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Abstract: Combining disease categories and crop species leads to complex intra-class and inter-class
differences. Significant intra-class difference and subtle inter-class difference pose a great challenge
to high-precision crop disease classification tasks. To this end, we propose a multi-granularity
feature aggregation method for accurately identifying disease types and crop species as well as better
understanding the disease-affected regions implicitly. Specifically, in order to capture fine-grained
discriminating clues to disease categories, we first explored the pixel-level spatial self-attention to
model the pair-wise semantic relations. Second, we utilized the block-level channel self-attention
to enhance the feature-discriminative ability of different crop species. Finally, we used a spatial
reasoning module to model the spatial geometric relationship of the image patches sequentially, such
that the feature-discriminative ability of characterizing both diseases and species is further improved.
The proposed model was verified on the PDR2018 dataset, the FGVC8 dataset, and the non-lab
dataset PlantDoc. Experimental results demonstrated our method reported respective classification
accuracies of 88.32%, 89.95%, and 89.75% along with F1-scores of 88.20%, 89.24%, and 89.13% on
three datasets. More importantly, the proposed architecture not only improved the classification
accuracy but also promised model efficiency with low complexity, which is beneficial for precision
agricultural applications.

Keywords: crop disease identification; fine-grained classification; multi-granularity feature;
self-attention mechanism

1. Introduction

Crop disease is one of the major agricultural disasters, and the harmful effect of a
wide spread of crop disease usually manifests itself in a significant reduction in crop yield
and quality. Previously, farmers and agricultural experts identified crop diseases based
on personal experience, suffering limited scope and deteriorating disease identification
accuracy. Since there are numerous disease categories and crop types that are influenced by
outdoor environments such as light, occlusion, and jitter, different types of crop diseases
show significant intra-class differences. However, different subcategories of the same
disease have similar disease appearances and can only be discriminated by capturing
distinguishing features in subtle regions, which poses a great challenge to high-precision
crop disease classification tasks. Therefore, it is critical to design a high-performance crop
disease identification model and adopt timely and effective control measures for improving
crop yield and quality.

Crop disease is characterized by significant intra-class differences and subtle inter-
class differences. Consequently, the crop disease classification problem belongs to the
fine-grained classification problem. In the early stage, manual identification methods
mainly relied on expert experience to identify crop diseases, which was time-consuming
and laborious, and the misdiagnosis rate was high for diseases with a similar appear-
ance. With the development and improvement of computer vision technology, machine
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learning-based methods and deep learning-based methods have promoted accurate crop
disease identification. Machine learning-based methods firstly preprocess the acquired leaf
images [1–5], such as denoising, image conversion, and image enhancement. Secondly, the
region of interest is segmented from the background. In [6–12], researchers segmented the
crop disease area and background through canny edge detection, Grabcut segmentation,
Otsu segmentation, and K-means segmentation methods. Then, features of the region of
interest are extracted, which are usually color, texture, and shape features [13–15]. Studies
have shown that texture features work best for disease identification. In [13], the gray level
co-occurrence matrix was used to extract corn disease texture features. In [14], disease
texture features are extracted by a spatial grayscale dependency matrix. Pires et al. [15]
compared scale-invariant feature transform (SIFT), dense scale-invariant feature transform
(DSIFT), pyramid histograms of visual words (PHOW), speeded-up robust features (SURF),
histogram of oriented gradients (HOG), and other feature extraction methods, the results
showed that the best model performance was achieved by using PHOW to extract soybean
disease characteristics. Finally, the extracted features are sent to the classifier for train-
ing [16–20]. In [16], three different methods of Patternnet neural network, support vector
machine, and k-nearest neighbor (KNN) are used to train the extracted features, and KNN
achieves the best results through experiments. [17] utilized SVM and grid search-based
SVM to train on the PlantVillage dataset. The SVM classifier model achieved 80% accuracy,
and the grid search-based SVM classifier model achieved 84% accuracy. Hlaing et al. [18]
used SIFT to extract the texture features of tomato diseases and then sent them to the SVM
classifier for training, and achieved an accuracy of 84%. Based on the analysis of the above
studies, it could be seen that machine learning-based disease identification methods have
major limitations, such as the hyperparameters’ selection in segmentation methods, which
can have a large impact on model performance; segmentation is particularly difficult in the
complex backgrounds; hand-crafted feature extraction method is less optimized, etc.

In contrast, deep learning-based methods can automatically extract image features,
reduce the workload of image segmentation and feature extraction in machine learning
methods, and enable end-to-end training. This has led to the widespread application of
deep learning-based methods in the field of crop disease classification and has become a
research hotspot. Convolutional neural networks (CNN) [21–32], a representative algorithm
of deep learning, perform the best in crop disease classification. Mohanty et al. [21] trained
the PlantVillage dataset using AlexNet [31] and GoogleNet [32] and achieved an accuracy
of 99.35%, which validated the feasibility of this method. Ferentinos et al. [22] explored
several convolutional neural networks using 25 different types of plants and found that
VGG achieved the best performance with an accuracy of 99.53%. Sladojevic et al. [23]
proposed a deep convolutional network-based plant disease recognition model that was
able to distinguish between healthy leaves and 13 types of diseases with an overall accuracy
of 96.3%. Grinblat et al. [24] utilized deep convolution neural networks to classify three
bean species and experimentally demonstrated that the accuracy monotonically improved
with increasing model depth. Ma et al. [25] proposed a deep convolution neural network to
identify cucumber diseases and compared it with traditional classifiers using random forests
and support vector machines as well as AlexNet and proved its effectiveness in identifying
cucumber diseases in real scenarios. This method achieved 93.4% and 92.2% accuracy on
the balanced and unbalanced datasets, respectively. However, a large amount of training
data are required for deep convolutional neural networks to achieve excellent performance,
for which researchers have used the idea of transfer learning [33–36] to further improve
model classification accuracy using CNN models pre-trained on ImageNet datasets. For
example, Kaya et al. [33] studied four different transfer learning methods on four public
datasets and experimentally showed that transfer learning models based on fine-tuning are
more beneficial in improving model classification performance. Too et al. [34] fine-tuned
several state-of-the-art deep CNN models on the PlantVillage dataset and obtained a model
with an accuracy of 99.75%. Cruz et al. [35] recognized grape diseases with ResNet50 [37]
backbone, obtaining balanced training time and accuracy. Numerous experiments have
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demonstrated that transfer learning can effectively improve the classification performance
of deep convolution networks.

In the above studies, the models can achieve good classification results when the intra-
class differences are large. However, the model performance is not satisfactory when the
inter-class differences are small. To this end, a multi-granularity feature aggregation method
was proposed to better capture discriminative features of subtle regions to differentiate
crop diseases with similar appearances. Firstly, we utilized a pre-trained CNN to extract
the feature of the input images, which were divided into several non-overlapping patches.
Secondly, we explored the pixel-level spatial self-attention module to capture fine-grained
discriminative cues for each disease category. Subsequently, we further investigated the
block-level coarse-grained channel self-attention module for improving the discrimination
of different crop species features. In addition, taking into account that the diseases are
randomly distributed over distinct locations of the leaves, we exploited the spatial reasoning
module to model the spatial geometric relationships between image blocks sequentially to
further enhance the feature representation of the diseases for improving the discriminatory
ability of disease and species characteristics. The main contributions of this paper are
as follows:

(1) A multi-granularity feature aggregation method is proposed to strengthen the connec-
tion between different granularity features by exploring multiple regions and hierar-
chically learning the discriminative disease feature from pixel level to block level.

(2) Considering that subtle changes in the overall region and its spatial arrangement can
better refine the learning process, a spatial reasoning module is introduced to improve
the model’s performance.

(3) The experimental results of PDR2018, FGVC8 and non-lab PlantDoc datasets show
that the method not only effectively improves the classification accuracy, but also has
low complexity.

The sections of this paper are organized as follows: In Section 2, the dataset is intro-
duced. Section 3 describes the method proposed in this paper. The experimental results
and analysis are given in Section 4. Discussion of the method of this paper is given in
Section 5. Conclusions are given in Section 6.

2. Materials

As shown in Table 1, our proposed method was validated on the PDR2018, FGVC8,
and PlantDoc datasets. The PDR2018 dataset with 61 disease categories was provided by
the AI Challenger 2018 Crop Disease Detection Competition. The dataset was extremely
unbalanced in terms of categories, with only 2 and 1 images for diseases in categories 44
and 45, respectively. Hence, these two categories were removed during the experiments.
The detailed name of disease types can be found in Guan et al. [38].

Table 1. Overview of the three datasets.

Dataset Class Number of Training Sets Number of Validation Sets

PDR2018 59 31,716 4539
FGVC8 12 14,901 3731

PlantDoc 27 2340 236

The FGVC8 dataset was provided by the Kaggle competition Plant Pathology 2021-
FGVC8, and the image size was 4000 × 2672 pixels, taken by high-resolution cameras with
different angles, lighting, and backgrounds. Each image had one or more labels indicating
leaf disease. The training and validation sets were divided into a ratio of 8:2. The short
names of the disease are shown in Table 2.
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Table 2. Abbreviation of the name of disease category on the FGVC8 dataset.

Number Disease Name Number Disease Name

F1 complex F7 rust

F2 frog eye leaf spot F8 rust complex

F3 frog eye leaf spot complex F9 rust frog eye leaf spot

F4 healthy F10 scab

F5 powdery mildew F11 scab frog eye leaf spot

F6 powdery mildew complex F12 scab frog eye leaf spot complex

The PlantDoc dataset covered disease images of 13 species in real scenarios with
27 classes. The authors removed inappropriate images such as leafless plants, laboratory-
controlled, out-of-scope, and duplicate images. The detailed name of disease types can be
found in Singh et al. [39].

As shown in Figure 1, the sample crop disease images of different categories on the
three datasets were also provided. It is clear that the images in the PDR2018 dataset have
less background interference, but also that the images in the FGVC8 and PlantDoc datasets
are much more challenging.
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Figure 1. Some sample images of the three datasets. (The first row belongs to the PDR2018 dataset,
the second row belongs to the FGVC8 dataset and the third row belongs to the PlantDoc dataset.
The disease name of each image is as follows: (1) potato early blight fungus general; (2) potato early
blight fungus serious; (3) potato late blight fungus general; (4) potato late blight fungus serious;
(5) apple complex; (6) apple frog eye leaf spot; (7) apple powdery mildew; (8) apple rust; (9) bell
pepper bacterial; (10) blueberry healthy; (11) corn gray spots; (12) grape black rot).
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3. The Proposed Method

As shown in Figure 2, the proposed multi-granularity feature fusion network mainly
comprised four modules. Firstly, the feature maps FB of the input images were extracted
with a backbone, such as DenseNet121 [40]. Secondly, obtaining processed feature maps
FMFA by the multi-granularity feature aggregation module (MFA), which captured both lo-
cal and global spatial relationships. Thirdly, the sequential spatial reasoning (SSR) module
was used to capture the spatial geometry relationships between different feature blocks.
Finally, the crop disease identification results were obtained using the classical classification
head based on the FSSR. Each of the modules will be detailed in the following sections.
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3.1. Feature Extraction

In recent years, convolution neural networks have excelled in the field of computer
vision, capturing both high-level semantic features in deep layers and low-level spatial
features in shallow layers. The ResNet [37] proposed by He et al. solves the network
degradation and gradient disappearance problems by utilizing the residual module, which
speeds up the network training. DenseNet [40] enhances feature propagation through
feature reuse and bypass settings, greatly reducing the number of parameters and making
it more efficient than other networks. More recently, MobileNetV2 [41] introduced inverted
residuals and a linear bottleneck structure to preserve feature diversity when enhancing
gradient propagation and greatly reducing the computation. Motivated by this, all three
models mentioned above were evaluated and the best model was selected for subsequent
experiments. It was experimentally validated that Densenet121 [40] was slightly better than
the other two models. A more detailed description will be provided in the experimental
Section 4.3.1.

3.2. Multi-Granularity Feature Aggregation (MFA)

The MFA module was designed to address the problem of high intra-class and low
inter-class variability in crop diseases. The output feature map FB was delivered to the
MFA module in order to enhance feature representation with both local and global spatial
relationships. Since the resolution of the feature map in the last layer was too low to identify
the appearance of the lesion information, the feature map was upsampled to 28 × 28 with
bilinear interpolation before feeding into the MFA module.

The proposed MFA module comprised pixel-level feature self-attention (P-FSA) mod-
ule and block-level feature self-attention (B-FSA) module, as shown in Figure 3. The P-FSA
module and B-FSA module were connected to each other.

3.2.1. P-FSA Module

Firstly, as shown in Figure 3, the input feature map was divided into K × K feature
blocks, and the feature block set was denoted as {Fi}

|R|
i=1, where |R| was the total number of

blocks. Secondly, each feature block Fi went through the P-FSA module, which captured
the pixel-level relationship in each block. The output of each P-FSA module was denoted
as {Ci}

|R|
i=1. The detailed architecture of the P-FSA module is depicted in Figure 4.
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The P-FSA module we explored could mine and enhance the discriminative features
from different disease regions. In this paper, |R| = 4× 4 = 16. The module captured long-
range dependencies by directly calculating the spatial relationship between two locations
to implicitly discover the location of the disease area.

3.2.2. B-FSA Module

Different from the P-FSA module, the B-FSA module was utilized to model the long-
range relationship among the block-level features. Similarly, all the |R| blocks were deliv-
ered to the B-FSA module as shown in Figure 5, and the output was represented as {Bi}

|R|
i=1.

Based on these operations, the MFA module fused both pixel-level and block-level features
in this framework.

Agriculture 2022, 12, x FOR PEER REVIEW 7 of 22 
 

 

...

B-FSA

B1

B2

B|ℜ|

...

C1

C2

C|ℜ|

Block-level Feature Self-Attention
 

Figure 5. The detailed architecture of the B-FSA module. 

The B-FSA module we introduced could improve the model’s ability to discriminate 

the characteristics of different crop species. After the image blocks passed through the 

pixel-level feature self-attention module, fine-grained discriminative cues of disease 

classes were captured and a series of feature vectors 𝐶𝑟, 𝑟 ∈ |𝑅| were generated. How-

ever, there were some similarities in appearance features among the subclasses, which 

formed subtle inter-class differences that were difficult to distinguish, which was the 

challenge in fine-grained crop disease classification. In response, we proposed a 

block-level feature self-attention module that enabled the model to selectively focus on 

more relevant regions by calculating the similarity between itself and its neighboring 

environment, and thus extract discriminative features. 

3.2.3. FSA Module 

The P-FSA module and the B-FSA module utilized the feature self-attention module 

shown in Figure 6 to capture local discriminative features. It is worth mentioning that all 

the FSA modules shared the same parameters. It was similar to the classical non-local 

module, but with a difference in calculating the self-attention matrix with reduced 

channels for computational efficiency. The flow of the FSA module is described as fol-

lows. 

Attention Map

h×w×c

1x1 conv

1x1 conv

1x1 conv

h×w×c/2

h×w×c

h×w×c/2

Transpose

Softmax

hw×hw

h×w×c  

Figure 6. Feature Self-attention module. 

(1) The input feature 𝑋 ∈ ℝ𝐻 × 𝑊 × 𝐶  used three 1 ×  1 convolutions 𝑊𝜙 , 𝑊𝜃 , 𝑊𝛾 , and 

obtained three features 𝜙 ∈ ℝ𝐻 × 𝑊 × 𝐶 2⁄ , 𝜃 ∈ ℝ𝐻 × 𝑊 × 𝐶 2⁄ , 𝛾 ∈ ℝ𝐻 × 𝑊 × 𝐶. 

𝜙 = 𝑊𝜙(𝑋), 𝜃 = 𝑊𝜃(𝑋), 𝛾 = 𝑊𝛾(𝑋) (1) 

Figure 5. The detailed architecture of the B-FSA module.

The B-FSA module we introduced could improve the model’s ability to discriminate
the characteristics of different crop species. After the image blocks passed through the
pixel-level feature self-attention module, fine-grained discriminative cues of disease classes
were captured and a series of feature vectors Cr, r ∈ |R| were generated. However,
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there were some similarities in appearance features among the subclasses, which formed
subtle inter-class differences that were difficult to distinguish, which was the challenge
in fine-grained crop disease classification. In response, we proposed a block-level feature
self-attention module that enabled the model to selectively focus on more relevant regions
by calculating the similarity between itself and its neighboring environment, and thus
extract discriminative features.

3.2.3. FSA Module

The P-FSA module and the B-FSA module utilized the feature self-attention module
shown in Figure 6 to capture local discriminative features. It is worth mentioning that
all the FSA modules shared the same parameters. It was similar to the classical non-local
module, but with a difference in calculating the self-attention matrix with reduced channels
for computational efficiency. The flow of the FSA module is described as follows.
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(1) The input feature X ∈ RH×W×C used three 1 × 1 convolutions Wφ, Wθ , Wγ, and

obtained three features φ ∈ RH×W× C
2 , θ ∈ RH×W× C

2 , γ ∈ RH×W×C.

φ = Wφ(X), θ = Wθ(X), γ = Wγ(X) (1)

(2) Calculate the similarity matrix S ∈ R(H×W)×(H×W).

S = transpose(φ)× θ (2)

(3) Use softmax to normalize the similarity matrix S.

→
S = so f tmax(S) (3)

(4) Weighted summation based on the similarity of feature vectors.

O =
→
S × γT (4)

(5) Use the 1× 1 convolution WO and sum with the input feature, obtain the final output
X′ ∈ RH×W×C.

X′ = cat
(

WO

(
OT
)

, X
)

(5)

3.2.4. Sequential Spatial Reasoning (SSR)

As shown in Figure 3, the SSR module captured the spatial geometric relationships of
different feature blocks. It could pass useful information learned in the previous moment
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to help the current moment of learning, and output the desired information after selective
filtering. The output was represented as {hi}

|R|
i=1. The spatial reasoning module we explored

was capable of enhancing the global representation of features and further improving the
recognition of disease and species features. After the MFA module, the model captured
the multi-granularity features and generated the feature vector Br, r ∈ |R|. The module
first decided what information from the previous moment could be passed to the current
moment. Then the information was updated based on the output of the previous moment
and the current input. Finally, information filtering was performed to get the required
information. The specific steps are shown in Equations (6)–(11).

fr = sigmoid
(

W f ·[hr−1, Br] + α f

)
(6)

ir = sigmoid(Wi·[hr−1, Br] + αi) (7)

C̃r = tanh(Wc·[hr−1, Br] + αc) (8)

Cr = fr × Cr−1 + ir × C̃r (9)

or = sigmoid(Wo[hr−1, Br] + αo) (10)

hr = or × tanh(Cr) (11)

where Br represents the input of the current moment, hr−1 represents the output of the
previous moment, fr determines the useful information at the previous moment, ir deter-
mines the important valid information of the current input, C̃r saves the valid important
information, Cr updates the valid important information, or determines whether the in-
formation from the current moment is added to hr, and hr represents the final output
information. W∗ are the weight matrices, and α∗ are the biases.

4. Experiments and Results
4.1. Experimental Setting

The experiment was conducted on an Ubuntu 18.04 64-bit system with TensorFlow
1.13 [42]. The input image was uniformly resized to 224 × 224 pixels. The batch size was
set to 32, and the network was trained by the SGD optimization method with the initial
learning rate of 0.0001 and the momentum with 0.99. Data augmentation methods such as
random clipping, random zooming, horizontal flipping, and random rotation were used
during the model training.

4.2. Metrics

We adopted accuracy, precision, recall and F1-score as the model performance evalua-
tion metrics in this paper, which are demonstrated in Equations (12)–(15).

accuracy =
TP + TN

TP + TN + FP + FN
(12)

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F1-score = 2× (Precision× Recall)
(Precision + Recall)

(15)

where TP denotes positive samples with correct classification, FP denotes negative samples
misclassified as positives, TN denotes negative samples with correct classification, and FN
denotes positive samples misclassified as negatives.
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4.3. Ablation Study
4.3.1. Comparison with Different Backbones

In order to select the best performing backbone network, comparison results of
ResNet50, MobileNetV2, and DenseNet121 in terms of accuracy, precision, recall, and
F1-score are shown in Table 3 respectively. It was clear that DenseNet121 achieved the best
result on PDR2018, FGVC8, and PlantDoc datasets. More specifically, in terms of accuracy,
it improved by 0.22% and 1.65% over ResNet50 and MobileNetV2 for the PDR2018 dataset.
Besides, the F1-score of DenseNet121 was about 0.28% and 1.42% higher than ResNet50
and MobileNetV2.

Table 3. Results of the baseline model on PDR2018, FGVC8, and PlantDoc datasets.

Dataset Backbone Accuracy Precision Recall F1-Score

PDR2018

ResNet50 85.37% 85.74% 85.37% 85.55%

MobileNetV2 83.94% 84.88% 83.94% 84.41%

DenseNet121 85.59% 86.07% 85.59% 85.83%

FGVC8

ResNet50 86.64% 85.34% 86.64% 85.99%

MobileNetV2 85.21% 85.13% 85.21% 85.17%

DenseNet121 87.04% 86.79% 87.04% 86.91%

PlantDoc

ResNet50 85.08% 86.04% 85.08% 85.56%

MobileNetV2 85.05% 85.54% 85.05% 85.29%

DenseNet121 86.36% 87.30% 86.36% 86.83%

On the FGVC8 dataset, DenseNet121 improved 0.4% and 1.83% over ResNet50 and
MobileNetV2 in accuracy, and also 0.92% and 1.74% higher in F1-score respectively.

On the PlantDoc dataset, DenseNet121 improved 1.28% and 1.31% over ResNet50
and MobileNetV2 in accuracy, and also 1.27% and 1.54% higher in F1-score respectively.
DenseNet121 was therefore chosen as the baseline backbone for the following experiments.

4.3.2. Comparison between Different Modules

Ablation studies were performed to validate the effectiveness of the proposed module
as shown in Tables 4–6, respectively. It is clear that the P-FSA module has a better per-
formance than the baseline, among all the three individual modules, about 0.33%, 0.36%,
and 0.78% higher in accuracy on the PDR2018, FGVC8, and PlantDoc datasets respectively.
The B-FSA module is slightly better than the SSR module in both datasets, which indicates
the effectiveness of capturing the global relationship of each feature block with the self-
attention module. It also finds that the combination of both P-FSA and B-FSA modules
is better than the other two options, about 1.62%, 1.6%, and 2.03% higher in accuracy on
the PDR2018, FGVC8, and Plant-Doc datasets respectively, which proves the effectiveness
of complementary for both local and global feature relationship modeling with the self-
attention mechanism. Finally, the combination of three modules can also further improve
the performance in all metrics, about 2.73%, 2.91%, and 3.39% higher in accuracy on the
PDR2018, FGVC8, and PlantDoc datasets respectively, which indicates that the sequential
modeling of feature blocks for the SSR model can capture the spatial geometry relationship
of feature blocks.
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Table 4. Ablation studies of different modules on PDR2018 dataset.

P-FSA B-FSA SSR Accuracy Precision Recall F1-Score

1 85.59% 86.07% 85.59% 85.83%

2
√

85.92% 86.52% 85.92% 86.22%

3
√

85.78% 86.27% 85.78% 86.02%

4
√

85.71% 86.60% 85.71% 86.15%

5
√ √

86.96% 87.01% 86.96% 86.98%

6
√ √

87.01% 87.05% 87.01% 87.03%

7
√ √

87.21% 87.56% 87.21% 87.38%

8
√ √ √

88.32% 88.08% 88.32% 88.20%

Table 5. Ablation studies of different modules on FGVC8 dataset.

P-FSA B-FSA SSR Accuracy Precision Recall F1-Score

1 87.04% 86.79% 87.04% 86.91%

2
√

87.40% 87.09% 87.40% 87.24%

3
√

87.36% 86.98% 87.36% 87.17%

4
√

87.34% 86.91% 87.34% 87.12%

5
√ √

88.43% 87.24% 88.43% 87.83%

6
√ √

88.62% 87.33% 88.62% 87.97%

7
√ √

88.64% 87.57% 88.64% 88.10%

8
√ √ √

89.95% 88.54% 89.95% 89.24%

Table 6. Ablation studies of different modules on PlantDoc dataset.

P-FSA B-FSA SSR Accuracy Precision Recall F1-Score

1 86.36% 87.30% 86.36% 86.83%

2
√

87.14% 88.92% 87.14% 88.02%

3
√

86.86% 88.28% 86.86% 87.56%

4
√

86.51% 87.84% 86.51% 87.20%

5
√ √

87.78% 89.45% 87.78% 88.61%

6
√ √

87.02% 89.14% 87.02% 88.07%

7
√ √

88.39% 89.41% 88.39% 88.90%

8
√ √ √

89.75% 89.95% 89.75% 89.85%

4.4. Comparison Experiments on Different Methods

The comparison results of different methods are shown in Table 7. The PDR2018
dataset was divided into 59 categories according to species-disease-severity, which nar-
rowed the gap between classes and increased the difficulty of disease classification. How-
ever, the method in this paper still achieved better classification accuracy compared with
other models. This method improved by 5.33% over the VAN-B0 [43] model, and the
F1-score was 4.72% higher than that of the VAN-B0 model. It is fully proved that the
method in this paper can better capture the subtle inter-class differences and can effectively
improve the classification accuracy of the model.
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Table 7. Comparison results on the PDR2018, FGVC8, and PlantDoc datasets.

Dataset Methods Accuracy Precision Recall F1-Score Params Time

PDR2018

Inception-ResNetV2 [45] 86.1% 86.26% 86.1% 86.18% 51.91 M 9.4 h

SEResNet50 84.34% 85.07% 84.34% 84.70% 26.16 M 8.5 h

CoAtNet [46] 84.73% 84.90% 84.73% 84.81% 17.02 M 9.1 h

VAN-B0 [43] 82.99% 83.98% 82.99% 83.48% 3.86 M 7.5 h

PatchConvNet [44] 84.45% 84.91% 84.45% 84.68% 24.80 M 13.3 h

ResMLP-S12 [47] 85.36% 86.02% 85.36% 85.69% 14.96 M 9.9 h

Ours 88.32% 88.08% 88.32% 88.20% 9.64 M 9.6 h

FGVC8

Inception-ResNetV2 85.90% 86.30% 85.90% 86.10% 51.83 M 4.8 h

SEResNet50 86.57% 85.04% 86.57% 85.80% 26.06 M 4.1 h

CoAtNet 87.43% 86.53% 87.43% 86.98% 16.99 M 4.4 h

VAN-B0 88.53% 88.63% 88.53% 88.56% 3.85 M 3.7 h

PatchConvNet 81.96% 80.07% 81.96% 81.00% 24.78 M 6.5 h

ResMLP-S12 85.35% 84.17% 85.35% 84.76% 14.94 M 4.5 h

Ours 89.95% 88.54% 89.95% 89.24% 9.45 M 4.5 h

PlantDoc

Inception-ResNetV2 89.15% 88.81% 89.15% 88.98% 51.87 M 1.4 h

SEResNet50 81.36% 85.62% 81.36% 83.44% 26.09 M 2 h

CoAtNet 84.75% 88.56% 84.75% 86.61% 17.00 M 2 h

VAN-B0 84.41% 88.01% 84.41% 86.19% 3.85 M 2 h

PatchConvNet 86.27% 88.82% 86.27% 87.53% 24.78 M 2.4 h

ResMLP-S12 86.78% 86.29% 86.78% 86.53% 14.95 M 1.8 h

Ours 89.75% 88.51% 89.75% 89.13% 9.51 M 1.3 h

The FGVC8 dataset was captured by a high-resolution camera at different angles, illu-
mination, and backgrounds. Therefore, compared with the PDR2018 dataset, the FGVC8
dataset had various background noises, making the selection of lesion regions more chal-
lenging. However, the method in this paper was still able to achieve a better performance,
with a 7.99% improvement over PatchConvNet [44] and a 8.24% improvement in F1-score
over PatchConvNet. It was proved that the method in this paper could better discover the
location of disease regions and enhance the disease feature representation.

To verify the effectiveness of the method in this paper in a real environment, experi-
ments were conducted on the non-lab dataset PlantDoc. It can be seen that the method in
this paper improved 8.39% over the SEResNet50 model, and the F1-score was 5.69% higher
than that of SEResNet50. It indicated that the attention mechanism proposed in this paper
could effectively calibrate the saliency of channel features and thus enhance the model
characterization ability.

In addition, in terms of the model parameters, the proposed method had relatively
fewer parameters. As can be seen from Table 7, the model parameters are about 5.5 times
less than that of InceptionResNetV2 [45], about 2.7 times less than that of SEResNet50,
nearly 2.6 times less than that of PatchConvNet [44], about 1.8 times less than that of
CoAtNet [46], and about 1.6 times less than that of ResMLP-S12 [47]. Although the model
parameters are still higher than the VAN-B0 model, the classification accuracy and F1-score
are higher than the VAN-B0 model.

The boxplots of the accuracy of the models on the three datasets are shown in
Figures 7–9. A sawtooth box is used, and the five solid horizontal lines from the top
to the bottom of the graph indicate the upper limit, upper quartile, median, lower quartile,
and lower limit, and the dashed line indicates the mean value. As shown in Figures 7–9,
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the median accuracy of the proposed model was higher than that of the other models, and
the overall range of disease identification accuracy was higher, between 87% and 90%. In
summary, the method in this paper could not only effectively improve the classification
accuracy of the model but also had relatively low complexity.
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4.5. Quantitative Analysis
4.5.1. FGVC8 Dataset

Due to various background noises in the disease images of real scenes, our method
tended to confuse several classes, leading to poor performance. Table 8 shows the classi-
fication accuracy of the baseline model and the method proposed in this paper for each
class. The reason for this is that the rust, frog eye leaf spot (F9) class is a mixture of the rust
disease class and the frog eye leaf spot disease class, and the number of trainings for the
frog eye leaf spot (F2) was much more than that for the rust, frog eye leaf spot (F9).

Table 8. Classification accuracy on the FGVC8 dataset (%).

Class DenseNet121 DenseNet121-MFA

F1 61.99 71.96

F2 91.68 94.66

F3 18.18 29.71

F4 97.95 100.00

F5 93.25 96.62

F6 97.95 99.03

F7 91.68 93.67

F8 12.50 16.67

F9 50.00 25.00

F10 90.27 96.27

F11 80.37 86.03

F12 92.46 96.89
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4.5.2. PDR2018 Dataset

The PDR2018 dataset has a simple background of disease images, but the number of
samples in each category was unbalanced, resulting in a poor performance of our model
for disease recognition with a small number of categories. Table 9 shows the classification
accuracy of the baseline model and the method proposed in this paper for each class. The
accuracy of the model in identifying potato late blight general (36) was reduced, since
potato late blight general (36) is very similar to potato early blight general (34). One
possible reason is that both potato late blight fungus general (36) class and potato early
blight fungus general (34) class exhibit black spot phenotypes, which the P-FSA model
does not distinguish when capturing discriminative features, and thus potato early blight
fungus general (36) was often misclassified as potato early blight fungus general (34).

Table 9. Classification accuracy on the PDR2018 dataset (%) (D121 is short for Densenet121).

Class D121 D121-MFA Class D121 D121-MFA

0 97.63 98.22 30 100.00 100.00

1 63.33 73.33 31 80.00 92.50

2 68.18 72.73 32 88.89 90.74

3 100.00 100.00 33 100.00 100.00

4 100.00 100.00 34 86.21 89.66

5 50.00 66.67 35 89.04 91.78

6 100.00 100.00 36 94.44 88.89

7 91.67 100.00 37 87.5 98.44

8 88.89 94.44 38 100.00 100.00

9 98.15 100.00 39 70.37 100.00

10 66.67 70.37 40 97.59 98.80

11 75.00 100.00 41 98.84 100.00

12 79.71 91.30 42 56.52 84.78

13 82.35 88.24 43 92.03 93.48

14 51.72 62.07 46 75.00 77.78

15 85.92 87.32 47 74.60 76.19

16 100.00 100.00 48 60.53 65.79

17 100.00 100.00 49 94.94 95.57

18 85.19 88.89 50 76.09 84.78

19 62.12 90.91 51 91.67 96.84

20 85.14 91.89 52 75.00 100.00

21 89.83 93.22 53 20.00 40.00

22 22.22 33.33 54 76.67 98.33

23 98.89 100.00 55 93.04 95.65

24 100.00 100.00 56 77.92 87.01

25 73.98 75.09 57 69.23 87.18

26 70.61 95.80 58 75.74 91.09

27 91.67 95.69 59 88.39 92.63

28 83.61 89.34 60 91.89 93.48

29 94.55 97.69
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4.5.3. PlantDoc Dataset

Due to various problems such as occlusion and overlap in the datasets collected in
real scenarios, our method tended to confuse several classes, leading to poor performance.
Table 9 shows the classification accuracy of the baseline model and the method proposed
in this paper for each class. Table 10 shows the classification accuracy of the baseline
model and the method proposed in this paper for each class. The accuracy of the model
is reduced on the potato early blight (19) category. The model performance is reduced
in the potato early blight (19) class. There are two possible reasons for this, one being
the high background noise and the other being that the potato early blight (19) class and
potato late blight (22) class have the same location and are both dark brown in color,
and the SSR module confused the two classes of diseases when modeling the spatial
geometric relationships.

Table 10. Classification accuracy on the PlantDoc dataset (%).

Class D121 D121-MFA Class D121 D121-MFA

0 88.89 100.00 14 37.50 56.86

1 90.00 95.06 15 85.71 94.12

2 70.00 80.00 16 75.00 83.33

3 100.00 100.00 17 83.33 100.00

4 77.78 88.89 18 100.00 100.00

5 100.00 100.00 19 77.78 55.56

6 50.00 75.00 20 50.00 75.00

7 25.00 50.00 21 44.44 51.85

8 41.67 66.67 22 80.00 91.68

9 90.00 92.73 23 30.00 50.00

10 91.67 94.83 24 66.67 83.33

11 100.00 100.00 25 66.67 78.95

12 77.78 88.89 26 72.73 82.05

13 25.00 50.00

4.5.4. Qualitative Analysis

We randomly selected five disease samples from the test set of the FGVC8 dataset and
visualized the disease identification results using the class activation map (CAM), where
the red highlighted areas represent the main basis for model judgments. Figure 10 shows
the results of the disease characteristics captured by each module of the proposed method.
By comparing columns 2–4 of Figure 10, it can be seen that the method in this paper first
discovered the location of crop disease regions, and then gradually enhanced the disease
feature representation for the regions of interest. The region of interest finally presented is
extremely close to the region of interest for man-made disease judgment. As a result, the
self-attention module of this paper can effectively complement each other in modeling local
and global feature relationships, and the P-SR module can capture the spatial geometric
relationships of feature blocks. If the method in this paper is applied to actual crop disease
identification, it can not only better discover disease regions and extract subtle features,
but also enhance feature representation and improve the accuracy of disease identification.
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Figure 10. Feature map of different crop diseases (The first column shows the diseases original image;
the second column shows the feature map of the P-FSA module; the third column shows the feature
map of the B-FSA module; the last column shows the feature map after the P-SR module.).
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4.5.5. Comparison of Accuracy and Loss Curves

We also compared the accuracy/loss plots of the model before and after adding the
MFA module, and we saw that the model with the MFA module performed better than the
baseline model, which came at the cost of consuming more time. The results are shown in
Figures 11–13.
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5. Discussion

The combinations of disease and crop species make large intra-class differences and
small inter-class differences, which poses a great challenge to fine-grained crop disease clas-
sification. In response, we proposed a multi-granularity feature aggregation method in this
paper, with DenseNet121 as the backbone network. The method could more closely focus
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on the location of crop disease regions and enhance feature representation. The method
first utilized a pixel-level spatial self-attention module to model the semantic relationships
to capture fine-grained discriminative cues for disease categories. Then a coarse-grained
block-level channel self-attention mechanism was used to enhance the model’s ability to
discriminate features of different crop species. Finally, the spatial geometric relationships
between image blocks were modeled sequentially using the spatial inference module to
further improve the model’s discriminative power for disease and species features. The
models were trained on the PDR2018 and FGVC8 datasets. The classification accuracy of
the method in this paper reached 88.32% and 89.95%, and the F1-score was 88.20% and
89.24%, respectively. In addition, to verify the effectiveness of the method in this paper, the
model was trained on the real-world dataset PlantDoc; its classification accuracy reached
89.75% and the F1-score was 89.13%. According to the data in Table 7, it can be seen that
the proposed model had a relatively small number of parameters, which is beneficial to
precision agriculture applications.

6. Conclusions

Nowadays, crop diseases pose a major threat to the global food supply. Since crop
diseases exhibit dramatic intra-class variances and subtle inter-class differences, it increases
the difficulty of accurately classifying fine-grained crop diseases. In this study, we proposed
a multi-granularity feature aggregation method for accurate crop disease recognition.
Firstly, the fine-grained features of disease images were extracted by pixel-level spatial self-
attention module and block-level channel self-attention module. Then, they were coupled
with the spatial reasoning module to model the spatial relationships of different feature
blocks. Thus, the localization and recognition of disease regions were strengthened and the
feature representation was enhanced. Experimental results on the PDR2018, FGVC8 and
PlantDoc datasets demonstrated the effectiveness of the method. In practical applications,
in particular, the proposed method could not only serve farmers with timely and effective
disease diagnosis, guiding them to carry out correct control activities, and minimizing the
number of pesticide applications, but could also effectively protect the environment and
reduce costs.

Although the proposed method could better capture the subtle features of crop dis-
eases and enhance the descriptive capability of the disease feature, there was still much
room for improvement. Firstly, our method used only a single network, and the effective
features extracted were limited to disease images with complex background noise. Sec-
ondly, the classification accuracy for a few disease categories was reduced for datasets
with unbalanced categories. Therefore, we will consider optimizing the network structure
and extracting discriminative features by explicitly locating disease locations in our future
work. In addition, we will expand the dataset by combining data augmentation methods
such as GAN, so as to further improve the model classification accuracy.
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