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Abstract: The EU’s Common Agricultural Policy has for decades been geared towards sustainable
agricultural development, not only to ensure a fair income for farmers but also to tackle climate
change and environmental degradation, emphasizing the link between agricultural economic activity
and the importance of greenhouse gas (GHG) emissions. The importance of research in this area
is reinforced by the EU’s ever-increasing sustainability ambitions in recent years, as set out in the
European Green Deal, which has found a place in the new 2023–2027 Common Agricultural Policy
(CAP) policy to meet the EU’s 2050 target to achieve climate neutrality. The aim of this study is
to assess the relationship between greenhouse gas emissions and economic performance for the
agricultural sector in the Baltic States (Lithuania, Latvia, and Estonia) from 1998 to 2019. These three
countries have similar agricultural structures and similar natural conditions, so the research provides
comparable results. The relationship was analyzed by using the nonlinear autoregressive distributed
lag (NARDL) model that allows the estimation of short-term dynamics using a distributed delay
component and long-term dynamics using a single cointegrating vector. The analysis of the research
data showed that gross value-added changes influence greenhouse gas emissions in all three countries.
The results of the research, on the other hand, suggested that there is evidence supporting the reverse
‘U-shaped’ impact of the environmental Kuznets curve (ECK) when assessing data from Lithuania
and Estonia, but not from Latvia. The study’s findings have significant policy consequences.

Keywords: sustainable agriculture; negative externalities; GHG emissions; NARDL model

1. Introduction

Climate change and environmental degradation pose an existential threat not only
to Europe, but also to the whole world. The Intergovernmental Panel on Climate Change
(IPCC) predicts that, unless urgent action is taken, global temperatures could rise further
by 1.8–4 ◦C by 2100. This means that, compared to pre-industrial levels, the temperature
rise would be more than 2 ◦C [1].

In addition to natural climate change, human activities may be responsible for long-
term global warming of more than 1.5 ◦C [2]. The interaction between climate change
and agriculture is recognized as a two-way relationship [3]. Therefore, agriculture both
contributes to and is affected by climate change [4]. It is the second largest sector that
contributes directly and indirectly to global warming and climate change through the
release of greenhouse gases [5–8]. According to statistics [9], agriculture accounts for 10.3%
of the EU’s greenhouse gas emissions in CO2 equivalents (2019), and their greatest sources
are enteric fermentation, manure deposited on pasture, synthetic fertilizer, paddy rice
cultivation, and biomass burning. Agriculture in particular releases significant amounts of
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methane (produced by livestock during digestion due to enteric fermentation as well as
from stored manure) and nitrous oxide (which is a product of nitrogen fertilizers) [4]. In the
EU, agricultural emissions were 20.9% lower in 2019 than they were in 1990 [9]. This was
due to fewer livestock, more efficient use of fertilizers, better management of manure, and
more advanced methods being used in production. On the other hand, research confirms
the impact of climate change on farming performance. If negative effects of climate change
on crop yields have been more common than positive ones [10], they have become even
worse in recent years [2]. Changes in rainfall and water endowments, temperature, high
heat, and other climatic conditions have an impact on crop yield and income of farm
families [11]. According to the Intergovernmental Panel on Climate Change (IPCC), the
effects of climate change on agricultural productivity around the world not only affect the
income and living standards of people who work in agriculture but also lead to poverty,
food insecurity, and agricultural development that is not sustainable [2].

Various solutions for solving climate change problems are examined. One of them is
further economic growth, which can change the population’s tendency to use environmen-
tally polluting sources and mobilize resources for the implementation of environmental
protection programs. The environmental Kuznets curve (EKC) concept is often used in the
literature to evaluate how economic expansion affects environmental quality [12]. How-
ever, many nations—such as those in the Baltic region—have not yet been thoroughly
investigated.

The aim of this study is to assess the linkages between environmental damage due
to agricultural greenhouse gas emissions and agricultural economic performance in Baltic
countries. The topic is examined in three Baltic countries—Lithuania, Latvia, and Estonia—
which have a comparable agricultural structure and environmental circumstances and
are subject to the Common Agricultural Policy. These nations have a historical–political
identity as well: (i) they were all seized by the USSR in the 1940s; (ii) they regained
independence in 1990–1991; (iii) they joined the EU in 2004; and (iv) they are Eurozone
members. Agriculture is also one of the most traditional economic sectors in Estonia, Latvia,
and Lithuania, producing food not only for the residents of these nations but also for other
countries, as well as addressing employment and other social and environmental protection
concerns.

This study consists of five main parts. In the present section, the authors have revealed
the links between agricultural economic performance and greenhouse gas emissions and the
instruments used to measure these links, and a short analysis of the theoretical background
is given. In Section 2, the authors describe their research methods and used data. Section 3
provides the results of empirical research. The last two sections of this paper are the
discussion and general conclusions that are drawn from the scientific literature and the
analysis of empirical research.

Economic growth contributes to greenhouse gas (GHG) emissions from various eco-
nomic activities, including agriculture. By contributing to the United Nations Sustainable
Development Goals (the UN SDGs), the EU has committed itself to achieving the 2050
target, at which point its impact on the climate would become neutral. Communications
from the European Commission “The European Green Deal” [13], “A Farm to Fork Strat-
egy” [14], “The EU Biodiversity Strategy for 2030” [15], “The New Circular Economy Action
Plan” [16], new Common Agricultural Policy (CAP) instruments, and other initiatives and
actions contribute to the 2050 agenda and the goal of climate neutrality. About 10% of
the GHG emissions in the EU come from agriculture [9], which also helps reduce GHG
emissions through green targets.

The link between economic growth and environmental quality has long been debated.
The first to draw attention to this problem were Grossman and Krueger (1991) [17], Beck-
erman (1992) [18], Panayotou (1993) [19], and Grossman and Krueger (1995) [20]. In their
research, they have found that economic growth degrades the quality of the environment in
the early stages, but that economic growth continues to lead to an improvement in the qual-
ity of the environment. The link between income (a potential indicator of economic growth)
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and pollution can be explained by three factors: technology, composition, and scale [21].
The scale effect is when there is a transition from an agrarian to an industrial economy. As
the economy develops, environmental pollution increases and its quality deteriorates. The
composition effect occurs during the structural changes of the economy—i.e., moving from
agrarian to industrial, then from industrial to a service economy. The technology effect is
related to the progress of technology. As the economy grows and technology is improved,
pollution goes down [21].

Given the recent challenges related to climate change and increasing GHG emissions,
scientists and researchers are investigating the link between CO2 emissions and economic
growth to determine whether the latter can have a positive impact on pollution [22]. The
Kuznets curve hypothesis is often used to explain and measure these relationships [23]. It
is also very important for making policies about climate change and coming up with plans
for sustainable economic development [24]. The interaction between economic growth and
environmental pollution in testing the validity of the environmental Kuznets curve (EKC)
hypothesis has been studied in various aspects by various scientists and researchers in
various sectors and countries [21,23,25–39]. Various methods have been used to determine
these causal relationships: decomposition methods [38], the Johansen cointegration test,
the Granger causality test, impulse–response and variance decomposition analysis of
vector autoregression models (VAR) [25], semiparametric spatial autoregressive models,
the spatial lag model (SLM), the spatial autoregressive model with spatial autoregressive
disturbances (SARAR), two-stage least squares regression (2SLSR), quantile regression (QR)
and nonparametric regression (NPR) [32], the heterogeneous panel causality method [24],
the interactive fixed effect (IFE) and dynamic common correlated effect (D-CCE) [39], the
autoregressive distributed lag (ARDL) method [28–30,35,40–43], dynamic ordinary least
squares (DOLS) and fully modified ordinary least squares (FMOLS) methods [33,34,43,44],
the generalized method of moments (GMM) method [45], panel DOLS [46], the vector
error correction (VECM) method [27,28,47], the canonical cointegrating regression (CCR)
method [43], and spatial error model (SEM) [31].

The Kuznets curve of the environment hypothesizes that there is a nonlinear inverted
U-shape relation between environmental quality and economic growth [21,23,24,26,39].
According to this theory, the quality of the environment deteriorates to a certain point in
the first stages of economic growth and—after the breaking point—the development of the
economy leads to an improvement in the quality of the environment, thus creating an in-
verse U-shape relationship between economic growth and environmental quality [19,22]. In
previous studies, this dependence has been tested using relatively short time series of data,
but this should be considered a limitation of the studies [23]. Long-term annual time series
for various pollutant statistics are only available in the United States and European Union
member states [48] and therefore provide more data for research than in other countries
where data are incomplete or missing. In the absence of reliable and available statistics,
CO2 emissions that are harmful to human health and the environment are generally con-
sidered to be an indicator of environmental degradation [21,22,39,49], less frequently the
emission of toxic pollutants such as heavy metals [23], the ecological footprint [24,39], air
and water quality indicators [50], and various other environmental indicators. Most of
the time, gross domestic product, gross domestic product per capita, real gross domes-
tic product per capita, income level, or income per capita are used to measure economic
growth [24,51,52]. Some studies have confirmed a positive or negative relationship between
environmental pollution (measured in global emissions by GHG emissions) and economic
growth [27,29–31,33,34,36,40,45,46,53,54], not found by others [28,35,36,41–44,47]. This is
mostly due to the use of different survey methods and data time series and the fact that
CO2 emissions have no local or regional effects on the environment [21,22,55–58]. However,
it is important to note that global GHG emissions are linked to global climate change, global
warming, depletion of the ozone layer, and global warming, and have less impact on the
environment of the area where they are emitted [21]. As a result, countries are working to
reduce GHG emissions, often through policy tools, and thus to reduce threats to human
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health and the environment. This reinforces the importance and necessity of research in
this area.

2. Materials and Methods
2.1. Methods

Figure 1 presents the schematic overview of the research. The research employs two
variables: greenhouse gases (GHG) and the gross value added generated by agriculture
(GVA). The carbon emission equivalent measures the amount of greenhouse gases in
tons produced in a CO2 equivalent. This variable was chosen as the best indication of
environmental harm caused by a range of gases generated in agriculture and has been
utilized in recent studies [59]. The latter variable represents net agricultural value added in
thousands of purchasing power standards (PPS). As a replacement for agricultural income,
gross value added at basic prices allows for a more thorough comparison of three nations.
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Next, methods to show relationships between time series of greenhouse gases (GHG)
and the gross value added from agriculture (GVA) are described. An error correction model
(ECM) is frequently used by other authors to investigate variables (time series) that together
have a long-term stochastic trend and form an equilibrium [60]. In addition, improved ECM
techniques that leverage asymmetric effects and model time series with varied orders of
integration may also be employed. In most studies, when causality and linear cointegration
confirm that the dependent variable is expected to respond in a symmetric way to increases
and decreases of the independent variable, the authors employ the linear unrestricted error
correction model [59].

As a result, an autoregressive distributed lag (ARDL) model is used in this research,
which is based on an ordinary least square (OLS) based model that is like the ECM technique
but is applicable to both non-stationary and mixed order of integration time series [61]. In
the ARDL model, there are long-turn and short-term effects and their impacts on the first
level difference on the dependent variable, in this case, greenhouse gas emissions (Formula
(1)). Because all of the long-run connection variables are described but not constrained, the
ARDL model is a kind of unrestrained ECM.

∆GHGt = µ + ρGHGt−1 + θGVAt−1 +
p

∑
i=1

(ai∆GHGt−1) +
q−1

∑
i=0

(ωi∆GVAt−1) + εt, (1)

where GHG is the carbon emission equivalent; GVA is the gross value added from agricul-
ture; µ, ρ, θ, α, ω are model parameters; εt is the residual error; ∆ is the change in the first
order; i is the time lag; p and q are number of time lags; and t is the time.

The underlying research problem, as stated in the introduction, places a high value
on asymmetries. Hence, the non-linear autoregressive distributed lag (NARDL) model is
used to model cointegration, non-linearities, and causation at the same time (Formula (2)).
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The distributed lag nonlinear autoregressive distributed lag (NARDL) model is a single-
equation error correction model that uses positive and negative partial sum decompositions
of the explanatory variables to add short- and long-run nonlinearities [62]. In other words,
using partial sum decompositions of the independent variable, this technique assesses
the asymmetry in the long-run equilibrium relationship as well as the short-run dynamic
coefficients. Therefore, the gross value added (GVA) is broken down into its positive and
negative parts.

Another important step is to select the optimal lag numbers p and q. Therefore,
the following information criteria are used to select the best model: the Hannan–Quinn
information criterion, the Akaike information criterion, and the Schwartz information
criterion (Bayesian). This means that the information criteria values need to be the lowest
to choose the best model with the right number of lags.

Time dummies can be added to this equation as well to better explain the long-
term dynamics of greenhouse emissions and the gross value added by the agricultural
sector. Time dummies show how many years have passed since some countries joined the
European Union, as well as the financial crisis of 2009, which is defined by an impulse
dummy.

∆GHGt = µ + ρGHGt−1 + θ+GVA+
t−1 + θ−GVA−

t−1 +
p

∑
i=1

(ai∆GHGt−1) +
q−1

∑
i=0

(
ω+

i ∆GVA+
t−1 + ω−

i ∆GVA−
t−1

)
+ εt, (2)

where GHG is the carbon emission equivalent; GVA+ is the sum of positive changes in gross
value added from agriculture; GVA- is the sum of negative changes in gross value added
from agriculture; µ, ρ, θ+, θ−, α, ω +, and ω− are model parameters; εt is the residual error;
∆ is the change in the first order; i is the time lag; p and q are number of time lags; and t is
the time.

The methods described above may be used to see whether GVA has symmetric or
asymmetric effects on GHG in the short and long term. Traditional ARDL may be employed
for improved explanatory and prediction power of long- and short-term effects if there is no
statistically significant asymmetry and calculated p-values are above 0.10. The hypothesis
for long-run asymmetry in the NARDL model is

H0 : θ+ = θ−, (3)

Then, the hypothesis for short-run asymmetry can be described as

H0 :
q−1

∑
i=0

(
ω+

i
)
=

q−1

∑
i=0

(
ω−

i
)
, (4)

Further analysis can be performed after the selection between models ARDL and
NARDL is made. Besides estimations for each individual parameter in the formula, the
paper involves additional hypotheses. As mentioned above, the model uses a different
number of time lags. Therefore, combined hypotheses for all lags can be tested as well,
such as h0: a1 = a2 = 0.

It can also be tested if all short-term or long-term effects are significant or not. Whether
all parameters of long-run or short-run coefficients are equal to zero. This extends the
research into the fact that if both time series are cointegrated, they can explain one another.

To test hypotheses such as these, it is necessary to omit certain variables from the
ARDL equation using the Wald test based on the covariance matrix [63]. This re-estimates
the supplied model after excluding the selected variables. It provides a test for the joint
significance of the missing variables in addition to the standard model output. The null
hypothesis states that all the missing variables’ actual coefficients are zero.
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It is critical to pay close attention to whether long-run effects are significantly different
from one another, and thus a test is performed to determine whether the difference between
variables is equal to zero:

H0 : ρ = θ, (5)

As a result, the real influence of GVA through parameter θ must be calculated, taking
into account the magnitude and order of the dependent variable GHG through parameter ρ.
To obtain a long-run coefficient, an additional approximation must be made, defined as
a division between variables (Formulas (6) and (7)). The long-run effect of GVA on GHG
is shown in the upper portion. The weight associated with the autoregressive structure’s
reaction is represented by the bottom component [64,65].

Next, the estimations for both the coefficient and p-value for this multiplier are pro-
vided as

L+ = − θ+

ρ
, (6)

L− = − θ−

ρ
, (7)

where L+ and L− are positive and negative long-run coefficients; and θ and ρ are NARDL
model parameters from Formula (2).

If further analysis leads to the selection of the NARDL approach, then the corre-
sponding coefficients should be used: the long run coefficients L+ and L− as in other
studies [59].

Next, the study employs many years, thus potential structural breaks should be taken
into consideration as well. A structural break is an unanticipated change in the parameters
of regression models over time in econometrics and statistics. This may lead to significant
forecasting mistakes and model unreliability in general, as well as changes in the underlying
processes.

The Quandt likelihood ratio (QLR) test may be employed when the break date is
unclear [66]. It is often used in research for structural breaks. It is a modified version of
the Chow test that employs the greatest of all F-statistics produced when the Chow test is
applied to all potential break dates within a given range [67]. The analysis uses the default
15 percent trimming to see at which observation the maximum value of the F statistic
occurs. The asymptotic p-value for chi-square is estimated to measure the likeliness of this
structural break. Next, the 5 percent QLR critical value is observed.

Typical methods for time series analysis are used as well. When analyzing time series,
it is crucial that their statistical characteristics and distribution—autocorrelation, mean,
and variance—stay consistent. Therefore, a unit root test based on the enhanced Dickey–
Fuller approach is utilized with and without a time trend [68]. In addition, time series
cointegration is investigated using the Engle–Granger cointegration test [69]. If two or more
time series have the same stochastic drift, they are cointegrated. In other words, if both
time series are non-stationary and have a common trend, they are said to be cointegrated.
The stages in the Engle–Granger cointegration test are as follows: the Dickey–Fuller test is
used to determine whether each of the provided variables has a unit root; the cointegrating
regression is calculated; and the residuals are evaluated using the augmented Dickey-Fuller
(ADF) test.

The null hypothesis of normal distribution is tested using the normal distribution of
residuals (NORM) test. Running the ARDL model assumes that the residuals are normal. If
the residuals are normally distributed and this assumption is correct, then model inference
(confidence intervals and model predictions) should be correct as well.

A unit-root test using the ADF test model with and without trend to test if residuals
from the ARDL and NARDL models which are stationary should be performed as well.
Because the residuals are normally distributed and behave well, the test’s performance for
every given sample will be influenced by the dynamic model’s quality and sample size. To
prevent erroneous regressions in a time series environment, residuals must be stationary.
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Next, the test for autoregressive conditional heteroskedasticity (ARCH) is performed.
The null hypothesis is that there is no ARCH effect. In other words, ARCH effects are
evident if the squared residuals/errors of the ARDL time series model show autocorrelation.
The ARCH effect is defined as a correlation between the volatility of a time series, as
measured by conditional variance, and its previous values or innovations. As a result, this
indicates whether residuals are clustered.

To increase the number of observations and to achieve more precise results, panel
data analysis is employed as well. Panel data may be used to represent different nations’
shared behaviors. Pure time series data have less information, variability, and efficiency
than panel data. The Baltic states statistics panel includes all three countries. The structure
of the dataset consists of stacked time series and the number of cross-sectional units is 3.
The number of time periods is 21. However, the panel data approach does not provide an
opportunity to perform the ARCH and QLR tests.

2.2. Data Sources

Using data from three EU countries, the study investigates the relationship between
carbon emissions equivalent and gross value added from agriculture. More specifically,
it investigates how gross value added in agriculture affects greenhouse gas emissions
in Lithuania, Latvia, and Estonia. Eurostat [70] provides the study with yearly carbon
emissions equivalent and gross value added generated by agriculture. The gross value
added from agriculture is taken from the economic accounts for agriculture. To ensure
comparability over time and space and to eliminate price and exchange rate differences,
this indicator is measured in purchasing power standards (PPS) at the basic constant prices
of 2010. The data on GHG emissions from agriculture in tones of CO2 equivalent come
from the Eurostat database, more specifically the greenhouse gas emissions by source sector
statistics. The data cover the years 1998 to 2019.

3. Results

In all Baltic nations, agriculture is a significant economic sector. According to the 2020
Agricultural Census [71], Lithuania had the most farms (132,076), 64 percent more than
Estonia and Latvia combined, although its average farm size was the lowest (23.4 ha by
land area). In contrast, there were the fewest farms (11,369) in Estonia, despite the fact that
their average size was over four times larger than that of Lithuania (106.5 ha). Similarities
could be seen in the agricultural structures of Estonia and Latvia: more than half of the
total crop area was made up of cereals, followed by forage crops (about a quarter) and
industrial plants, which made up the remaining 11 percent. Cereals made up 63.9 percent
of Lithuania’s total crop area, followed by industrial plants (13 percent), forage crops
(11.9 percent), and leguminous crops (6.9 percent). A quarter of all farms in Estonia were
focused on raising livestock. In Latvia and Lithuania, such farms accounted for 18 and
15.2 percent of the total, respectively. The investment growth of farms, including the use
of public assistance, is given considerable attention in all of the Baltic nations, although
the contribution of farms to environmental protection is still minimal. The authors who
tested the EKC hypothesis in the Baltic countries emphasize that these countries are heavily
reliant on electricity imports and fossil fuel-based energy sources, and that country-level
differences in fossil fuel dependence may result in the EKC hypothesis not being valid
in some of the Baltic countries [12]. In order to lessen pollution, organic farming is more
developed in Estonia (in 2020, it accounted for 22.41 percent of the total land used for
agriculture, compared to 14.79 percent and 8.00 percent in Latvia and Lithuania). This share
in 2004 was 7.2 percent for Estonia, 1.6 percent for Latvia, and 1.4 percent for Lithuania [72].

The analysis starts with descriptive data for all three nations and both variables (for
time graphs see Figure 2; for descriptive statistics see Table 1). The mean value of the
greenhouse gas emission equivalent is highest in Lithuania (4163.5) and lowest in Estonia
(1275.3). Lithuania has the greatest mean value of gross value-added in agriculture (1354.3),
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while Estonia has the lowest (384.49). The volatility of both variables given by standard
deviation can be ranked in the same order as their mean values.
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Figure 2. Baltic states time series: (a) Carbon emissions equivalent of greenhouse gases (GHG);
(b) Gross value added generated by agriculture (GVA). Source: authors’ calculations based on
Eurostat [9,70] data, 2022.

Table 1. Descriptive statistics of carbon emissions equivalent of greenhouse gases (GHG) and gross
value added generated by agriculture (GVA).

Indicators
Lithuania Latvia Estonia

GHG GVA GHG GVA GHG GVA

Using initial value GHG and GVA:
Mean 4163.5 1354.3 1917.9 464.68 1275.3 384.49

Median 4192.0 1332.8 1875.3 414.96 1255.8 382.58
Minimum 3767.4 506.66 1653.2 313.38 1083.4 254.66
Maximum 4530.0 2401.5 2202.4 861.58 1496.9 500.95

Standard deviation 190.25 584.55 175.67 147.37 127.85 64.157
Skewness 0.0026 0.1932 0.3256 1.3634 0.1955 −0.1944
Kurtosis −0.3643 −1.3157 −1.2257 1.0238 −1.3683 −0.4070

Using first level difference ∆GHG and ∆GVA:
Mean −6.6457 66.529 17.179 24.782 9.1786 4.8552

Median 14.350 129.18 21.700 22.010 20.660 0.9000
Minimum −296.50 −505.43 −188.39 −156.76 −171.71 −194.08
Maximum 216.89 515.23 111.02 365.26 80.990 183.26

Standard deviation 124.50 253.43 70.897 116.61 57.500 80.181
Skewness −0.3896 −0.5128 −1.1834 1.2478 −1.5295 −0.4043
Kurtosis −0.2208 −0.1116 1.5062 2.2555 2.7089 0.9219

Source: authors’ calculations based on Eurostat [9,70] data, 2022.

First level differences for both variables show similar results. Positive first-level
difference mean values (except for GHG in Lithuania) indicate that both greenhouse gas
emissions equivalent and gross value added grew throughout the observation period. The
difference in carbon emission equivalent is the most volatile in Lithuania (124.50) and the
least volatile in Estonia (57.500). The difference in gross value-added is the most volatile in
Lithuania (253.43) and the least volatile in Estonia (80.181).

A skewness value greater than 1 or less than −1 indicates that, in most cases, a
moderately skewed distribution is observed. Kurtosis of less than 3 is recognized as a
platykurtic distribution for all countries and both variables.

Following that, the results of the augmented Dickey–Fuller (ADF) test using two
models, one with a constant only and the other with both a constant and a trend, are
presented (see Table 2). When using absolute values, the p-value for all three countries and
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both ADF models is more than 0.05, indicating that these time series have a unit-root and
are non-stationary. Engle–Granger cointegration test results show that only for Lithuania,
time series are almost cointegrated without trend (p-value is 0.0532).

Table 2. Augmented Dickey–Fuller test and Engle–Granger cointegration test results.

Indicators
Lithuania Latvia Estonia

GHG GVA Coint. GHG GVA Coint. GHG GVA Coint.

Using absolute value, p-values:
test with constant 0.5564 0.8179 0.0532 0.8900 0.9016 0.3138 0.9592 0.1645 0.9872

with constant and trend 0.3729 0.4032 0.1132 0.7633 0.4666 0.7850 0.1065 0.4852 0.3472

Using first level difference, p-values:
test with constant 0.0169 0.0049 0.0239 0.1137 0.0088 0.1241 0.0022 0.0269 0.0034

with constant and trend 0.1345 0.0353 0.2430 0.3527 0.0473 0.3282 0.0128 0.1509 0.0576

Source: authors’ calculations based on Eurostat [9,70] data, 2022.

Even though the unit root analysis shows that variables are not stationary at absolute
value, these series become stationary after calculating the first level difference, except for
GHG in Latvia (p-value is 0.1137) when using test with constant only.

The information criteria for all three countries are lowest when using one or two GHG
time lags (denoted as p) and three GVA time lags (denoted as q) (see Appendix A). For
Lithuania and Latvia, the further analysis uses two GHG time lags (p = 2), while for Latvia
the analysis uses one (p = 1). For panel data, the analysis uses two GHG time lags (p = 2)
and one GVA time lag (q = 1).

Next, the results of tests for hypotheses of long-term and short-term asymmetry with
the chosen number of time delays are given (see Table 3). In Lithuania and Estonia, the
long-run p-value is below 0.05, so the hypothesis for long-run asymmetry is accepted. In all
other cases, the p-values are high—above 0.10—indicating a tight symmetry between these
variables. Therefore, the further analysis uses the conventional ARDL model for Latvia
and panel data. The NARDL model is used for Lithuania and Latvia, but only with the
long-term asymmetric parameters GVA+ and GVA–.

Table 3. Long-run and short-run symmetry test results.

Time Period Long Run,
p-Value

Short Run,
p-Value Conclusion

Lithuania 0.0221 0.5177 Only long run asymmetry
Latvia 0.1451 0.3413 No asymmetry
Estonia 0.0081 0.1820 Only long run symmetry

All three countries 0.1966 0.4688 No asymmetry
Source: authors’ calculations based on Eurostat [9,70] data, 2022.

Next, dummy variables are added to the ARDL and NARDL models to better explain
these relationships because the time span of more than 20 years includes important events
that may have changed the underlying relationships between GHG and GVA.

More specifically, countries’ environmental policies were altered because of their mem-
bership in the EU. For example, changes and reforms in the Common Agricultural Policy
for EU members—including, among other things, increased concern about greenhouse gas
emissions mitigation, economic growth, and the adoption of greening farming practices, as
well as the extensive use of alternative energy sources in the farming process—led to the
adoption of greening farming practices and the satisfaction of sustainability criteria [59].
The time dummy variable accounts for these impacts. Therefore, critical years, such as
2009, may influence the form and context of relationships between greenhouse emissions
and gross value added as reducing production decreases greenhouse gas emissions. A
decrease in revenue, on the other hand, reduces the ability to take steps that are good for
the environment.
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For all the reasons stated above, discovering and confirming the presence of dummy
variables is a critical stage in the methodological process. To detect the presence of dummy
variables, the ARDL/NARDL model is estimated with selected dummy variables, but then
they are eliminated from the model if their p-value is above 0.10. Then the output models
are compared to better describe the relationships between GHG and GVA.

As mentioned before, the hypotheses of asymmetry are more often rejected; therefore,
the ARDL approach is used in more cases than NARDL. To be more specific, this not only
tests the long-run and short-run null hypotheses but also estimates their coefficient values.
The number of lags used is the same as in the preliminary NARDL model: the number of
lags for the independent variable is three, whereas the number of lags for the dependent
variable is one or two, depending on country. Other assumptions remain the same. The unit
root analysis and cointegration tests show that the data used are fit for further modeling.
This implies that the variables are integrated at order one and thereby signals a possible
cointegration relationship among the variables. In the next step, the dummy variables are
added to the calculation. These are the years when each country joined the EU and the year
of the financial crisis in 2009.

The analysis begins with NARDL model estimations for Lithuania during 1998–2019.
Both GHG (−1) and GVA (−1) have a statistically significant effect (see Table 4). The long-
term effect hypothesis h1 is rejected as well, which means there are significant long-term
effects. However, the long-run negative coefficient L− is larger than the positive L+ but
both are statistically insignificant.

Table 4. Nonlinear autoregressive distributed lag (NARDL) results for Lithuania.

Variable Coefficient p-Value

Constant 7568.96 0.0001
GHG (−1) −1.9087 0.0001
GVA+ (−1) 0.7277 0.0002
GVA– (−1) 1.0022 0.0003
∆GHG (−1) 0.5885 0.0079
∆GHG (−2) 0.3294 0.0360

∆GVA (0) 0.2239 0.0009
∆GVA (−1) −0.4746 0.0014
∆GVA (−2) −0.2048 0.0213

S_2004 63.0262 0.2218
D_2009 15.8409 0.7669

Additional hypotheses:
h1: ρ = θ+ = θ– = 0 reject, p-value 0.0009
h2: ω0 = ω1 = ω2 = 0 reject, p-value 0.0003
h3: ω0 = ω1 = ω2 = α1 = α2 = 0 reject, p-value 0.0005
Long-run coefficients:
L+ = 0.3813, p-value: 0.7510
L− = 0.5251, p-value: 0.8256

Additional estimations, p-values:
Normality of residual: 0.0025
Unit-root of residual (constant):
<0.0001
Unit-root of residual (trend): 0.0007
ARCH effect: 0.9904
R-squared: 0.9370

Source: authors’ calculations based on Eurostat [9,70] data, 2022.

Hypotheses h2 and h3 are rejected as well, indicating that there are short-run relation-
ships between GHG and GVA. Therefore, the GHG and GVA correlations in Lithuania are
strong and can be explained by equilibrium relationships. However, dummy variables
have no statistically significant effect.

The null hypothesis of normal distribution is rejected, showing that the residuals
are not normally distributed. The unit-root hypothesis is rejected, showing that residuals
are stationary with both trend and constant only. In addition, there are no statistically
significant ARCH effects.

The coefficient of determination indicates the model’s strong explanatory power
(R2 > 0.7).
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After sequentially omitting insignificant variables (see Appendix B), the abbreviated
model shows similar relationships. Because the time dummy variables were omitted, the
QLR test was performed, and it shows a statistically structural break in 2011.

When analyzing data for Latvia, there are no statistically significant effects from GHG
(−1) as well as GVA (−1) (see Table 5). However, the negative coefficient of GVA (−1)
shows that the increase in the gross value-add leads to equilibrium in greenhouse gas
emissions. Yet, this relationship is weak and statistically insignificant. Long-term impact
hypotheses h1 and h4 can be accepted, which means that there are no significant long-term
effects between GHG and GVA.

Table 5. Autoregressive distributed lag (ARDL) results for Latvia.

Variable Coefficient p-Value

Constant −178.964 0.6636
GHG (−1) 0.2337 0.4852
GVA (−1) −0.4889 0.3373

∆GHG (−1) −0.7100 0.1124
∆GVA (0) 0.1273 0.4911

∆GVA (−1) 0.3828 0.1941
∆GVA (−2) 0.2270 0.2928

S_2004 −14.4963 0.7242
D_2009 −50.2782 0.4358

Additional hypotheses:
h1: ρ = θ = 0 accept, p-value 0.4705
h2: ω0 = ω1 = ω2 = 0 accept, p-value 0.3370
h3: ω0 = ω1 = ω2 = α1 = 0 accept, p-value 0.1942
h4: ρ = θ accept, p-value 0.3868

Additional estimations, p-values:
Normality of residual: 0.1284
Unit-root of residual (constant): <0.0001
Unit-root of residual (trend): 0.8537
ARCH effect: 0.8381
R-squared: 0.4806

Source: authors’ calculations based on Eurostat [9,70] data, 2022.

Hypotheses h2 and h3 are accepted as well, showing that there are no statistically
significant short-run effects, nor does any individual short-run regressor have a statistically
significant impact. As a result, there is no evidence for the ‘inverse U’ shape of the
relationship between GHG and GVA when analyzing data for Latvia.

Furthermore, both dummy variables show no statistically significant effect. However,
unlike analyzing Lithuanian data, their coefficient values are estimated to be negative.

The normal distribution hypothesis is accepted, indicating that the residuals are
normally distributed. The unit-root hypothesis is accepted, indicating that residuals are
stationary, but only when using the model with a constant. No residual ARCH effects were
discovered either.

The coefficient of determination indicates the model’s medium explanatory power
(R2 > 0.4).

The condensed model exhibits only a short-run GVA effect that was statistically
insignificant in the full model (see Appendix C). The QLR test was run since all dummy
variables were omitted, but it did not find a statistically significant break point.

Finally, the estimations for the Estonian NARDL model are calculated (see Table 6).
Both GHG (−1) and GVA+ (−1) have a statistically significant effect with p-values less than
0.05. The GHG (−1) effect is negative; thus, this may well indicate equilibrium relationships.
However, the long-run impact hypothesis h1 is accepted, showing that the model does not
show the complete long-run relationships for all three parameters. The long-run negative
coefficient L− is smaller than the positive L+, but both are statistically insignificant.

Hypotheses h2 and h3 are rejected, showing that GHG and GVA also have short-run
relationships. In other words, the short-term effect is statistically significant, and the
lagging values of gross value added can help explain future changes in greenhouse gas
emissions. To summarize, there is evidence that gross value-added leads to greenhouse gas
emissions in Estonia and that this leads to equilibrium.
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Table 6. NARDL results for Estonia.

Variable Coefficient p-Value

Constant 563.674 0.0618
GHG (−1) −0.5566 0.0492
GVA+ (−1) 0.7830 0.0350
GVA− (−1) 0.3566 0.1025
∆GHG (−1) −0.2750 0.2581
∆GHG (−2) −0.1921 0.1804

∆GVA (0) 0.4718 0.0016
∆GVA (−1) 0.0965 0.5659
∆GVA (−2) −0.0173 0.8890

S_2004 63.6336 0.0225
D_2009 73.7197 0.0251

Additional hypotheses:
h1: ρ = θ+ = θ− = 0 accept, p-value 0.159031
h2: ω0 = ω1 = ω2 = 0 reject, p-value 0.0095
h3: ω0 = ω1 = ω2 = α1 = α2 = 0 reject, p-value 0.0273
Long-run coefficients:
L+ = 1.4068, p-value: 0.1981
L− = 0.6407, p-value: 0.4720

Additional estimations, p-values:
Normality of residual: 0.06679
Unit-root of residual (constant):
0.0050
Unit-root of residual (trend): 0.0457
ARCH effect: 0.9755
R-squared: 0.7047

Source: authors’ calculations based on Eurostat [9,70] data, 2022.

When analyzing time dummy variables, both the crisis period of 2009 and joining
the EU in 2004 show a statistically significant effect. However, they have a positive effect
on greenhouse gas emissions. As a result, greater data on carbon emissions may help to
broaden this study.

The residuals are normally distributed. The residuals are also stationary when using
both unit-root models with a trend and with constant only. There are no statistically
significant residual ARCH effects.

The coefficient of determination indicates the model’s strong explanatory power
(R2 > 0.7).

After sequentially omitting insignificant variables (see Appendix D), the abbreviated
model shows similar relationships except that the financial crisis represented by the dummy
variable has a negative instead of a positive coefficient.

90To summarize, comparable findings were obtained for all three nations in the
sample.

Next, the panel data series (stacked time series) are analyzed and the estimations for
all three countries using the ARDL model are calculated (see Table 7). This uses three
cross-sectional units observed over 21 periods (years).

Table 7. Panel data (stacked time series) for all three countries’ ARDL results.

Variable Coefficient p-Value

Constant 40.4640 0.1549
GHG (−1) −0.0006 0.9638
GVA (−1) −0.0203 0.4979

∆GHG (−1) −0.0794 0.4812
∆GHG (−2) 0.1465 0.1813

∆GVA (0) 0.2247 <0.0001
S_2004 −11.5443 0.6574
D_2009 −19.3475 0.6023

Additional hypotheses:
h1: ρ = θ = 0 accept, p-value 0.3523
h2: ω1 = 0 reject, p-value < 0.0001
h3: ω = α = 0 reject, p-value 0.0001
h4: ρ = θ accept, p-value 0.6365

Additional estimations, p-values:
Normality of residual: 0.2152
Unit-root of residual (constant): 0.0002
Unit-root of residual (trend): 0.0142
R-squared: 0.3760

Source: authors’ calculations based on Eurostat [9,70] data, 2022.
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GHG (−1) and GVA (−1) have no statistically significant impact. Both hypotheses h1
and h4 for long-run impacts are accepted, suggesting that there are no major long-term
consequences.

However, the short-term impact is statistically significant. Hypotheses h2 and h3 are
rejected, demonstrating that GHG and GVA have short-run correlations. This demonstrates
that, after all, the shift in GVA is driving the increase in GHG.

None of the time dummy variables are statistically significant, but their coefficient
values are negative.

The null hypothesis for normal distribution is accepted, indicating that the residuals
are normally distributed. The unit-root hypothesis is rejected, which shows that residuals
are not stationary when using models with both a trend and a constant.

As previously stated, the limitation of panel data analysis is that it excludes ARCH
estimations for residual clustering. The coefficient of determination indicates the model’s
weak explanatory power (R2 < 0.4).

In conclusion, ARDL and NARDL models can be used to look at how greenhouse gas
(GHG) emission equivalent and gross value added (GVA) in agriculture in different states
are related to each other. On the other hand, the traditional ARDL model was selected
for Latvia and panel data since no statistically significant asymmetric effects were found.
Most time series are stationary and cointegrated with a p-value less than 0.05. In almost
every instance, the residuals are distributed normally, with no substantial ARCH effects
discovered. The effects are most clear and evidence for equilibrium relationships can be
observed when looking at data from Lithuania and Estonia. They are least clear when
looking at data from Latvia.

4. Discussion
4.1. Contextualization with Previous Research

The findings of the ARDL modeling provide a diversity of perspectives on the current
scientific dispute. Other nations that have been employed in comparable studies on
greenhouse gas emissions using the ARDL technique are mostly Asian countries [73–76].
However, it has been used in other studies on more developed economies, such as the
United States [77], Japan [78], South Africa [79], Saudi Arabia [80], and Singapore [81].
Some authors conducted research on several nations at the same time [82]. Nevertheless,
there are some studies that look at greenhouse gas emissions in Lithuania and neighboring
Baltic countries [12,83,84].

Although similar methodologies have been utilized in the work of other researchers,
the most recent data from the Baltic States have been investigated in this paper. This not
only led to the discovery of structural break points, but also better established the nature of
dependencies between greenhouse gas emissions (GHG) and gross value added produced
in agriculture (GVA). The study’s primary findings may be classified into the following
categories:

In almost all circumstances, GVA has an impact on GHG. On the one hand, the
short-term impacts of GVA on GHG change mostly reflect this effect. An exception was
discovered in the study of Latvia data; however, when all three nations’ data are merged,
GVA has a statistically significant influence on GHG in the short run. GHG and GVAs
fluctuated in all three nations but grew over the study period. Thus, undoubtedly, GVA
significantly influences GHG, as has been observed in other authors’ analyses. However,
value added is only used by a few researchers to analyze economic growth [12,84]. Other
writers incorporated data such as energy use and actual GDP [75]. Other writers have also
utilized panel data time series [85].

Analyzing Lithuanian data revealed the effect between GVA and GHG, which stabi-
lizes and achieves equilibrium in the long run. A similar impact was discovered in the
examination of Estonian data that GHG stabilizes as it increases, but the changes in GVA
do not allow for a statistically significant explanation of the inverted ‘U-shaped’ form. It is
worth noting that such an influence was not discovered in the data analysis for all nations
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in other researchers’ studies [59]. Other authors’ studies that included the examination
of similar variables and employed longer research periods found that the impacts were
also varied when assessing data from other nations. The study’s findings, on the other
hand, indicated that there is inadequate evidence supporting the inverted ‘U-shaped’ effect
of the environmental Kuznets curve (ECK) [17]. The effects of GVA on GHGs approach
equilibrium but do not reverse. Typically, authors are proponents of the U-shaped hypoth-
esis. The inverted U theory was, however, dismissed in some cases [86]. For example,
empirical evidence shows that the inverted U-shaped hypothesis is not true in Qatar when
CO2 emissions are used, but it is true when the ecological footprint is used [87].

The relationships between greenhouse gas emissions (GHG) and gross value added
produced in agriculture (GVA) have undergone significant structural modifications. Time
dummy variables depicting nations’ entry into the EU in 2004 and the era of economic
crisis in 2009 are used in this research. In some instances, these variables are statistically
significant. Statistically significant breakpoints were detected by evaluating data from
Estonia. This demonstrates that the crisis of 2009 as well as joining the EU had an impact
on greenhouse gas emissions. In other words, this may indicate a more efficient use of
agricultural resources. Dummy variables are statistically insignificant when analyzing
non-panel data for Lithuania and Latvia. However, the QLR test for Lithuania showed a
significant breakpoint in 2011. Other researchers have looked at structural breaks through
dummy variables and discovered them, particularly when utilizing long-term data. These
structural breaks happen at important economic events in that country [60,87,88].

4.2. Future Research Guidelines

The key constraint of the research is that the data utilized in the study date back to
1998, since only such statistics on Lithuanian gas emissions and agricultural value added
are available. Other research has utilized longer-term data, such as since the 1970s, which
has given them greater flexibility in choosing econometric models and modeling these
correlations. The investigation also failed to discover asymmetric links in all countries,
rejecting both long-term and short-term asymmetry hypotheses when analyzing data for
Latvia or panel data. Hence, the conventional ARDL model was selected more often for
relationship assessment rather than the more sophisticated NARDL model often used by
other researchers [62]. As with other research, as asymmetric connections are revealed, the
NARDL model method is used [89]. Furthermore, both short-term and long-term impacts
have been reported by other authors [90].

On the other hand, the research might be expanded, particularly if data from more
recent times become accessible. Time dummy variables, such as those for the pandemic
period 2020–2021, may therefore be used. Furthermore, it is necessary to better understand
and analyze the shifting link between greenhouse gas emissions and the gross value added
caused by the significant increase in agricultural energy costs. More dummy variables
may be used if they are linked more closely to the breakpoints identified in ARDL models,
assuming choosing separate breakpoints for each state. The study’s findings may be com-
pared to those of other nations by incorporating and categorizing countries into various
areas, such as Eastern European and Western European countries. Another key consid-
eration is that when more data are studied, more variables may be eliminated from the
model. If this study had more observations, it could more efficiently remove less significant
variables to improve the explanatory power of this model.

To evaluate the inverse ‘U’ relationships, additional explanatory factors can be uti-
lized instead of or in addition to economic growth. These include variables representing
economic policy uncertainty [77], inward foreign direct investment [76], or even more
alternative approaches such as variables representing renewable energy [91], ecological
footprint [92], and urbanization [78,80,81]. According to multiple studies, a key finding is
that trade openness has a statistically negligible association with carbon emissions [79,93].

Other authors used a different technique to look at these linkages. More advanced
ARDL techniques—such as the dynamic autoregressive distribution lag (DARDL) [92]
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and quantile autoregressive distribution lag (QARDL) models [94]—are included. Others
used the ARDL cumulative sum (CUSUM) Test [95] or a combination of VECM and ARDL
methods [60]. Other researchers also use the Granger causality test [96]. The findings
show that there is a short- and long-term link between agricultural productivity, economic
development, and carbon dioxide emissions in the countries studied. Other writers claim
that linear logarithm models are more efficient than basic linear models [97,98]. Recent
studies look at the link between fossil fuel and renewable energy use, pollution, and
economic growth in both panel and time series settings.

4.3. Practical Implications

The three Baltic nations studied—Lithuania, Latvia, and Estonia—were selected for
their comparable agricultural structures, natural circumstances, and application of the
Common Agricultural Policy. The general agricultural policy of 2023–2027—not only
in the Baltic countries, but also in all EU countries—will be more oriented towards the
sustainable solution of environmental problems, which is likely to reduce greenhouse gas
emissions and contribute to the implementation of the goals of the Green Deal and net-zero
commitments. The results of our research also showed that, with the exception of Lithuania,
there were no ‘U’-shaped relationships between economic growth and greenhouse gas
emissions. This shows that economic growth alone is not enough to fix environmental
problems. The findings imply that the government should prioritize carbon-reduction
measures and policies. Other researchers argue that expanding the trade sector is important
because of the role it plays in lowering environmental deterioration in the nation, which
improves environmental quality directly [96]. For example, policy implications might
suggest that increased trade between the nations be allowed [93]. One conclusion is that
any environmental policy aimed at reducing nonrenewable energy usage and carbon
dioxide emissions would necessarily lead to more renewable energy consumption, which
would improve trade openness and, in turn, speed up economic development [98]. This
is particularly crucial in the Baltic states, where renewable energy sources are not widely
used. Other authors emphasize renewable energy sources [99,100] as a way to minimize
greenhouse gas emissions while maintaining economic development.

5. Conclusions

This research investigates the link between greenhouse gas equivalent and the gross
value added in agriculture. This is explained by the fact that numerous worldwide linkages
between agriculture and climate change have been uncovered and validated. This work not
only adds to the main body of knowledge, but it also expands it to countries less analyzed
by others. From 1998 through to 2019, the research examines data from Lithuania, Latvia,
and Estonia together and individually. Since the agricultural systems and environmental
circumstances in all three nations are similar, the research findings are comparable and
provide new insights. The NARDL and ARDL models were used to find and further assess
the connections and their forms between the variables that were chosen. This study covers
nonlinear relationship analysis and asymmetric relationship analysis to test if there is a
convex curve between variables and changes in its structure.

The study led to three main conclusions. First, agriculture’s gross value added has
a statistically significant positive influence on greenhouse gas emission equivalent. Such
impacts have been discovered in almost all situations or via the study of aggregate national
statistics. This is consistent with the findings of other authors’ research, and the gross
value added greatly boosts greenhouse gas emissions. Second, by examining Lithuania
and Estonia data, the influence that stabilizes and achieves equilibrium in the long run
was identified. An examination of Estonian data indicated similar results, but without
the asymmetric influence of gross value added on greenhouse gas emissions equivalent.
Therefore, Lithuania’s data show the most evidence of the inverse ‘U’ environmental
Kuznets curve relationship between economic performance and greenhouse gas equivalent.
Finally, major structural alterations have been observed between these dependencies. It
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was discovered that there were modifications in relationships from 2004 and 2009 for
Estonia. The nation’s greenhouse gas emissions have been affected because of its EU entry
and accompanying reforms, as well as the 2009 financial crisis, a period of diminishing
production and GDP.

The data used in the analysis goes back to 1998, since only that much data on the
Baltic States’ gas emissions and agricultural value-added figures are available. Other
studies used longer-term data, such as from the 1970s, allowing them more flexibility in
selecting econometric models and modeling relationships. Asymmetry hypotheses for
long-term and short-term relationships were often rejected, hence the traditional ARDL
approach was chosen more often for underlying relationship evaluation rather than the
more advanced NARDL model. However, if more current data become available, the study
can be expanded. More time-bound dummy variables, such as pandemic 2020–2021, may
be employed. The huge rise in agricultural products and energy prices may have also
shifted the connection between greenhouse gas emissions and gross value added. More
dummy variables may be utilized that are tied to ARDL breakpoints. Therefore, individual
breakpoints can be chosen for each state. The study’s results may be compared to other
countries by classifying them as Eastern or Western European. Furthermore, when more
data are reviewed, more factors may be added to the model. Future research may examine—
in panel and separate time series settings—the relationship between the usage of fossil
fuels and renewable energy, pollution, and economic development, on which factors (i.e.,
the percentage of fossil fuels used, trade openess) may have an impact on the curve shape
between economic performance and greenhouse gas emissions in the Baltic countries.

The results of the study have important policy implications.
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Appendix A

Table A1. Information criteria for best time lag selection.

Information
Criteria Schwarz Criterion Akaike Criterion Hannan-QUINN Criterion

Time Lag q = 1 q = 2 q = 3 q = 1 q = 2 q = 3 q = 1 q = 2 q = 3

Lithuania

p = 1 238.1 233.4 228.3 231.1 224.4 217.9 232.5 226.2 219.6

p = 2 225.7 213.4 209.3 218.1 204.0 198.0 219.4 205.6 199.9

Latvia

p = 1 226.2 229.0 215.6 219.2 220.0 205.3 220.6 221.8 207.0

p = 2 219.0 221.1 217.9 211.4 211.6 206.5 212.7 213.2 208.5

https://ec.europa.eu/eurostat/data/database
https://ec.europa.eu/eurostat/data/database
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Table A1. Cont.

Information
Criteria Schwarz Criterion Akaike Criterion Hannan-QUINN Criterion

Time Lag q = 1 q = 2 q = 3 q = 1 q = 2 q = 3 q = 1 q = 2 q = 3

Estonia

p = 1 207.6 213.4 194.9 200.7 204.5 184.5 202.0 206.2 186.3

p = 2 201.3 207.2 195.5 193.7 197.7 184.1 195.0 199.3 186.1

Panel

p = 1 686.4 694.5 652.9 671.8 675.7 630.5 677.5 683.0 639.2

p = 2 648.4 654.5 656.7 632.1 634.1 632.2 638.4 642.0 641.7

Source: authors’ calculations based on Eurostat [9,70] data, 2022.

Appendix B

Table A2. NARDL results for Lithuania after sequentially omitting insignificant variables.

Variable Coefficient p-Value

Constant 7007.23 <0.0001
GHG (−1) −1.7567 <0.0001
GVA+ (−1) 0.6828 <0.0001
GVA– (−1) 0.9376 0.0001
∆GHG (−1) 0.5356 0.0048
∆GHG (−2) 0.4279 0.0022

∆GVA (0) 0.2385 0.0002
∆GVA (−1) −0.4303 0.0010
∆GVA (−2) −0.1924 0.0192

Additional hypotheses:
h1: ρ = θ+ = θ− = 0 reject, p-value 0.0002
h2: ω0 = ω1 = ω2 = 0 reject, p-value < 0.0001
h3: ω0 = ω1 = ω2 = α1 = α2 = 0 reject, p-value < 0.0001
Long-run coefficients:
L+ = 0.3887, p-value: 0.8390
L− = 0.5337, p-value: 0.7414

Additional estimations, p-values:
Normality of residual: 0.0016
Unit-root of residual (constant):
0.1893
Unit-root of residual (trend): 0.6138
ARCH effect: 0.9308
R-squared: 0.9224
QLR test p-value: 0.0216, year: 2011

Source: authors’ calculations based on Eurostat [9,70] data, 2022.

Appendix C

Table A3. ARDL results for Latvia after sequentially omitting insignificant variables.

Variable Coefficient p-Value

Constant 21.29 0.0875

∆GVA (0) 0.2275 0.0300

Additional estimations, p-values:
Normality of residual: 0.7553
Unit-root of residual (constant): 0.0110
Unit-root of residual (trend): 0.6849
ARCH effect: 0.6540
R-squared: 0.2480
QLR test p-value: 0.1716, year: 2002

Source: authors’ calculations based on Eurostat [9,70] data, 2022.
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Appendix D

Table A4. NARDL results for Estonia after sequentially omitting insignificant variables.

Variable Coefficient p-Value

Constant 789.94 0.0016
GHG (−1) −0.7515 0.0015
GVA+ (−1) 0.9025 0.0016
GVA– (−1) 0.3309 0.0166
∆GVA (0) 0.4034 0.0005

S_2004 44.0169 0.0229
D_2009 −77.2390 0.0110

Additional hypotheses:
h1: ρ = θ+ = θ− = 0 reject, p-value 0.0082
Long-run coefficients:
L+ = 1.2009, p-value: 0.2127
L− = 0.4403, p-value: 0.4303

Additional estimations, p-values:
Normality of residual: 0.3051
Unit-root of residual (constant): 0.0110
Unit-root of residual (trend): 0.6849
ARCH effect: 0.1004
R-squared: 0.8174

Source: authors’ calculations based on Eurostat [9,70] data, 2022.
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