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Abstract: Pea (Pisum sativum L.) is a legume valued mainly for its high seed protein content. The
protein content of pea is characterized by a high lysine content and low allergenicity. This has made
consumers appreciate peas increasingly in recent years, not only for their taste, but also for their
nutritional value. An important element of pea cultivation is the ability to predict protein content,
even before harvest. The aim of this research was to develop a linear and a non-linear model for
predicting the percentage of protein content in pea seeds and to perform a comparative analysis of
the effectiveness of these models. The analysis also focused on identifying the variables with the
greatest impact on protein content. The research included the method of machine learning (artificial
neural networks) and multiple linear regression (MLR). The input parameters of the models were
weather, agronomic and phytophenological data from 2016–2020. The predictive properties of the
models were verified using six ex-post forecast measures. The neural model (N1) outperformed the
multiple regression (RS) model. The N1 model had an RMS error magnitude of 0.838, while the RS
model obtained an average error value of 2.696. The MAPE error for the N1 and RS models was 2.721
and 8.852, respectively. The sensitivity analysis performed for the best neural network showed that
the independent variables most influencing the protein content of pea seeds were the soil abundance
of magnesium, potassium and phosphorus. The results presented in this work can be useful for the
study of pea crop management. In addition, they can help preserve the country’s protein security.

Keywords: artificial neural networks; multiple linear regression; protein prediction; pea; sensitivity
analysis; weather conditions

1. Introduction

In terms of cultivation, legumes are the world’s second largest crop after cereals. They
constitute about 30% of the world’s plant production [1]. The crop residues of these plants
are characterized by a positive organic matter (MO) balance, which makes them a very
good forecrop for many crops such as cereals, potatoes and beets. In the years with an
uneven distribution of precipitation (temperate climates) or a shortage of precipitation
(southern European climatic conditions), when there is a poor uptake of mineral nitrogen,
a particularly favorable after-effect of legumes is observed [2,3]. The decomposition of
Fabaceae crop residues in the soil provides available forms of nitrogen to both successor
plants and soil microorganisms.

This process contributes to the intensification of biological nitrogen sorption. The
interaction between the legume residues and MO mineralization determines the amount
of available N for the next plant [4]. The participation of legumes in crop rotation also
contributes to the reduction of weed, pest and disease populations [5]. When grown in
rotation with cereals, they counteract soil erosion and improve soil fertility [6] by changing
physical and chemical properties. A properly developed root system of legumes is formed
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through loosening the soil, which increases soil aeration and becomes a source of a large
amount of organic matter rich in nitrogen and other minerals [7]. A significant property
of this group of plants is the ability to fix atmospheric nitrogen as a result of symbiosis
with Rhizobium spp. bacteria. This trait plays an important role in argoecosystems and
sustainable crop production, which seeks to reduce the use of mineral fertilizers [8,9].
The symbiosis of legumes with papillary bacteria also reduces inputs and resources by
reducing the need for nitrogen fertilizers [10]. The importance of these plants is particularly
important in an era of high and volatile mineral fertilizer prices. In many European
countries, these fertilizers are periodically becoming a scarce commodity, so legumes are
an important element in countering the fertilizer crisis and fitting in with the ideas of
sustainable agriculture.

One of the most important plants in the Fabaceae family is the pea. More than half of
its world production is in Canada, Russia, the United States of America and India [11]. In
Poland, peas are the most widely grown legume right after yellow lupin. In 2022, the area of
pea cultivation in Poland was more than 105 thousand hectares. For example, the cultivation
of soybeans and beans in the same year amounted to 48.20 and 30.70 thousand hectares,
respectively. In 2022, peas accounted for 0.68% of the total area in the structure of national
sowings [12].

Peas are most valued for their high seed protein content, which can be as high as
31% [13,14]. Pea protein has high nutritional value due to its relatively high content of lysine,
an amino acid that limits the nutritional value of cereals. In addition, it is characterized by
low allergenicity [15,16]. Despite its significant and obvious advantages, the area under
cultivation for this crop is relatively low due to poor profitability as a result of biotic-abiotic
factors [17]. However, there is growing interest in plant-based proteins as a substitute
for animal-based proteins [18],. The reason for this phenomenon is greater awareness of
nutrition, environmental concerns and ethical issues [11]. Therefore, it can be assumed that
peas will become increasingly popular among farmers over the next few years, which will
be reflected in the increasing area under cultivation.

The demand for protein will continue to grow in the coming years due to the world’s
expanding human population [1]. This makes it likely that interest in legumes, including
peas as a valuable source of protein, will be greater than before. In addition, peas are a very
good component in feed production. As a protein-raw material with a satisfactory amino
acid composition, it is used in the feeding of slaughter, dairy and laying animals without
adversely affecting production and fattening performance [19]. For many years, efforts have
been made in European countries, including Poland, to increase the production and use
of domestic protein raw materials to replace, or at least supplement, expensive imported
post-extraction soybean meal. These measures are also aimed at preserving the country’s
protein security, as the feed market is largely dependent on imported protein raw materials.
Therefore, there is a risk (for now only theoretical) of a shortage of protein feed for animals,
and consequently a shortage of food for the population [20]. Therefore, the ability to
predict the protein content of pea seeds is very important for the possibility of ongoing
decision support, management of national protein resources and risk management [21].
However, prediction of crop quality traits is a very difficult task. During the growing
season, plants are exposed to a number of factors that limit both yield and quality, and
predicting many of these factors is often an impossible task [22]. The non-uniform course
of weather conditions, soil variability or pest pressure causes the growth and development
of agricultural crops to proceed differently in each growing season [23]. In addition, the
non-linear interaction between environmental factors and plant growth can result in a low-
precision predictive model with a large prediction error [24,25]. The large number of factors
influencing the quality of yield poses a significant difficulty in the selection of independent
variables. Therefore, the construction of predictive models should be supported by very
good knowledge of the research object [22]. This knowledge will allow the selection of
those input variables that significantly affect yield quality. Among the most commonly
used independent variables in the prediction of yield and its chemical and biochemical
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characteristics are weather data [26–29]. Average air temperature, total precipitation or
total sunshine provide valuable information on plant development conditions. Data on soil
mineral abundance, fertilizer application rates, and the course of plant phenological traits
are commonly used to build predictive models [30–32].

One effective method for yield quality prediction is machine learning, among which
artificial neural networks (ANNs) are of great interest [33–37]. The prototypes of ANNs are
the nerve cells that build the human brain, so the operation of artificial neural networks
is similar to that of the human brain [38,39]. Each neural network is made up of many
simultaneously working and jointly processing elements called neurons. Neurons, due to
their function, can be divided into three basic groups: input neurons (they are responsible
for inputting the signal into the network), information processing neurons and output
neurons (“producing” the results of the network to the outside world) [38,40]. Each of these
groups of neurons forms a separate layer, the function of which is the same as the function
of the elements from which it is built. Thus, the first is the input layer, which contains a
number of neurons equal to the number of independent variables. Its task is to separate
the input data into a number of neurons contained in the hidden layer. The hidden layer is
built from the n-th number of neurons, the number of which depends on the complexity
of the problem being solved by the network. In the structure of a neural network, there
can be a different number of hidden layers. The decision on how many hidden layers
to use is made by the network developer and is generally an arbitrary decision. The last
third layer usually contains only one neuron, responsible for transmitting the result. A
neural network, as a layered structure, works by connecting adjacent layers on an “each to
each” basis [36,41].

This paper presents the possibility of using ANN to predict the protein content of
pea seeds. An extensive analysis of the literature revealed a lack of scientific work of a
similar nature. There are no reports on the possibility of predicting the protein content of
peas under Polish weather and habitat conditions. In this study, three hypotheses are put
forward for verification: (i) artificial neural networks are an effective tool for predicting
the protein content of pea seeds 20 days before harvest; (ii) it is possible to create a model
predicting the protein content of pea seeds based on five-year field trials; and (iii) the ANN
model predicts the protein content of pea seeds with greater accuracy compared to the
MLR model.

2. Materials and Methods

Experimental data were obtained from a 5-year cycle of field experiments with peas
which were conducted in Poland. The results of the experiments were obtained from
the field books of the system of the Research Center for Cultivar Testing (COBORU) [42].
Among other things, this institution is engaged in research on distinctiveness, uniformity
and durability (DUS) of crop varieties. It is also within the scope of COBORU to conduct
field trials for cultivation and use value (VCU). Obtaining positive results from these ex-
periments allows a given variety to be included in the National Variety List. In addition,
COBORU supervises the legal protection of varieties entered in the National Register [43].
The field books were created based on data from the official results of experiments under
the Program of Registered Varietal Testing (PRVT; in Polish, PDO). PRVT is a system of
permanent or periodic testing on the economic value of crop species listed in the Na-
tional Register or included in the Community Catalogs of Agricultural/Vegetable Varieties
(CCA/CCV). PRVT covers both varietal and varietal-agronomic experiments [44].

Field experiments were conducted at the Stations and Experimental Plants for Va-
riety Testing of COBORU located in: Bezek (51◦12′6.722′′ N 23◦16′7.656′′ E), Głębokie
(52◦38′33.18′′ N 18◦26′16.26′′ E), Kawęczyn (52◦10′15.157′′ N 20◦20′49.328′′ E), Krzyżewo
(53◦1′33.535′′ N 22◦45′28.438′′ E), Pawłowice (50◦27′14.049′′ N 18◦29′28.912′′ E), Radostowo
(53◦59′20.566′′ N 18◦44′41.429′′ E) and Sulejów (51◦21′8.03′′ N 19◦52′7.517′′ E) (Figure 1).
These localities were chosen for their optimal conditions for pea cultivation. These loca-
tions are dominated by clay soils of class II-IIIb (polish classification). The experiments
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were conducted in accordance with COBORU methodology, which includes a number
of agrotechnical recommendations. All studies on selected pea varieties were conducted
on plots of 13.86 m2. The experiments were conducted in an arrangement with variety
groups for species in which different morphological types are studied (e.g., traditional
and self-terminating varieties, tall, medium-high and low varieties, etc.). In a system with
groups of varieties, first the place in repetitions is drawn or determined, and then the order
of varieties in groups. The number of repetitions for each variety in each year of the study
was 3. A model based on artificial neural networks (N1) and multiple linear regression
(RS) was developed for 11 general-purpose pea varieties: Arwena, Astronaute, Batuta,
Mecenas, Medyk, Mentor, Olympus, Spot, Starski, Tarchalska and Tytus. These varieties
are widely recommended for cultivation in Poland due to their relatively high yield levels
and relatively high resistance to biotic factors.

Agriculture 2023, 13, x FOR PEER REVIEW 4 of 23 
 

 

These localities were chosen for their optimal conditions for pea cultivation. These loca-
tions are dominated by clay soils of class II-IIIb (polish classification). The experiments 
were conducted in accordance with COBORU methodology, which includes a number of 
agrotechnical recommendations. All studies on selected pea varieties were conducted on 
plots of 13.86 m2. The experiments were conducted in an arrangement with variety groups 
for species in which different morphological types are studied (e.g., traditional and self-
terminating varieties, tall, medium-high and low varieties, etc.). In a system with groups 
of varieties, first the place in repetitions is drawn or determined, and then the order of 
varieties in groups. The number of repetitions for each variety in each year of the study 
was 3. A model based on artificial neural networks (N1) and multiple linear regression 
(RS) was developed for 11 general-purpose pea varieties: Arwena, Astronaute, Batuta, 
Mecenas, Medyk, Mentor, Olympus, Spot, Starski, Tarchalska and Tytus. These varieties 
are widely recommended for cultivation in Poland due to their relatively high yield levels 
and relatively high resistance to biotic factors. 

 
Figure 1. Location of field experiments conducted. 

2.1. Data for Model Construction 
Two categories of variables were used during the creation of the N1 and RS model. 

The first group was agronomic data, phytophenological data and results of protein con-
tent of pea seeds, all of which came from COBORU field books. The second category of 
variables was meteorological data, which came from a dataset of meteorological phenom-
ena and observations recorded at each COBORU Variety Testing Station and Department. 
Missing data, such as sunshine totals, were supplemented using historical data from me-
teorological stations of the Institute of Meteorology and Water Management–National Re-
search Institute. Measurements from meteorological stations that were located closest to 
the experimental facilities were used [25]. This information was obtained from a public 
archival database, available electronically [45]. 

2.2. Construction of the Database 
Nineteen independent variables were used to construct the N1 and RS models, as 

shown in Table 1. The dependent variable was the percentage protein content of pea seeds. 
Data from a total of 1155 plots were used to construct and verify the N1 and RS model. 
Each of the analyzed plots constituted one separate case for model construction. The in-
formation was grouped into two sets A and B. Set A contained data from 1040 plots and 
was used to build a neural and regression model. Set B, on the other hand, contained cases 

Figure 1. Location of field experiments conducted.

2.1. Data for Model Construction

Two categories of variables were used during the creation of the N1 and RS model.
The first group was agronomic data, phytophenological data and results of protein content
of pea seeds, all of which came from COBORU field books. The second category of variables
was meteorological data, which came from a dataset of meteorological phenomena and
observations recorded at each COBORU Variety Testing Station and Department. Missing
data, such as sunshine totals, were supplemented using historical data from meteorological
stations of the Institute of Meteorology and Water Management–National Research Institute.
Measurements from meteorological stations that were located closest to the experimental
facilities were used [25]. This information was obtained from a public archival database,
available electronically [45].

2.2. Construction of the Database

Nineteen independent variables were used to construct the N1 and RS models, as
shown in Table 1. The dependent variable was the percentage protein content of pea
seeds. Data from a total of 1155 plots were used to construct and verify the N1 and RS
model. Each of the analyzed plots constituted one separate case for model construction.
The information was grouped into two sets A and B. Set A contained data from 1040 plots
and was used to build a neural and regression model. Set B, on the other hand, contained
cases from 115 plots and was used to validate the models. Therefore, this set was not used
to build the neural network and regression model. It should be noted that the data of
set B was selected randomly. However, the determinant representing each case was the
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variety. The percentage of protein in the seeds was the dependent variable for the predictive
models created.

Table 1. Variables used to build the N1 and RS model.

Symbol Unit of Measure Variable Description Data Range

Independent Variables

RAIN mm Total rainfall from sowing date to 14 July 96.9–312.4
SUN h Total sunshine from sowing date to 14 July 630.5–1051.5

TEMP ◦C Average air temperature from sowing date to 14
July 11.0–17.5

N_F kg·ha−1 Total nitrogen from mineral fertilizers 10–90
P2O5_F kg·ha−1 Total phosphorus from mineral fertilizers 0–80
K2O_F kg·ha−1 Total potassium from mineral fertilizers 0–119
SOWI days Number of days from 1 January to sowing date 83–102

P_EMER days Number of days from 1 January to the beginning
of plant emergence 96–133

HAR days Number of days from 1 January to the date of
harvesting 184–221

FLOWE days Number of days from 1 January to the beginning
of flowering 126–169

INI_MA days Number of days from 1 January to onset of
maturity 167–211

TECH_M days Number of days from 1 January to technical
maturity 171–216

P_HIG cm Plant height 43–156
WEGW days Number of plant growing days 87–137

PH - Soil pH 5.5–7.5
P2O5_C Scale from 0 to 4 * P2O5 content in the soil 0–4
K2O_C Scale from 0 to 4 * K2O content in the soil 0–4
MGO_C Scale from 0 to 4 * MgO content in the soil 0–4

GEN feature coded 101 to
111 General variety of peas -

Dependent variable

PROT % Percentage of protein in pea seeds 18.56–29.22

* The scale from 0 to 4 refers to the abundance of macronutrients in the soil and is determined as follows: 0—very
low, 1—low, 2—medium, 3—high, 4—very high.

The construction of the ANN model was performed on the basis of the predicted
date for the calendar year, i.e., 14 July. Based on the analysis of data from all five years
of the study (2016–2020), it was shown that pea harvesting was most often performed on
3 August, and the latest on 10 August. The date of 14 July, which is the date of prediction, is
the dominant beginning of maturity of the analyzed varieties. This approach to predicting
the protein content of pea seeds makes it possible to make predictions 20 days before
harvest (based on the dominant harvest date) in the same calendar year.

2.3. Determination of Protein Content in Pea Seeds

Protein determination using the Kjeldahl method is a standard method for determining
proteins in plant raw materials [46]. It involves the conversion of protein nitrogen into
ammonium sulfate with concentrated sulfuric acid. In the first step, the ground and dried
sample is mineralized with sulfuric acid (VI) in the presence of K2SO4 and CuSO4 catalysts.
To the mineralized and cooled sample, 75 mL of distilled water and 2 of receiving solution
are added. The solution thus prepared is distilled for about 4 min. In the final step, the
resulting distillate is titrated with standard hydrochloric acid (0.1 mol·L−1) until a gray-
green color appears. The amount of hydrochloric acid used for titration is the basis for
calculating the total protein content of the sample [47].
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2.4. ANN Model Development

The construction of the N1 model was performed on the basis of the predicted date for
the calendar year, i.e., 14 July. Based on the analysis of data from all five years of the study
(2016–2020), it was shown that pea harvesting was most often performed on 3 August, and
the latest on 10 August. The date of 14 July, which is the date of prediction, is the dominant
beginning of maturity of the analyzed varieties. This approach to predicting the protein
content of pea seeds makes it possible to make predictions 20 days before harvest (based
on the dominant harvest date) in the same calendar year.

The choice of network type was made by repeatedly building neural networks using
an automatic network designer, as well as by reviewing the available literature [21,48–51]. A
total of 10,000 networks were tested, which allowed the selection of a multilayer perceptron
type network with the following architecture: MLP 19:19-32-1:1 (Figure 2). The selection
of the network architecture was guided using the size of the error of the validation, test
and learning sets, as well as key network quality parameters, which are shown in Table 2.
Achieving the smallest error values by these sets leads to an ANN with high prediction
accuracy [52]. An important element in the construction of the prediction model was the
division of set A (1040 fields) into three subsets: learning, test and validation. These subsets
consisted of 520, 260 and 260 cases (50%–25%–25%), respectively. The entire procedure was
performed in the Statistica v7.1 software (TIBCO Software Inc., Palo Alto, CA, USA).
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Table 2. Assessment of the abundance of soils in Poland.

Resources

Phosphorus,
mg

P2O5·kg−1

Soil

Potassium, mg K2O·kg−1 Soil Magnesium, mg MgO·kg−1 Soil

Soil Agronomic Category Soil Agronomic Category

Light Medium Heavy Light Medium Heavy

very low up to 50 up to 100 up to 105 up to 170 up to 80 up to 105 up to 120
low 51–80 101–160 106–170 171–260 81–135 106–160 121–220

average 81–115 161–275 171–310 261–350 136–200 161–265 221–330
high 116–185 276–380 311–420 351–510 201–285 266–330 331–460

very high >185 >380 >420 >510 >285 >330 >460

Due to the coding of the variable P2O5_C, K2O_C and MGO_C, Table 2 presents an
assessment of the abundance of Polish soils in phosphorus, potassium and magnesium.
Very low abundance of soils in these elements was not recorded in the localities where field
experiments were conducted.

2.5. MLR Model Development

Multiple linear regression (MLR) is a statistical tool for detecting interdependencies
between independent characteristics and the dependent variable. It makes it possible to
determine the strength and type of the detected dependence and to build a functional
model that makes it possible to forecast the direction of change in one characteristic on
the basis of others [53]. In addition, this method allows you to identify significant and
non-significant variables at a given level of probability. This knowledge is particularly
important in the further stages of modeling and allows you to identify those invariant
variables that do not affect the dependent variable [54]. The general regression formula is
shown in Equation (1).

Y = b0 + b1·X1 + b2·X2 + . . . + bp·Xp + ε, (1)

where: Y-dependent variable (explained variable), X1, X2 . . . Xp-independent variables
(explanatory variable), b0, b1, b2 . . . bp-equation parameters, ε-random component (rest of
the model).

In this study, a model developed using multiple linear regression (stepwise progres-
sive) was used to predict the percentage protein content of pea seeds. For its construction,
the independent variables shown in Table 1 were used. The model was built to compare
the effectiveness of the prediction of protein content in peas and was contrasted with a
nonlinear model (ANN).

The RS model, like N1, was created based on 1040 cases. The analysis continued
through 17 steps, and of the 19 explanatory variables, two of them (number of growing
days and number of days from the beginning of the year to emergence) were removed
using the model. 115 random observations (set B) were used to predict protein content.
Multivariate linear regression analysis was performed using Statistica v7.1 software, and
the results are presented graphically and in tabular form.

2.6. Verification of the N1 and RS Models

The obtained N1 and RS models were verified on the basis of measures of predictive
properties (Equations (2)–(7)). To calculate them, a set B (115 fields) was used on the basis
of which the difference between actual and predicted values was determined. This is
example 2 of an equation [22,55]:

RAE =

√√√√∑n
i=1(yi − y′ i)

2

∑n
i=1 (yi)

2 , (2)
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RMS =

√
∑n

i=1(yi − y′ i)
2

n
(3)

MAE =
1
n ∑n

i=1

∣∣yi − y′ i
∣∣ (4)

MAPE =
1
n ∑n

i=1

∣∣∣∣yi − y′ i
yi

∣∣∣∣ · 100% (5)

MAX = maxi
∣∣yi − y′ i

∣∣ (6)

MAXP = maxi

∣∣∣∣yi − y′ i
yi

∣∣∣∣ ·100% (7)

where: n-number of observations, yi-actual values, y′i-predictive values, obtained with
the model.

2.7. Sensitivity Analysis of the Neural Network

The final step in creating the N1 model was to identify the independent variables that
most influenced the variable explained by the model. To do this, a sensitivity analysis of
the network was performed, which allows the rank of each feature to be quantified. The
ranks are determined by the size of the deviation quotient, which is the ratio of the error
to the error received by all independent variables. The importance of a given feature is
greater the higher the deviation quotient achieved by it.

3. Results
3.1. Neural Network Learning and Quality Assessment of Models Predicting Protein Content in
Pea Seeds

The obtained multilayer perceptron-type neural network was learned using two methods.
The first method of learning-backward error propagation took 100 epochs. The best learning
result was obtained by continuing this process with the coupled gradients method and
the best result was achieved at 55 epochs. This approach is common in creating predictive
models using ANNs [25,28,56–58]. The error for the network did not exceed 0.6 for each of
the sets-i.e., learning, validation and test. The results of the N1 predictive model and its
basic features are shown in Tables 3 and 4.

Table 3. Subset error size and number of learning epochs of neural networks.

Subsets Teaching Validation Testing

Size of error 0.0551 0.0535 0.0595
Quality 0.3642 0.4145 0.0551

Epochs of learning

Back propagation method of
error 100

Coupled gradients method 55b *
* b (best)-the best result in the indicated learning epoch.

Table 4. Quality parameters of the N1 model.

Quality Measures Value

Average 22.857
Standard deviation 1.895

Average error 0.008
Error deviation 0.744

Average absolute error 0.574
Deviation quotient 0.393

Correlation coefficient r 0.920
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The N1 model had a high correlation coefficient (r = 0.920). Satisfactory values were
also obtained for the mean error and mean absolute error, which were 0.008 and 0.574,
respectively. Low error values and a high correlation coefficient were among the many
parameters that determined the selection of the N1 model for further analysis.

An analysis using multiple linear regression showed that the explanatory variables
statistically insignificant at the α = 0.05 level were the number of days from 1 January
to the beginning of flowering (FLOWE), variety (GEN), soil potassium and phosphorus
abundance (K2O_C and P2O5_C, respectively) and soil pH (PH).

Based on the results shown in Table 5, the multiple linear regression equation is of
the form:

PROT = 40.445 + 0.576 ·MGO_C − 0.005 · RAIN − 0.021 · K2O_F − 0.028 · N_F − 0.065 · HAR + 0.027 ·
P_HIGH − 0.214 · TECH_M + 0.152 · INI_A + 0.020 · P2O5_F − 0.416 · TEMP + 0.061 · SOWI + 0.001 · SUN

(8)

Table 5. MLR analysis results.

Factor

MLR: r = 0.6949
R2 = 0.4829

Standard Error of Estimate = 1.374

Beta Standard
Error Beta b Standard

Error b p Significance

Free Term - - 40.445 0.859 0.000000 +

MGO_C 0.323 0.035 0.576 0.062 0.000000 +

RAIN −0.154 0.034 −0.005 0.001 0.000007 +

K2O_F −0.298 0.041 −0.021 0.003 0.000000 +

N_F −0.187 0.031 −0.028 0.005 0.000000 +

HAR −0.316 0.041 −0.065 0.009 0.000000 +

P_HIG 0.234 0.033 0.027 0.004 0.000000 +

FLOWE 0.062 0.042 0.021 0.015 0.146017 −
TECH_M −1.063 0.127 −0.214 0.026 0.000000 +

INI_A 0.745 0.138 0.152 0.028 0.000000 +

P2O5_F 0.195 0.043 0.020 0.004 0.000006 +

TEMP −0.340 0.086 −0.416 0.104 0.000077 +

SOWI 0.182 0.071 0.061 0.024 0.009821 +

GEN 0.0439 0.023 0.026 0.014 0.056315 −
K2O_C −0.055 0.031 −0.102 0.063 0.083382 −

SUN 0.067 0.032 0.001 0.0006 0.036298 +

P2O5_C −0.036 0.029 −0.074 0.060 0.211476 −
PH 0.040 0.032 0.158 0.128 0.219669 −

Determination of the level of statistical significance: − non-significant. + significant for α = 0.05.

3.2. Sensitivity Analysis of Neural Networks

Verification of the predictive model based on artificial neural networks was carried
out using 115 cases (plots). The N1 model with a structure of 19:19-32-1:1 was prepared
based on 19 independent variables. The dependent variable was the percentage protein
content of pea seeds. The sensitivity analysis performed on crop A showed that the factor
with the greatest effect on the protein content of pea seeds was soil magnesium abundance
(Table 6). This trait received a rank of one, and removing this variable from the N1 model
would result in an increase in the cumulative error value by 2.366 times. The independent
variables that received a rank of two and three were the potassium and phosphorus content
in the soil. Not including these variables in the model would have increased the error
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by 1546 and 1413 times, respectively. Average daily air temperature received a rank of
four and, of all the weather variables, had the greatest effect on the protein content of the
eleven pea seed varieties.

Table 6. Quality parameters of the N1 model.

Variable Quotient Rank

GEN 1.082 18
RAIN 1.158 12
SUN 1.110 16

TEMP 1.396 4
N_F 1.110 15

P2O5_F 1.095 17
K2O_F 1.194 8
SOWI 1.364 5

P_EMER 1.160 11
WEGE 1.257 7
HAR 1.179 9

FLOWE 1.049 19
INI_MA 1.265 6
TECH_M 1.131 13

P_HIG 1.136 13
PH 1.175 10

P2O5_C 1.413 3
K2O_C 1.546 2
MGO_C 2.366 1

The protein content of pea seeds predicted using the N1 model was compared with
actual values (Figure 3). A coefficient of determination was obtained at a relatively high
level (R2 = 0.7979), which means that the model’s response is very close to the observed
values, and that the network has the ability to correctly represent the relationships that are
characteristic of the issue being modeled. This procedure was also performed for the RS
model (Figure 4). The obtained coefficient of determination of the studied characteristics
was 0.3357, so the model has much weaker predictive properties compared to the N1 model.
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From Figure 5, it can be observed that the protein content of pea seeds changed with
the increasing soil magnesium and potassium abundance. An increase in the concentration
of magnesium in the soil causes an increase in the percentage of protein content in the
analyzed plant. A similar trend is observed for potassium. However, this increase is not as
high as in the case of magnesium.
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Figure 6 shows the relationship of the independent variables (TEPM and P2O5_C)
from the sensitivity analysis of the artificial neural network in relation to the dependent
variable. From it, it can be observed that an increase in average daily temperatures during
the pea growing season promotes the accumulation of protein in its seeds. This relationship
also applies to the amount of phosphorus available in the soil. However, as the average
daily temperature decreases, the high abundance of phosphorus in the soil does not result
in the accumulation of protein in pea seeds.
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Changes in protein content as influenced by changes in average daily air temperature
(TEMP) and soil magnesium abundance (MGO_C) are shown in Figure 7. An increase
in the value of the independent variable TEMP at a low soil magnesium concentration
caused the protein content of pea seeds to be less than 21%. A high MgO content in the soil
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promotes protein synthesis in seeds only when there are sufficiently high average daily air
temperatures during the pea growing season.
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3.3. Predictive Properties of the N1 and RS Model

Verification of the correctness of the N1 model and RS model was carried out based on
six quality measures: RAE (global relative error of model approximation), RMS (root mean
square error), MAE (mean absolute error), MAPE (mean absolute percentage error), MAX
(maximum error determined for the whole model) and MAXP (maximum percentage error).
Ex-post analysis (Table 7) showed that the N1 model had smaller error values compared to
the RS model. The RS model achieved an RMS error of more than three times that of the N1
model. There were similarly large disparities in MAE and MAPE error. The N1 model was
also characterized by a more-than-two-times smaller maximum percentage error.

Table 7. Quality assessment of the N1 and RS model.

Error Type N1 Model RS Model

RAE 0.037 0.118
RMS 0.838 2.696
MAE 0.617 2.032

MAPE 2.721 8.852
MAX 2.977 7.943

MAXP 13.001 28.853



Agriculture 2022, 13, 29 14 of 21

4. Discussion

An important advantage of artificial neural networks is their ability to model the
complex non-linear relationships that occur in agricultural crops [59]. A network with MLP
(multi-layer perceptron) topology was used to predict cotton yield. The network was built
from four categories of variables: weather data, drought indices, crop vegetation indices
and yield. The resulting model had a MAPE error of 1.35%, and the R2 value was 0.88 [60].
In contrast, Abrougui et al. [32] predicted the yield of potato grown in Chott Meriem
(Tunisia). The analysis showed that the best measures of prediction quality (MSE = 0.006,
% error = 1.116%) were characterized by a model with a topology of two hidden layers,
which consisted of eight neurons in each layer. ANNs have also been successfully used
to predict the quality characteristics of plant products such as essential oil content [61],
ferulic acid concentration including mycotoxins in wheat grains [62], changes in protein,
gluten and water content of stored wheat grains [63] and free radical content of sun-
flower, palm and rapeseed oil [64]. Niedbała [65] predicted the yield of winter rapeseed
(Brassica napus L.) using ANN as of 30 June. The study covered fields located in Poland,
in the southern part of the Opole Province. The neural network with a MLP topology
predicted the explained variable with a MAPE error of 9.43%. The obtained N1 model in
the in-house work was also characterized by low prediction errors. For example, the MAPE
error was 2.721, which, according to Peng et al. [66] testifies to the model’s excellent degree
of fit, as the error does not exceed 10%. When MAPE is in the range of 10–20%, the degree of
model fit is good. A forecasting model that achieves a MAPE error of more than 30% should
be rejected due to poor mapping of predicted values with actual values. A low MAPE error
(7.203%) was also obtained in a study by Piekutowska et al. [25], where a neural network
with a MLP topology was built to predict the yield of very early potato varieties 40 days
before harvest. Prediction of yield and its quality traits before harvesting gains importance
in the era of changing climatic conditions. The unstable course of weather during the
growing season of crops makes the quality of the crop variable each year. Obtaining models
to accurately forecast food production is crucial for policy making and managing national
food security plans [67]. Artificial neural networks were also successfully used in wheat
yield prediction. The MLP model obtained had an RMS error of 0.4237 [68].

Niazian et al. [30] predicted the essential oil content of ajowan (Carum copticum L.)
using ANN and MLR. Field studies were conducted from 2014–2015 in central Tehran.
Four phenological traits were used as input data. The selection of independent variables
was preceded by simple correlation analysis. The study showed that the ANN model with
two latent layers predicted essential oil content with a mean squared error of 0.23% and
a mean absolute error of 0.14%. In addition, the authors’ research showed higher perfor-
mance of the ANN model compared to the MLR, which had an RMS error of 0.26% and
an MAE error of 0.18%. The artificial neural network model also had a higher coefficient
of determination value (R2 = 0.88) compared to the multiple regression model (R2 = 0.74).
The results of our own study also showed the superiority of neural networks over MLR
in predicting the protein content of pea seeds. These results are consistent with another
study [36], where the performance of MLP and stepwise regression networks was com-
pared in predicting the essential oil content of fennel (Foeniculum vulgare Mill.). A total of
11 independent variables were used to build the neural network. The resulting MLP model
with a topology of 11:11-9-7-1:1 was characterized by a coefficient of determination of 0.953
and 0.929 for the training and test set, respectively. The stepwise regression model, on
the other hand, was characterized by an R2 magnitude of 0.553. The neural network was
additionally characterized by lower prediction errors compared to the MLR. The RMS
and MAE error for the ANN were 0.544 and 0.385, respectively, while for the stepwise
regression, the magnitudes of these errors were obtained at the level of 0.819 and 0.624.
As can be seen from the data in Table 5, the N1 model predicted the protein content of
peas with an RMS error of 0.838 and an MAE error of 0.617. The values of these errors are
smaller than those obtained using the RS model, demonstrating the greater effectiveness of
artificial neural networks over multiple regression in predicting the issue under analysis.



Agriculture 2022, 13, 29 15 of 21

The advantage of artificial neural networks over classical regression modeling is due to
the ability of ANNs to approximate non-linear functions [33]. In agricultural crops, many
relationships between the analyzed variables have a complex and non-linear course, and
MLR models are capable of predicting linear phenomena. Therefore, MLR cannot explain
complex nonlinear relationships between independent variables and the dependent vari-
able [69]. In addition to artificial neural networks, random forest regression (RFR) has also
been used in agricultural science. Machine learning tools were built to predict the yield of
winter rapeseed. The results obtained showed better predictive ability of the RFR model
compared to the ANN model [33].

The sensitivity analysis performed for the ANN model showed that the protein content
of peas was most affected by soil minerals (Mg, K, P). These variables received rankings
one, two and three, respectively (Table 6). Interestingly, the response of pea plants, in
terms of protein content, was greater for soil richness in these components than for mineral
fertilization. Soil micronutrient and macronutrient abundance critically affects plant growth
and development, as well as the quality of the yield obtained [70]. Plants respond less to
current mineral fertilization than to high soil nutrient abundance [71]. Yano and Kume [72]
noted, in pot experiments, an increased growth of corn root length on soil with a locally
elevated phosphorus content. Low root mass increased the efficiency of phosphorus uptake
per unit root weight with a low consumption of photosynthetic products.

Magnesium (Mg) received a rank of one in the neural network sensitivity analysis
conducted. This means that this element had the greatest impact on the protein content
of pea seeds. Mg is one of nine key plant nutrients. It is used in large quantities by plants
for proper growth, development and reproduction [73]. Mg has many important physio-
logical functions. It is an essential component of chlorophyll [74], and is involved in CO2
assimilation reactions in the chloroplast [75]. Magnesium, like potassium (K), is essential
for protein biosynthesis and significantly affects the absorption, utilization and metabolism
of nitrogen (N) in plant roots [76]. For example, in soybean (Glycine max (L.) Merr.), nitrate
uptake by the root system was influenced by Mg2+ and K+ ions through the regulation of
the NRT2 transporters [77]. In a study conducted by Geng et al. [78], it was shown that
rapeseed fertilized with magnesium exhibited increased nitrogen uptake at all fertilization
levels (from 0 to 45 kg Mg·ha−1). Much of the Mg contained in leaves appears to be directly
or indirectly related to protein synthesis, due to its role in nitrogen metabolism and in the
structure and function of ribosomes [76,79,80]. Ribosomes are macromolecular structures
that are responsible for protein biosynthesis [81].

A four-year field study conducted in Croatia on six soybean varieties showed that
foliar application of magnesium resulted in an increase in protein content in addition
to an increase in seed yield. These differences, relative to the control, were statistically
significant at the significance level of α = 0.05 [82]. In contrast, a study by Sawan et al. [83]
investigated the effect of potassium fertilization on cotton protein yield. The study was
conducted in Giza, Egypt and covered two growing seasons. The results showed that
protein yield significantly increased in plots where potassium was applied (47.4 kg·ha−1)
compared to the control, where plants were not fertilized with this element. Similar results
were obtained in the present study. A higher Mg content in the soil caused an increase
in the protein concentration in pea seeds (Figure 3). A similar relationship was observed
for potassium (this variable received a rank of two in the network sensitivity analysis).
However, the increase in protein content as a result of higher soil abundance of this element
was not as great as in the case of magnesium.

Soil phosphorus content and average daily air temperature were the variables that
received ranks three and four, respectively, in the sensitivity analysis (Table 6). Interestingly,
TEMP received the highest rank among the weather variables. However, in order for
this development not to be disturbed, air temperatures should remain at optimal levels
throughout the growing season. Each species has an optimal temperature range for its
development, while an excessive decrease or increase can contribute to plant damage [84].
Research conducted by Walter et al. [85] from 2016–2018 show that air temperature was
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positively correlated with the protein content of pea and bean (Vicia faba L.) seeds grown
in Germany. Higher temperatures were associated with higher protein concentrations in
both pea and broad bean seeds. These results correlate with the data presented in this
paper (Figure 4), where higher protein concentrations were recorded in peas as the average
daily temperature increased. The increase in seed protein content was also associated with
a higher soil phosphorus content. However, this effect was smaller the lower the daily
temperatures were. Low temperatures result in reduced P uptake by plants. When the
air temperature is less than 12 ◦C, the uptake of this element by the root system is largely
blocked [86].

Phosphorus is an integral part of cell membranes and nucleic acids and is directly
involved in protein synthesis [87]. Therefore, a close relationship between plant P nutrition
and various physiological and biochemical traits is frequently and widely reported in the
literature [88–91]. The proper nutrition of plants with this component leads to an increase
in protein nitrogen and nitrogen of essential amino acids. However, the expected effect can
be variable: positive (increase in protein content), neutral or negative (decrease in protein
content following the so-called dilution effect). The negative effect results from an increase
in usable yield, but in quantitative terms (e.g., for protein yield) it is positive [92].

The results concerning the significance of independent traits generated by using the
models do not always coincide. The network sensitivity analysis showed that nitrogen
fertilization of pea plants had a negligible effect on seed protein content. However, stepwise
regression showed that this variable had a statistically significant effect on the dependent
variable under study. Nitrogen is a macronutrient that significantly affects protein synthesis
by plants [93]. However, according to a study conducted by Faligowska et al. [17], nitrogen
in pea seeds grown in Brody (Poland) was accumulated from three main sources: soil,
atmosphere and fertilizers. The largest amount of accumulated nitrogen came from the soil
(57.9%), followed by the atmosphere (35.2%) and fertilizers (6.8%). The analysis of the mul-
tiple regression results confirmed the well-known state of knowledge about the relationship
between nitrogen fertilization and protein content. However, the resulting neural network
highlighted less well-known and much more interesting aspects of certain relationships.
Relationships between given factors in agricultural production are determined mainly by
weather conditions prevailing in a given growing season, habitat conditions and genotypes
of crops grown.

5. Conclusions

The developed MLP-type artificial neural network model successfully predicted the
protein content of pea seeds 20 days before the harvest date. The model had higher
prediction accuracy and lower ex-post error values with respect to the stepwise regression
model. The accuracy of MLP networks is mainly dependent on the accuracy of the data at
one’s disposal and the amount of information fed into the model. In the case of artificial
neural networks, an important task is to maintain a balance between the model’s ability to
approximate and generalize. The analysis conducted showed that the network accurately
predicted the dependent variable based on a five-year field study. The results obtained
did not allow the rejection of the null hypotheses, thus confirming the validity of the
assumptions made at the outset. The N1 model, due to its lower error values and higher R2

value, more accurately predicted the protein content of peas. For this reason, this model
seems to be better in practical application.

This work can serve as a strand for future research on the prediction of pea seed quality
such as the content of fat, nitrogen-free compounds, the largest part of which in pea seeds
is starch and anti-nutritional compounds. A continuation of the present research will be the
optimization of NPK fertilization taking into account the liming needs of general-purpose
pea varieties.
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of observations; N_F-total nitrogen from mineral fertilizers; N1-built its own neural network model;
P_EMER-number of days from 1 January to the beginning of plant emergence; P_HIG-plant height;
P2O5-phosphorus(V) oxide; P2O5_C-P2O5 content in the soil; P2O5_F-total phosphorus from min-
eral fertilizers; PH-Soil pH; PROT-Percentage of protein in pea seeds; PRVT-Program of Registered
Varietal Experimentation; RAE-global relative error of model approximation; RAIN-total rainfall
from sowing date to 14 July; RMS-root mean square error; RS-built its own linear regression model;
SOWI-number of days from 1 January to sowing date; SUN-total sunshine from sowing date to 14 July;
TECH_M-number of days from 1 January to technical maturity; TEMP-average air temperature from
sowing date to 14 July; VCU-trials for cultivation and use value; WEGW-number of plant growing
days; y′i-predictive values, obtained with the model; yi-actual values.
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