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Abstract: Soybean breeders must develop early-maturing, standard, and late-maturing varieties for
planting at different latitudes to ensure that soybean plants fully utilize solar radiation. Therefore,
timely monitoring of soybean breeding line maturity is crucial for soybean harvesting management
and yield measurement. Currently, the widely used deep learning models focus more on extracting
deep image features, whereas shallow image feature information is ignored. In this study, we
designed a new convolutional neural network (CNN) architecture, called DS-SoybeanNet, to improve
the performance of unmanned aerial vehicle (UAV)-based soybean maturity information monitoring.
DS-SoybeanNet can extract and utilize both shallow and deep image features. We used a high-
definition digital camera on board a UAV to collect high-definition soybean canopy digital images. A
total of 2662 soybean canopy digital images were obtained from two soybean breeding fields (fields
F1 and F2). We compared the soybean maturity classification accuracies of (i) conventional machine
learning methods (support vector machine (SVM) and random forest (RF)), (ii) current deep learning
methods (InceptionResNetV2, MobileNetV2, and ResNet50), and (iii) our proposed DS-SoybeanNet
method. Our results show the following: (1) The conventional machine learning methods (SVM and
RF) had faster calculation times than the deep learning methods (InceptionResNetV2, MobileNetV2,
and ResNet50) and our proposed DS-SoybeanNet method. For example, the computation speed of RF
was 0.03 s per 1000 images. However, the conventional machine learning methods had lower overall
accuracies (field F2: 63.37–65.38%) than the proposed DS-SoybeanNet (Field F2: 86.26%). (2) The
performances of the current deep learning and conventional machine learning methods notably
decreased when tested on a new dataset. For example, the overall accuracies of MobileNetV2 for
fields F1 and F2 were 97.52% and 52.75%, respectively. (3) The proposed DS-SoybeanNet model
can provide high-performance soybean maturity classification results. It showed a computation
speed of 11.770 s per 1000 images and overall accuracies for fields F1 and F2 of 99.19% and 86.26%,
respectively.

Keywords: unmanned aerial vehicle; soybean; convolutional neural network; deep learning

1. Introduction

Soybeans are a high-quality source of plant protein and raw materials for the produc-
tion of hundreds of chemical products [1,2]. China’s soybean-growing areas include the
Northeast China Plain [3] and the North China Plain [4] (ranging from the north latitude of
30◦ to 48◦). Soybean breeders must develop early-maturing, standard, and late-maturing
varieties for planting at different latitudes to ensure that soybean plants fully utilize solar
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radiation. Therefore, timely and accurate monitoring of soybean breeding line maturity
can facilitate soybean breeding decision-making and agricultural management [5–8].

Traditional methods for measuring field breeding line maturity are time-consuming
and labor-intensive [7]. Meanwhile, the expertise and bias of the investigators can affect the
accuracy of field surveys. Breeding fields have thousands of breeding lines with different
maturation times. Manual surveys cannot quickly provide high-frequency breeding line
maturity information to meet harvesting and yield measurement scheduling requirements.
Unmanned aerial vehicle (UAV) remote sensing technology can be used to collect high-
resolution crop canopy images and has thus been widely used in precision agricultural crop
trait monitoring [9–12]. Compared with satellite and airborne remote sensing technologies,
UAV remote sensing technology is relatively inexpensive and flexible in its operation, and
it requires less space for landing and takeoff [13]. More importantly, the digital images
obtained by low-altitude UAVs have a high ground spatial resolution (centimeter-scale
or higher); thus, they contain rich crop-canopy surface information for crop phenotypic
research [14,15]. In recent years, UAV remote sensing technology has been widely used
to collect crop trait information [9–12,16,17]. UAVs equipped with high-definition digital
cameras can acquire soybean canopy ultrahigh ground spatial resolution digital images over
a field scale [14,15]. Many UAV-based methods have been proposed for monitoring various
types of crop trait information, including the leaf area index (LAI) [18], leaf chlorophyll
content [18–21], biomass [15,22], and crop height [23].

Machine learning has been successfully applied in several areas, such as image clas-
sification, target recognition, and language translation [24–26]. In recent years, machine
learning techniques have been widely used to recognize various crop traits based on remote
sensing images [27]. Gniewko et al. [28] used an artificial neural network (ANN), growing
degree days, and total precipitation to estimate soybean yields. Letícia et al. [29] conducted
a study to identify nematode damage to soybeans through the use of UAV remote sensing
and a random forest (RF) model. The results obtained by Eugenio et al. [30] and Paulo
et al. [31] indicated that machine learning techniques are efficient and flexible for remote
sensing monitoring of soybean yields. Abdelbaki et al. [32] conducted a study to predict
the soybean LAI and fractional vegetation cover (FVC) based on the RF model and UAV
remote sensing. Compared with traditional machine learning methods (e.g., SVM and
RF), deep learning methods such as long short-term memory (LSTM) [33,34], deep con-
volutional neural networks (CNNs) [26,35], and transformers [14] have been applied to
image recognition, medical image analysis, climate change, and Weiqi game analysis, where
they can provide results with similar or even higher precision than human experts. Deep
learning uses multiple layers to extract higher-level features from the raw input. In recent
years, deep learning techniques have been widely used to recognize various crop traits in
remote sensing images, e.g., in leaf disease identification, weed identification, and crop trait
recognition [1,26,33–37]. Wang et al. [34] developed an LSTM model by integrating MODIS
LAI data to predict crop yields in China. Khan et al. [37] used a YOLOv4 model to identify
apple leaf diseases in digital images captured by mobile phones. Zhang et al. [26] used
a YOLOv4 model to identify weeds in digital photos of a peanut field. Khalied et al. [38]
proposed a model based on MobileNetV2 for fruit identification and classification. Yonis
et al. [39] proposed a CNN model adopting the VGG16 architecture for seed identifica-
tion and classification. Notably, most of these widely used networks (e.g., YOLOv4 [40],
ResNet50 [41], MobileNet [42], VGG16 [39], and InceptionResNetV2 [43]) did not take full
advantage of shallow features. Shallow features derived from the shallow layers of CNNs
are rich in image details, which are generally used in areas such as fine texture detection or
small target detection [44,45]. Fusing the deep and shallow features of CNNs may improve
performance in soybean maturity classification [44–46].

The objective of this work was to monitor soybean maturity using UAV remote sensing
and deep learning. We designed a new convolutional neural network architecture (DS-
SoybeanNet) to extract and utilize both shallow and deep image features to improve
the performance of UAV-based soybean maturity information monitoring. We used a
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high-definition digital camera on board a UAV to collect high-definition soybean canopy
digital images from two soybean breeding fields. We compared the UAV-based soybean
maturity information monitoring performances of conventional machine learning methods
(support vector machine (SVM) and random forest (RF)), current deep learning methods
(InceptionResNetV2, MobileNetV2, and ResNet50), and our proposed DS-SoybeanNet
method. Our results indicate that the proposed DS-SoybeanNet method can extract both
shallow and deep image feature information and can realize high-performance soybean
maturity classification.

2. Materials
2.1. Study Area

The study area was located at the Shengfeng Experimental Station (E: 116◦22′10′′–
116◦22′20′′, N: 35◦25′50′′–35◦26′20′′, Figure 1) of the National Center for Soybean Improve-
ment, Jiaxiang County, Jining City, Shandong Province, China. Jiaxiang County is situated
on the North China Plain, with a warm continental monsoon climate, concentrated pre-
cipitation, and an average annual sunshine duration of 2405.2 h. The average annual
temperature is 13.9 ◦C.
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Figure 1. Study area (a) and experimental soybean field (b).

2.2. UAV Flights and Soybean Canopy Image Collection

We used a high-definition digital camera on board an eight-rotor electric UAV to
collect high-resolution soybean canopy remote sensing images (Table 1). In the soybean
breeding experimental field, the size of each planting area was approximately 2.5 m × 5 m.
As shown in Figure 1, we selected two independent soybean planting fields (fields F1 and
F2) in the study area to obtain soybean canopy digital images and maturity information.

Table 1. Parameters of the UAV and digital camera used in this study.

UAV Parameter Camera Parameter

UAV name DJI S1000 Camera name SONY DSC-QX100
Flight height Approximately 50 m Image size 5472 × 3648
Flight speed Approximately 8 m/s Image dpi 350
Flight time >20 min Aperture f/11

Exposure 1/1250 s
ISO ISO-1600

Focal length 10 mm
Channels Red, green, blue

Ground spatial resolution 0.016 m
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For field F1, we conducted five UAV flights (29 July, 13 August, 31 August, 17 Septem-
ber, and 28 September 2015). A total of 2116 soybean canopy digital images and their
maturity information were obtained, which were used to calibrate the SoybeanNet model.
For field F2, we made only one observation on 30 September, 2015. There were immature,
near-mature, mature, and harvested soybean breeding lines in field F2 on 30 September.
A total of 546 planting areas were set up in field F2 for the mapping and independent
evaluation of the DS-SoybeanNet model.

The soybean image collection and image stitching process mainly included the follow-
ing three steps:

(1) Before the UAV took off, we set the flight route information according to the field size;
the heading and lateral overlap were set to 80%. Table 1 shows the digital camera
exposure parameters.

(2) During the UAV flight, the soybean canopy images and corresponding position and
orientation system (POS) information were collected using the digital camera, inertial
measurement unit, and global positioning system device on board the UAV.

(3) After the UAV flight, we imported the digital images and POS information into
PhotoScan software to stitch together the high-definition digital images collected by
the UAV. After the image stitching process, five soybean canopy digital orthophoto
maps (ground spatial resolution (GSD): 0.016 m) for field F1 and one soybean canopy
digital orthophoto map (GSD: 0.016 m) for field F2 were acquired.

2.3. Soybean Canopy Image Labeling

In this study, soybean maturity information was manually labeled. The labeling
method was based on the standards of soybean harvesting. The labeling method is de-
scribed in Table 2. For workers to customize schedules for harvesting soybean planting
plots, four categories were used: immature (L0), near-mature (L1), mature (L2), and har-
vested (L3). L2 plots have the highest harvesting priority and need to be harvested as soon
as possible, L1 plots have a high priority because the soybean will mature in less than a
week, L0 and L3 plots have a lower priority because L0 plots generally take longer to grow,
and no outdoor work is required for L3 plots.

Table 2. Standards used for labeling the soybean plots.

Label Priority Description

L0 Immature Low All upper canopy leaves are green or there are a
few yellow leaves.

L1 Near-mature High Approximately half of the upper canopy leaves
are yellow.

L2 Mature Highest The upper leaves of the canopy are yellow but
have yet to be harvested.

L3 Harvested Low The soybean planting area has been harvested.

Since different soybean breeding lines have different maturation times, the numbers
of images corresponding to the four labels varied between the two fields. Sixty percent of
the images of each type in the dataset were randomly chosen to train the model, and the
remaining 40% were used to evaluate the model’s accuracy. Table 3 shows the numbers of
samples used to train and validate the DS-SoybeanNet model. Figure 2 shows the soybean
images used for model calibration and validation.
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Table 3. Numbers of soybean images for model calibration and validation.

Label Training Dataset
(Field F1)

Validation Dataset
(Field F1)

Independent Validation
Dataset (Field F2)

L0 542 318 64
L1 257 163 219
L2 70 52 198
L3 400 314 65

Total 1269 847 546

Enhancement 25,380 16,940 -Agriculture 2023, 12, x FOR PEER REVIEW 5 of 22 
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2.4. Data Enhancement

In this study, we produced a DOM for the entire area by mosaicking together the
digital images collected during each UAV flight. Since an orthoimage has a uniform scale,
the ground spatial resolutions and solar angles were the main differences between the five
DOMs. We used image rotation (four rotation angles: 0◦ (i.e., the original image), 90◦, 180◦,
and 270◦) and scaling (four scaling factors: 1.0 (i.e., the original image), 1.2, 1.5, 1.8, and 2.0)
to enhance the soybean canopy image dataset collected from field F1. Image rotation and
magnification helped us to obtain soybean canopy images with different resolutions and
angles; in addition, they helped prevent overfitting of the model due to the small number
of samples collected in the field.
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After data enhancement, the number of original soybean canopy images obtained
from field F1 was increased by 20 times. The number of independent validation datasets
obtained from field F2 was not increased. In this study we used the Python open-cv and
NumPy libraries to extract, rotate, and magnify the soybean canopy images.

3. Methods
3.1. Proposed DS-SoybeanNet

CNNs were originally proposed based on the receptive field mechanism in biology
and they are a widely used deep learning technology [47]. CNNs are designed to process
images with a lattice-like structure. The multilayer convolution, weight sharing, and
rotational-shift invariance of CNNs make them effective in image classification and feature
recognition. The deep and complex features extracted by CNNs are often used to effectively
describe differences between different image categories and can be used to quickly and
accurately complete classification tasks. Currently, widely used networks (e.g., ResNet50
and MobileNetV2) ignore shallow image feature information. We designed a network
structure (Figure 3) that considers both shallow and deep image features to enhance the
model’s generalization ability. The advantage of DS-SoybeanNet is that the shallow and
deep features are linked together by means of a concatenation module. Consequently, DS-
SoybeanNet can extract and utilize both shallow and deep image features to improve the
accuracy of soybean maturity information classifications. Figure 3 shows the architecture of
DS-SoybeanNet. DS-SoybeanNet contains five convolutional layers, five flattening modules,
one concatenation module, and four fully connected layers. The layers are described as
follows:
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(1) Input layer
The input data were collected via UAV remote sensing technology in the form of

soybean canopy orthophotos and were then manually labeled and cropped to produce
sample data. The sample size was 108 × 108 × 3, and the sample data were divided into
four types: immature, near-mature, mature, and harvested.

(2) Convolutional and pooling layers
The purpose of the convolution operation was to extract the different features of the

input images. DS-SoybeanNet was designed with five convolutional layers; each convolu-
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tional layer was combined with the ReLU activation function to achieve delinearization.
The pooling layers can reduce the dimensions of the feature maps by summarizing the
presence of features in patches of the feature map.

(3) Flattening and concatenation layers
A flattening layer can reshape the feature maps into the dimensions required for the

subsequent layers. A concatenation layer concatenates inputs along a specified dimension.
(4) Fully connected layers and output layer
Four fully connected layers were designed, and dropout layers were attached to the

first three layers to prevent overfitting and improve model generalization. The output of
the model was soybean maturity information derived from the input images.

3.2. Transfer Learning Based on InceptionResNetV2, MobileNetV2, and ResNet50

Transfer learning is a strategy for solving similar or related tasks using existing
methods and data. Many deep learning networks show effective performance in im-
age classification and target recognition from natural images (e.g., InceptionResNetV2 [43],
ResNet50 [41], and MobileNetV2 [42]). Using a pretrained model to extract the features of
remote sensing images can solve, to a certain extent, the problems involved with training
a network for remote sensing image scene classification when there is a lack of training
data. In this study, we used InceptionResNetV2, MobileNetV2, and ResNet50 as the pre-
trained deep learning models for transfer learning and performance comparisons with the
proposed DS-SoybeanNet model.

(1) ResNet50: The ResNet50 network contains 49 convolutional layers and a fully con-
nected layer. The core CNN components are the convolutional filter and the pooling
layer. ResNet50 is a CNN derivative with a core component skip-connection to cir-
cumvent the gradient disappearance problem. The ResNet structure can accelerate
training and improve performance (preventing gradient dispersion).

(2) InceptionResNetV2: The Inception module can obtain sparse or nonsparse features in
the same layer. InceptionResNetV2 performs very well, but compared with ResNet,
InceptionResNetV2 has a more complex network structure.

(3) MobileNetV2: MobileNetV2 is a lightweight CNN model proposed by Google for
embedded devices, such as mobile phones, with a focus on optimizing latency while
considering the model’s size. MobileNetV2 can effectively balance latency and accu-
racy.

Transfer learning requires a low learning rate for retraining because the feature extrac-
tion module of the model already has some ability to extract image feature information
after pretraining. An ideal learning rate can promote model convergence, whereas an
unsuitable rate can cause training oscillations or even directly lead to the “explosion” of
the loss value of the objective function. In addition to transfer learning methods based on
InceptionResNetV2, MobileNetV2, and ResNet50, we also tested the performance of the
AlexNet [48] and VGG16 [38] models to monitor soybean maturity.

3.3. SVM and RF

We also compared the soybean maturity information classification accuracy of our
proposed DS-SoybeanNet with those of conventional machine learning models (SVM and
RF). SVM is a generalized linear classifier that performs binary data classification in super-
vised learning [49]. Its decision boundary is the maximum marginal hyperplane solved
for the learned samples, which reduces the classification problem to a convex quadratic
programming problem. SVM has a low composition risk, its training is challenging to
implement on large samples, and it is not ideal for solving multiclassification problems. RF
is based on an integrated learning strategy, which combines multiple decision trees [50].
These decision trees are independent and unrelated to each other. Random forest uses the
bagging strategy and repeated sampling to generate multiple trees. Under the bagging
and bootstrap aggregation strategy, a subset of the samples are randomly selected from the
dataset for training, and voting is conducted to obtain the average value as the resulting
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output. This strategy significantly avoids incorrect sample data, and thus shows improved
accuracy.

3.4. Accuracy Evaluation

Figure 4 shows the experimental methodology used in this work. The canopy images
of field F1 were used to calibrate and validate the models, whereas all canopy images of
field F2 were used to validate the models.
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The confusion matrix is a widely used tool for model accuracy evaluations. Table 4
shows the confusion matrix for the binary classification problem. Accuracy and recall can
be obtained based on the confusion matrix. Generally, a higher accuracy and recall indicate
a higher classification accuracy.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Recall =
TP

TP + FN
(2)
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Table 4. Confusion matrix.

Type Predicted condition

A
ct

ua
l

co
nd

it
io

n Label Positive (P) Negative (N)
Positive (T) True Positive (TP) False Negative (FN)

Negative (N) False Positive (FP) True Negative (TN)

TP, TN, FP, and FN represent the true-positive, true-negative, false-positive, and false-
negative categories, respectively, in the confusion matrix (Table 4). Confusion matrices are
not limited to binary classification but can also be used for multiclass classification. In this
study, we used the confusion matrix, accuracy, and recall to evaluate the soybean maturity
classification accuracy of the proposed DS-SoybeanNet model.

4. Results and Discussion
4.1. Model Calibration and Validation Based on Field F1

We used the calibration dataset of field F1 to train the proposed DS-SoybeanNet,
AlexNet, VGG16, InceptionResNetV2, MobileNetV2, ResNet50, SVM, and RF models. Each
model was trained and validated three times, and the model with the highest performance
was saved. The learning rates were set to 0.0005, 0.0001, and 0.00001 for the transfer learning
models (InceptionResNetV2, MobileNetV2, and ResNet50), and the number of epochs was
set to 100. For DS-SoybeanNet, we analyzed the model accuracy with different convolution
window sizes.

4.1.1. Validation of AlexNet, VGG16, SVM, and RF

We tested the SVM and RF models for monitoring soybean breeding line maturity
(Table 5) based on the validation dataset from field F1. The L0, L1, and L3 classification
recall values were higher than 99% for the traditional machine learning models (SVM and
RF). The classification accuracies of SVM and RF were 92.31% and 94.23%, respectively. We
also tested the performance of the AlexNet and VGG16 models (Table 5). The performances
of AlexNet (99.44%) and VGG16 (97.99%) were higher than those of SVM (92.31%) and RF
(94.23%).

Table 5. Classification results of AlexNet, VGG16, SVM, and RF.

Label SVM RF AlexNet VGG16

L0 99.69% 99.06% 99.69% 98.74%
L1 100% 100% 99.39% 100%
L2 90.38% 90.38% 98.08% 84.62%
L3 99.04% 99.36% 99.36% 98.41%

Accuracy 92.31% 94.23% 99.44% * 97.99%
Note: * indicates the highest accuracy.

4.1.2. Validation of Transfer Learning Based on InceptionResNetV2, MobileNetV2, and
ResNet50

We also tested the performance of the three deep learning models using three learning
rates. Table 6 shows the accuracies of the models using different learning rates. The
performances of the three deep learning models (InceptionResNetV2, MobileNetV2, and
ResNet50) were similar when using different learning rates. Our results indicate that
the soybean maturity classification accuracy of traditional machine learning models (RF:
94.23%; SVM: 92.31%) was lower than that of InceptionResNetV2, MobileNetV2, and
ResNet50.

There were notable differences in recall among the four labels. For example, the L2
classification recall of InceptionResNetV2 was much lower than those of L0, L1, and L3
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when the learning rate was 0.0005. The same was observed for MobileNetV2 and ResNet50,
which had L2 classification recalls of 69.23% and 88.46%, respectively.

Table 6. Classification results of transfer learning based on InceptionResNetV2, MobileNetV2, and
ResNet50.

Label
InceptionResNetV2 MobileNetV2 ResNet50

Rate 1 Rate 2 Rate 3 Rate 1 Rate 2 Rate 3 Rate 1 Rate 2 Rate 3

L0 98.09% 100% 99.69% 100% 100% 99.69% 99.69% 100% 99.69%
L1 96.93% 100% 98.16% 95.09% 96.32% 92.02% 100% 96.93% 98.16%
L2 82.69% 98.08% 98.08% 69.23% 84.62% 82.69% 88.46% 96.15% 94.23%
L3 99.36% 98.73% 99.04% 99.36% 97.77% 97.77% 99.04% 98.73% 99.36%

Accuracy 97.41% 99.49% 99.09% 96.93% 97.52% 96.46% 98.93% 98.77% 98.97%

Note: Rate 1 = 0.0005; Rate 2 = 0.0001; Rate 3 = 0.00001.

4.1.3. Validation of the Proposed DS-SoybeanNet Model

We tested the proposed DS-SoybeanNet model in the monitoring of soybean breeding
line maturity. Table 7 shows the classification results of the DS-SoybeanNet model with the
convolution kernel size set to 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, 16 × 16, and 21 × 21. The
results indicate that there was little difference in performance among the seven convolution
kernel sizes (with classification accuracies ranging from 97.52% to 99.19%). The results
suggest that the model had the best soybean maturity classification accuracy when the
convolution kernel size was set to 5 × 5 (99.17%) or 7 × 7 (99.19%). Figure 5 shows the
training accuracy and loss curves of the DS-SoybeanNet with kernel sizes of 5 × 5 and
7 × 7. These results indicate that the model reached convergence at about 40 epochs.
Training the DS-SoybeanNet (5 × 5) for about 100 epochs could take about 40 min and
5 s. Tables A1 and A2 show the model architecture and parameter information of DS-
SoybeanNet with 5 × 5 and 7 × 7 kernels.

Table 7. Classification results of the proposed DS-SoybeanNet.

Label
DS-SoybeanNet

3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 16 × 16 21 × 21

Recall

L0 100% 100% 100% 100% 100% 100% 100%
L1 96.93% 100% 100% 100% 99.39% 99.39% 99.39%
L2 92.31% 90.38% 90.38% 78.85% 88.46% 80.77% 75.00%
L3 99.36% 99.36% 99.68% 99.36% 99.68% 96.50% 97.77%

Accuracy 98.70% 99.17% * 99.19% * 98.47% 99.06% 97.40% 97.52%

Note: * indicates the highest accuracy.
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Figure 5. Training accuracy (a) and loss (b) of the DS-SoybeanNet with kernel sizes of 5 × 5 and
7 × 7.
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4.2. Performance Comparison Based on Field F2

We used the 546 images from field F2 to test the performance of MobileNetV2, Incep-
tionResNetV2, ResNet50, SVM, RF, and the proposed DS-SoybeanNet model in monitoring
soybean maturity. Table 8 shows the confusion matrices of the soybean maturity classi-
fications of the eight models. Table 9 shows the classification results of the eight models
using the data from field F2. Our results (Tables 8 and 9) indicated that the proposed
DS-SoybeanNet model exhibited a higher classification accuracy than the other machine
learning models.

Table 8. Confusion matrices of MobileNetV2 (a), InceptionResNetV2 (b), ResNet50 (c), SVM (d), RF
(e), DS-SoybeanNet with kernel sizes of 5 × 5 (f) and 7 × 7 (g), AlexNet (h), and VGG16 (i).
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Table 9. Classification results of eight models from field F2.

Model Rank
Precision

Accuracy
L0 L1 L2 L3

DS-SoybeanNet (5 × 5)
1

92.19% 84.47% 86.36% 86.15% 86.26%
DS-SoybeanNet (7 × 7) 92.19% 81.74% 85.35% 81.54% 84.25%

VGG16 2 92.19% 77.17% 82.32% 89.23% 82.23%
AlexNet 3 79.37% 43.89% 96.95% 92.31% 72.89%

ResNet50 4 71.87% 44.29% 96.46% 92.31% 72.16%
RF 5 100% 42.92% 69.19% 95.38% 65.38%

SVM 6 100% 54.34% 51.52% 93.85% 63.37%
InceptionResNetV2 7 60.93% 8.22% 97.47% 84.62% 55.86%

MobileNetV2 8 81.25% 0% 39.53% 98.46% 52.75%

The conventional machine learning models (SVM and RF) exhibited the highest classi-
fication recall (100%) in the classification of immature soybeans (L0) (see Table 9). AlexNet
(96.95%) showed the highest classification recall for mature soybeans (L2). As shown in
Tables 8 and 9, the conventional machine learning models (SVM and RF) and deep learning
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models (MobileNetV2, InceptionResNetV2, and ResNet50) showed lower recalls for near-
mature soybeans (L1), which led to lower overall classification accuracies for these models.
DS-SoybeanNet (84.47%) had the highest classification recall for near-mature soybeans (L1)
(see Table 9).

As shown in Table 9, the ResNet50 model exhibited a high classification accuracy of
72.16%. The RF (65.38%) and SVM (63.37%) models had similar classification accuracies.
The soybean classification accuracies of InceptionResNetV2 (55.86%) and MobileNetV2
(52.75%) were lower than those of the other five models. The accuracies of DS-SoybeanNet
based on 5 × 5 and 7 × 7 convolution kernels, namely, 86.26% and 84.25%, respectively,
were notably higher than those of the other models.

Note that the eight models’ performance decreased when using the field F2 dataset
to test the models (Tables 5–7 and 9). As shown in Table 9, the top 3 models were DS-
SoybeanNet, AlexNet, and VGG16 when monitoring soybean maturity using the field
F2 dataset. Recently, the AlexNet [48] and VGG16 [39] models have been used to detect
crop maturity by many researchers. Our results show that the new DS-SoybeanNet model
performed better than the AlexNet and VGG16 models in the classification of immature (L0)
and near-mature soybeans (L1). For the field F1 dataset, the recall of L0 for DS-SoybeanNet
was 100%, which is higher than that of AlexNet (99.69%) and VGG16 (98.74%). For the field
F2 dataset, the recall of L0 and L1 for DS-SoybeanNet was 92.19% and 84.47%, which was
notably higher than that of the AlexNet (L0: 79.37%, L1: 43.89%) model.

To further evaluate the fusion of deep and shallow CNN features and to explore the
efficiency of the proposed DS-SoybeanNet model, we set up three ablation experiments for
DS-SoybeanNet, as described below. Figure 6 shows the architectures of the CNNs used for
experiments 2 and 3. Each model was trained and validated three times, and the model
with the highest performance was saved.

• Experiment 1. DS-SoybeanNet (Figure 3);
• Experiment 2. DS-SoybeanNet with only shallow image features (Figure 6a); and
• Experiment 3. DS-SoybeanNet with only deep image features (Figure 6b);

Our results (Table 10) indicate that the soybean maturity classification accuracy in
experiment 2 (only shallow image features) and experiment 3 (only deep image features)
was lower than that in experiment 1. This further proved that fusing deep and shallow
CNN features [44–46] may improve the performance of the model in image classification
tasks.

4.3. Soybean Maturity Mapping

For soybean maturity mapping, the following three steps were carried out:

(a) A soybean canopy DOM of field F2 was obtained after the UAV flight and the image
stitching process. Then, all soybean breeding line plots (26 rows and 21 columns)
were manually labeled, and the soybean plot image coordinates (plot center) were
recorded.

(b) The soybean canopy images (108 × 108 × 3) were extracted automatically using the
image coordinates and soybean canopy DOM using a Python script. Then, we used
DS-SoybeanNet to classify these soybean canopy images.

(c) We then mapped the soybean maturity based on the soybean maturity information
and soybean plot image coordinates.

Figure 7 shows a true-color RGB image and the maturity maps calculated for field
F2 using DS-SoybeanNet with 5 × 5 and 7 × 7 convolution kernels. Our results indicate
that the estimated soybean maturity information for field F2 had a high accuracy. The
soybean maturity information obtained from the DS-SoybeanNet model with 5 × 5 and
7 × 7 convolution kernels was similar.
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Agriculture 2023, 13, 110 14 of 21

Agriculture 2023, 12, x FOR PEER REVIEW 14 of 22 
 

 

(b)  

Figure 6. Architecture of CNNs used for experiments 2 (a) and 3 (b). 

4.3. Soybean Maturity Mapping 
For soybean maturity mapping, the following three steps were carried out: 

(a) A soybean canopy DOM of field F2 was obtained after the UAV flight and the image 
stitching process. Then, all soybean breeding line plots (26 rows and 21 columns) 
were manually labeled, and the soybean plot image coordinates (plot center) were 
recorded. 

(b) The soybean canopy images (108 × 108 × 3) were extracted automatically using the 
image coordinates and soybean canopy DOM using a Python script. Then, we used 
DS-SoybeanNet to classify these soybean canopy images. 

(c) We then mapped the soybean maturity based on the soybean maturity information 
and soybean plot image coordinates. 
Figure 7 shows a true-color RGB image and the maturity maps calculated for field F2 

using DS-SoybeanNet with 5 × 5 and 7 × 7 convolution kernels. Our results indicate that 
the estimated soybean maturity information for field F2 had a high accuracy. The soybean 
maturity information obtained from the DS-SoybeanNet model with 5 × 5 and 7 × 7 con-
volution kernels was similar. 

(a)  

Agriculture 2023, 12, x FOR PEER REVIEW 15 of 22 
 

 

(b)  

(c)  

 
Figure 7. Maturity maps. (a) RGB true-color image; (b) DS-SoybeanNet (5 × 5); and (c) DS-Soy-
beanNet (7 × 7). Note: The red rectangle indicates the soybean plot region. 

4.4. Advantages and Disadvantages of UAV + DS-SoybeanNet 
As soybeans mature, the leaf chlorophyll level gradually decreases, contributing to a 

slow change in the leaves’ color from green to yellow [51,52]. Crop leaf chlorophyll vari-
ation is asynchronous among layers of leaves [52]. For example, leaves in the top layer of 
a soybean canopy tend to have a younger leaf age and thus turn yellow later than the 
leaves in the bottom layer. Consequently, green and yellow leaves appear in the soybean 
canopy when the soybeans are nearly mature (Figure 2). Breeding fields commonly have 
thousands of breeding lines with different maturation times. Thus, timely monitoring of 
soybean breeding line maturity is crucial for soybean harvesting management and yield 
measurements [5–8]. UAV remote sensing technology can be utilized to collect high-reso-
lution crop canopy images and has been widely used in precision agricultural crop trait 
monitoring [14,15]. Many studies have evaluated the crop parameter monitoring perfor-
mance of digital cameras and multispectral sensors on board lightweight UAVs [17–19]. 
In our study, we attempted to evaluate the potential of using UAV remote sensing to mon-
itor soybean breeding line maturity. We developed DS-SoybeanNet, which can extract 
and utilize both shallow and deep image features, and which thus helps to provide soy-
bean breeding line maturity monitoring that is more robust than that offered by 

Figure 7. Maturity maps. (a) RGB true-color image; (b) DS-SoybeanNet (5 × 5); and (c) DS-
SoybeanNet (7 × 7). Note: The red rectangle indicates the soybean plot region.



Agriculture 2023, 13, 110 15 of 21

4.4. Advantages and Disadvantages of UAV + DS-SoybeanNet

As soybeans mature, the leaf chlorophyll level gradually decreases, contributing to a
slow change in the leaves’ color from green to yellow [51,52]. Crop leaf chlorophyll varia-
tion is asynchronous among layers of leaves [52]. For example, leaves in the top layer of a
soybean canopy tend to have a younger leaf age and thus turn yellow later than the leaves
in the bottom layer. Consequently, green and yellow leaves appear in the soybean canopy
when the soybeans are nearly mature (Figure 2). Breeding fields commonly have thousands
of breeding lines with different maturation times. Thus, timely monitoring of soybean
breeding line maturity is crucial for soybean harvesting management and yield measure-
ments [5–8]. UAV remote sensing technology can be utilized to collect high-resolution
crop canopy images and has been widely used in precision agricultural crop trait monitor-
ing [14,15]. Many studies have evaluated the crop parameter monitoring performance of
digital cameras and multispectral sensors on board lightweight UAVs [17–19]. In our study,
we attempted to evaluate the potential of using UAV remote sensing to monitor soybean
breeding line maturity. We developed DS-SoybeanNet, which can extract and utilize both
shallow and deep image features, and which thus helps to provide soybean breeding line
maturity monitoring that is more robust than that offered by conventional machine learning
methods. DS-SoybeanNet achieved the best accuracy of 86.26% (Table A1), which was
notably higher than those of the conventional machine learning models (SVM and RF).
However, DS-SoybeanNet has various disadvantages compared with conventional machine
learning methods, such as its long elapsed time and large size (Table 11). In machine learn-
ing, CNNs have a more complex network structure and higher computational complexity
than conventional machine learning models with larger model sizes.

Table 11. Models’ elapsed times and sizes.

Model Time (s)/1000 Samples Size

RF 0.003 24.1 KB
SVM 0.007 7.70 KB

MobileNetV2 6.607 53.3 MB
DS-SoybeanNet (5 × 5) 11.770 2616 MB

AlexNet 19.011 151 MB
DS-SoybeanNet (7 × 7) 22.955 2616 MB

ResNet50 36.099 306 MB
InceptionResNetV2 44.328 653 MB

VGG16 67.080 623 MB

Table 11 shows the time required to process 1000 samples using each model and the
models’ sizes. The computation times of the CNN models (ranging from 6.607 s to 67.080 s)
were notably higher than those of the conventional machine learning models, SVM and
RF (0.003 s and 0.007 s). In addition, a high-performance device is required to calibrate
CNN models. As shown in Table 11, the model sizes of DS-SoybeanNet, ResNet50, and
InceptionResNetV2 were more than 300 MB. The proposed DS-SoybeanNet model had
the largest size (2616 MB) compared to the other models. The DS-SoybeanNet model’s
large size may mean that it requires large storage when deployed on lightweight platforms
(e.g., Raspberry Pi) for stationary observations. Nevertheless, DS-SoybeanNet (5 × 5) had
approximately the same calculation speed as MobileNetV2 and a much higher monitoring
accuracy than the other deep learning models. Therefore, we consider DS-SoybeanNet a
fast and high-performance deep-learning tool for monitoring soybean maturity.

Many previous studies have used AlexNet, VGG16, Inception-V3, and VGG19 in
crop maturity classifications. Faisal et al. [53] compared the performance of pre-trained
VGG-19 (99.4%), Inception-V3 (99.4%), and NASNet (99.7%) in detecting fruit maturity.
Atif et al. [54] used AlexNet and VGG16 to classify the maturity levels of jujube fruits
(best: VGG16 = 99.17%). Sahil et al. [55] developed a method that used YOLOv3 to pin-
point the locations of tomatoes (94.67%) and used an AlexNet-like CNN model to classify
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their maturity levels (90.67%). In this work, we compared the results of conventional
machine learning models (SVM (92.31%) and RF (94.23%)) and six CNN machine learning
models (DS-SoybeanNet (99.19%), VGG16 (97.99%), AlexNet (99.44%), ResNet50 (98.97%),
InceptionResNetV2 (99.49%), and MobileNetV2 (97.52%)) in soybean maturity information
monitoring based on UAV remote sensing. The accuracy results reported in this study were
close to those of previous studies based on AlexNet, VGG16, Inception-V3, and VGG16.
Thus, our results further proved that deep learning is a good tool for crop maturity infor-
mation monitoring [48,53–56]. The combination of UAV remote sensing and deep learning
can be used for high-performance soybean maturity information monitoring. However,
our results indicate that selected machine learning models’ performance decreased when
using the field F2 dataset to test the models (Tables 5–7 and 9). We suspect that changes in
the UAV’s working environment—for example, varying sunlight intensity over time—led
to a direct decline in the models’ performance. This is perhaps not surprising because the
farmland environment is affected by varying cropland conditions (e.g., irrigation, wind).
Thus, future research should be focused on the factors influencing cropland images.

In this study, the performance obtained when using soybean canopy images captured
by the UAV’s remote sensing digital camera may have been limited by the varying sunlight
intensity over time. Since DS-SoybeanNet did not normalize the image differences due
to sunlight, a normalization module may improve its performance in soybean maturity
classification. Therefore, future studies need to develop a normalization module to weaken
the effect of the sun. Thus, more experiments with different varieties and regions of
soybeans are needed to improve the generalizability of the DS-SoybeanNet model. In this
study, the proposed DS-SoybeanNet was validated using only two breeding fields from a
single site; thus, further validation is required from additional fields and study sites.

5. Conclusions

In this study, we designed a network, namely, DS-SoybeanNet, to extract and utilize
both shallow and deep image features to improve the performance of UAV-based soybean
maturity information monitoring. We compared conventional machine learning methods
(SVM and RF), current deep learning methods (AlexNet, VGG16, InceptionResNetV2,
MobileNetV2, and ResNet50), and our proposed DS-SoybeanNet model in terms of their
soybean maturity classification accuracy. The results were as follows.

(1) The conventional machine learning methods (SVM and RF) had lower calculation
times than the deep learning methods (AlexNet, VGG16, InceptionResNetV2, Mo-
bileNetV2, and ResNet50) and our proposed DS-SoybeanNet model. For example, the
computation speed of RF was 0.03 s per 1000 images. However, the overall accuracies
of the conventional machine learning methods were notably lower than those of the
deep learning methods and the proposed DS-SoybeanNet model.

(2) The current deep learning methods were outperformed in terms of universality by the
DS-SoybeanNet model in the monitoring of soybean maturity. The overall accuracies
of MobileNetV2 for fields F1 and F2 were 97.52% and 52.75%, respectively.

(3) The proposed DS-SoybeanNet model was able to provide high-performance soybean
maturity classification results. Its computation speed was 11.770 s per 1000 images
and its overall accuracies for fields F1 and F2 were 99.19% and 86.26%, respectively.

(4) Furthermore, future studies are needed in order to develop a normalization module to
weaken the effect of the sun. Moreover, further validation is required using additional
fields and study sites.
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Appendix A

Figure A1 shows the attention regions of different models in the soybean canopy
images. Regarding interpretability, the top three models performed differently when
their attention regions were visualized by means of the Grad-CAM technique (Figure A1).
VGG16 models focused only on luxuriant leaves for all four categories (Figure A1). The
AlexNet model showed acceptable attention regions when dealing with L0 and L1 soybean
images, whereas it focused only on branches and leaves when analyzing L2 and L3 soy-
bean images (Figure A1). Compared with AlexNet and VGG16 models, DS-SoybeanNet
showed acceptable attention regions for the four categories (Figure A1). In most cases,
DS-SoybeanNet was able to differentiate among the soybean images accurately based on
the leaves, branches, and soil pixels, similarly to farm workers. Tables A1 and A2 show
the model architecture and parameter information of DS-SoybeanNet with 5 × 5 and
7 × 7 kernels.
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Table A1. Details of the proposed DS-SoybeanNet with 5 × 5 kernels.

Layer (Type) Output Shape Param Connected to

input_1 (Input Layer) [(None,108,108,3) 0
conv2d (Conv2D) (None,108,108,32) 2432 input_1 [0][0]

conv2d_1 (Conv2D) (None,108,108,16) 12816 conv2d [0][0]
max_pooling2d_1
(MaxPooling2D) (None,27,27,16) 0 conv2d_1 [0][0]

conv2d_2 (Conv2D) (None,27,27,32) 12832 max_pooling2d_1 [0][0]
conv2d_3 (Conv2D) (None,27,27,16) 12816 conv2d_2 [0][0]

max_pooling2d
(MaxPooling2D) (None,27,27,32) 0 conv2d [0][0]

max_pooling2d_2
(MaxPooling2D) (None,13,13,32) 0 conv2d_2 [0][0]

max_pooling2d_3
(MaxPooling2D) (None, 13,13,16) 0 conv2d_3 [0][0]

conv2d_4 (Conv2D) (None,27,27,16) 6416 conv2d_3 [0][0]
flatten (Flatten) (None,23328) 0 max_pooling2d [0][0]

flatten_1 (Flatten) (None,11664) 0 max_pooling2d_1 [0][0]
flatten_2 (Flatten) (None,5408) 0 max_pooling2d_2 [0][0]
flatten_3 (Flatten) (None,2704) 0 max_pooling2d_3 [0][0]
flatten_4 (Flatten) (None,11664) 0 conv2d_4 [0][0]

concatenate (Concatenate) (None,54768) 0

flatten [0][0]
flatten_1 [0][0]
flatten_2 [0][0]
flatten _3 [0][0]
flatten _4 [0][0]

dropout (Dropout) (None,54768) 0 concatenate [0][0]
dense (Dense) (None,4096) 224333824 dropout [0][0]

dropout_1 (Dropout) (None,4096) 0 dense [0][0]
dense_1 (Dense) (None,512) 4195328 dropout_1 [0][0]

dropout_2 (Dropout) (None,512) 0 dense_1 [0][0]
dense_2 (Dense) (None,4) 4100 dropout_2 [0][0]

Total params: 228,580,564
Trainable params: 228,580,564

Non-trainable params: 0



Agriculture 2023, 13, 110 19 of 21

Table A2. Details of the proposed DS-SoybeanNet with 7 × 7 kernels.

Layer (Type) Output Shape Param Connected to

input_1 (Input Layer) [(None,108,108,3) 0
conv2d (Conv2D) (None,108,108,32) 4736 input_1 [0][0]

conv2d_1 (Conv2D) (None,108,108,16) 25104 conv2d [0][0]
max_pooling2d_1
(MaxPooling2D) (None,27,27,16) 0 conv2d_1 [0][0]

conv2d_2 (Conv2D) (None,27,27,32) 25120 max_pooling2d_1 [0][0]
conv2d_3 (Conv2D) (None,27,27,16) 25104 conv2d_2 [0][0]

max_pooling2d
(MaxPooling2D) (None,27,27,32) 0 conv2d [0][0]

max_pooling2d_2
(MaxPooling2D) (None,13,13,32) 0 conv2d_2 [0][0]

max_pooling2d_3
(MaxPooling2D) (None, 13,13,16) 0 conv2d_3 [0][0]

conv2d_4 (Conv2D) (None,27,27,16) 12560 conv2d_3 [0][0]
flatten (Flatten) (None,23328) 0 max_pooling2d [0][0]

flatten_1 (Flatten) (None,11664) 0 max_pooling2d_1 [0][0]
flatten_2 (Flatten) (None,5408) 0 max_pooling2d_2 [0][0]
flatten_3 (Flatten) (None,2704) 0 max_pooling2d_3 [0][0]
flatten_4 (Flatten) (None,11664) 0 conv2d_4 [0][0]

concatenate (Concatenate) (None,54768) 0

flatten [0][0]
flatten_1 [0][0]
flatten_2 [0][0]
flatten _3 [0][0]
flatten _4 [0][0]

dropout (Dropout) (None,54768) 0 concatenate [0][0]
dense (Dense) (None,4096) 224333824 dropout [0][0]

dropout_1 (Dropout) (None,4096) 0 dense [0][0]
dense_1 (Dense) (None,512) 4195328 dropout_1 [0][0]

dropout_2 (Dropout) (None,512) 0 dense_1 [0][0]
dense_2 (Dense) (None,4) 4100 dropout_2 [0][0]

Total params: 228,625,876
Trainable params: 228,625,876

Non-trainable params: 0
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