Table 2 shows the
identification results of FAW larval instars by the three models.

Table 2. The identification results of FAW larval instars using three models.

Instar
SVM Random Forest Improved Random Forest

Pre Rec F1 Pre Rec F1 Pre Rec F1

1 75.63 86.10 80.50 84.61 91.70 88.04 97.12 91.70 94.33
2 44.00 50.02 46.75 68.22 68.23 68.19 80.13 90.91 85.12
3 73.69 58.32 65.11 84.23 66.66 74.44 95.26 83.33 88.90
4 67.62 85.23 75.42 75.00 77.75 76.36 86.71 96.31 91.22
5 96.92 66.00 78.53 89.48 72.38 80.00 97.68 91.52 94.55
6 78.63 95.70 86.31 63.66 91.32 75.03 92.04 100.0 95.82

Mean 72.75 73.59 72.10 77.53 78.01 77.01 91.49 92.30 91.66

The average precision, average recall, and average F1 value of SVM are only 72.75%,
73.59%, and 72.10%, respectively; the differences in indicators can be more clearly observed
in Figure 12A. In addition, three evaluation indexes of the 2nd instar larvae are extremely
poor. And for the random forest model, the overall indicators have improved slightly,
which is higher than SVM. Our improved random forest method has a precision of more
than 85% in the 1st, 3rd, 4th, 5th and 6th larval instars, which is better for larval instar
distinction in these three models.

In the SVM, random forest (RF) and improved random forest (RF) models, the overall
accuracies are 73.71%, 85.59% and 92.22% respectively, and the AUC values reach 84.25%,
82.34% and 95.31% respectively, which can be observed in Figure 12B.

The Roc curve in Figure 13 describes the identification ability of each model. If
each curve is closer to the left, the larger the area enclosed by the horizontal and vertical
coordinates is, and the stronger the identification ability of the model is.
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In addition, after hyperparameter tuning and feature dimensionality reduction, the
size and recognition speed of the models also change accordingly. The size of the im-
proved random forest model is optimized to 1.16 MB, and the recognition speed reaches
36.14 ms/per image. Compared with the original random forest model, the size is reduced
by 32.56% and the speed is increased by 63.45%. This is clearly presented in Figure 14.
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4. Discussion

In this study, we design a low-cost image capturing device and propose an automatic
larval instar identification method. The semantic segmentation network combined with
improved graphics algorithm is used to realize the automatic detailed calculation of the
larval head capsule width and body length, and achieving an MIoU of 93.82% and con-
trolled the calculation error within 5%. Meanwhile, the Boruta dimension reduction and
double search (RandomizedSearchCV [46] and GridSerachCV [23] algorithm) are used
to prevent the overfitting phenomenon and high calculation costs during model training.
Through these optimizations, we control the size of the model to 1.16 MB and improve the
identification speed to 36.14 ms per image.

The research on larval development growth was done by stereo microscope [47,48]
or hyperspectral imaging technology [49,50]. Although the insect images collected with
these devices often have high definition, the hardware cost was high and professional
operators were required. However, manual operation often produced some misoperations,
and the efficiency was low. Our portable image capturing device uses a mobile phone with
a macro lens, which does not need the manual estimation or measurement of larval instars.
We randomly place one larva from the 1st–6th instar to take photos, skipping the step of
adjusting the worm posture in the traditional method. The larval body does not need to
be moved to obtain the ideal posture, which reduces the time consumed by traditional
measurement and moving of the larvae. Compared with the previous methods, it has great
portability and significantly reduces the hardware cost.

In addition, before the determination of the larval instar, some segmentation algo-
rithms were often used to segment the larval body to achieve feature extraction and calcu-
lation. There were some examples, such as the semi-automatic interactive segmentation
algorithm based on Graphcut [51], the region growing segmentation algorithm [52] based
on topology simulation, and the segmentation algorithm [25–27] based on deep learning.
Because of the need of automatic segmentation, we optimized the UNet++ algorithm in
semantic segmentation to improve the information extraction ability of feature network
and edge smoothness. In the network structure, the addition of attention mechanism
often has a good effect on the extraction of feature details. In this paper, we have adopted
some optimization strategies to improve the integrity of larval segmentation. In the down
sampling process, the addition of eca attention module [29] uses 1D convolution instead of
an FC layer to effectively capture the channel information between different feature layers.
The introduction of atrous convolution increases the receptive field and expands the range
of information extraction. The bicubic interpolation method and the application of scsE
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attention [30] in the process of up sampling greatly reduces the information loss in pixel
reconstruction, and have a certain smoothing effect on the segmentation edge.

In machine learning, the multi-classification of targets often has some problems,
such as high feature complexity, difficulty in finding optimal parameters, high model
complexity, and unstable performance. In view of the above situation, the feature dimension
reduction optimization strategy and parameter optimization search method adopted in
this paper can effectively solve the redundancy of input features and the search for optimal
hyperparameters. Meanwhile, in order to verify the stability of the model, this paper
demonstrates the performance improvement after model optimization by comparing the
ROC curves of SVM, Random Forest and the improved Random Forest, and by comparing
indicators such as Auc, Pre, Rec, F1.

In addition, this paper combines the automatic segmentation method of deep learning
with the identification method of machine learning, which effectively merges the advan-
tages of both. It is difficult to measure the size of living larvae manually, especially for the
low instar larva. The segmentation model based on the deep learning method often has
stable fine segmentation ability, which is convenient for automatic image segmentation
and has great advantages in practical applications. However, the random forest [22,41,42]
method in machine learning can adapt to different data sets, and the algorithm runs faster,
and require only a few parameter optimizations. The combination of the two can often pro-
duce the best identification effect. With the expansion of image data and the improvement
of hardware equipment, these models can also be used in more complex outdoor scenes
in the future. However, although our algorithm has achieved good identification results,
there are still some disadvantages. Although the improved random forest model improves
the average identification accuracy and performance, it still takes more time than SVM.
However, there is no doubt that this problem can be solved by collecting more images,
optimizing the training network and improving the search strategy for hyperparameters.

5. Conclusions

To achieve automatic and accurate larval instars identification of S. frugiperda in fields,
this paper designs an image acquisition device and a larval instar identification method.
The device is composed of a smart mobile phone with a macro lens and an insect container
with grid paper. The technician can easily capture images of larvae with this device in fields.
For obtaining the morphological and textural features, we firstly locate the larval region
by the YOLOv4 detection, MRES-UNet++ segmentation method and feature extraction
methods. The improved random forest model is used to identify the larval instars of FAWs
and achieves 92.22% and 95.31% in overall accuracy and auc respectively. Our method
provides an idea for larval instar identification during pest field investigations. The device
is portable and the identification method of larval instars is accurate and automatic. The
non-professional person can easily use it. Although this method has carried out a detailed
identification of the larval instar to a certain extent, there are some errors in the larval
segmentation of larvae and the digital calculation of features, and there are still some instar
misjudgments among low instar larvae. Thus, it can be considered to collect more images
to improve the IoU of the segmentation model and the accuracy of the identification model,
and optimize the hardware device, such as by adding ultra-wide-angle lenses to increase
the clarity of the captured images and the range of light exposure.
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