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Abstract: Land use and land cover (LULC) mapping can be of great help in changing land use
decisions, but accurate mapping of LULC categories is challenging, especially in semi-arid areas with
extensive farming systems and seasonal vegetation phenology. Machine learning algorithms are now
widely used for LULC mapping because they provide analytical capabilities for LULC classification.
However, the use of machine learning algorithms to improve classification performance is still being
explored. The objective of this study is to investigate how to improve the performance of LULC
models to reduce prediction errors. To address this question, the study applied a Random Forest (RF)
based feature selection approach using Sentinel-1, -2, and Shuttle Radar Topographic Mission (SRTM)
data. Results from RF show that the Sentinel-2 data only achieved an out-of-bag overall accuracy of
84.2%, while the Sentinel-1 and SRTM data achieved 83% and 76.44%, respectively. Classification
accuracy improved to 89.1% when Sentinel-2, Sentinel-1 backscatter, and SRTM data were combined.
This represents a 4.9% improvement in overall accuracy compared to Sentinel-2 alone and a 6.1%
and 12.66% improvement compared to Sentinel-1 and SRTM data, respectively. Further independent
validation, based on equally sized stratified random samples, consistently found a 5.3% difference
between the Sentinel-2 and the combined datasets. This study demonstrates the importance of the
synergy between optical, radar, and elevation data in improving the accuracy of LULC maps. In
principle, the LULC maps produced in this study could help decision-makers in a wide range of
spatial planning applications.

Keywords: land use; land cover; classification; random forest; Sentinel data; SRTM; random forest;
feature selection; accuracy; validation

1. Introduction

Earth-observing satellite sensor data can be used for land-cover mapping and monitor-
ing, which is essential for estimating land-cover change. The increase in land use and land
cover changes (LULC) in natural ecosystems has adversely affected carbon stocks, climate
change, and biodiversity, as well as the global climate over the past few decades [1–4]. It is
believed that deforestation due to urbanization and agricultural expansion is one of the
most critical threats to the environment in the 21st century [5]. The United Nations (U.N.)
sustainable development goal (SDG) 15 has emphasized measures to “protect, restore, and
promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification,
and halt and reverse land degradation and biodiversity loss” [6]. Priority is placed on combating
desertification, recovering degraded land and soil, particularly in areas affected by deser-
tification, drought, and floods, and combating land degradation by 2030. Satellite Earth
observation data offer one of the most reliable options for monitoring land degradation in
the context of the SDGs due to their consistency and repeatability at local and large spatial
scales. Information about the land cover of a country is an essential part of the planning and
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development process. It is useful for environmental reporting [7], assessing the impact of
land use on the natural environment [8], conserving biodiversity and habitats [9], mapping
population distributions [10], forecasting crops, studying urban heat islands, managing
insurance risks, planning telecommunications, and others [11–13].

Even though traditional methods (e.g., field surveying) yield accurate results, they
are expensive and inefficient in monitoring large and inaccessible areas. To overcome
these limitations, remote sensing scientists have developed analytical tools for detecting,
characterizing, parameterizing, and monitoring land variables based on space observa-
tions. Remote sensing has experienced rapid advances over the past 40 years. Based
on remote sensing technology, data are usually collected across different regions of the
electromagnetic spectrum at wide spatiotemporal scales (e.g., the recent Copernicus pro-
gram/Sentinel missions and the Landsat program/missions- which has been available for
over 40 years). Hence, remote sensing provides an interesting option for policymakers to
make informed decisions about our environment and also to improve the methodology of
assessing ecosystem vulnerability [14,15].

Over the past decades, the scientific community has fully recognized remote sens-
ing/Earth observation data from space for LULC monitoring. These data offer an unparal-
leled opportunity for large-area measurement and high temporal precision for land cover
mapping and monitoring. Today, a large number of global land cover maps are produced
(e.g., GLOBCOVER and MODIS land cover products). However, these products have their
limitations for regional as well as local assessments due to their low spatial resolution
(e.g., 1 km, 250 m), temporal frequency, and inconsistencies in their assigned thematic
classes [16]. These limitations primarily occur due to (1) the small number of training data
relative to the size of the area being mapped, (2) mismatch definitions/propriety in land
cover classification schemes, (3) and the need for a readily and automated algorithm to
handle large datasets. In this light, many regional governments have embarked on research
projects to provide high and medium-resolution (e.g., 30 m) land cover maps, which are
accurate and consistent with their local demands. For example, the operational land cover
databases (e.g., the National Land Cover Database for the United States of America (U.S.A.)
and the United Kingdom’s Land Cover product which is based on the European CORINE
land cover mapping scheme [11].

A widespread increase in anthropogenic activities, land use, and land cover changes
are occurring at an unprecedented rate, requiring policymakers and stakeholders to pay
greater attention to the measures to manage and control environmental degradation. In
Nigeria, the threat to environmental sustainability, for example, is encapsulated in the need
to ensure the quality of the environment is appropriate for good health and well-being,
as well as to protect and utilize the environment and natural resources for the benefit
of present and future generations. The policy encourages the compilation of detailed
land capability inventories, comprehensive land classifications, assessment of the current
land use practices, causes and extent of land degradation, and regulatory framework for
sustainable land use [17]. However, despite recent advancements in Earth observation and
remote sensing, there is no reliable land LULC for the country. Most of the previous global
land cover maps were not also developed based on adequate or training data sets covering
Nigeria. And their class labeling and definitions (e.g., International Geosphere-Biosphere
Programme) have mixed land cover classes, which are unsuitable for discerning LULC
characteristics in Nigeria. Conservation policies in Nigeria have emphasized undertaking
land capability classifications based on evolving methods of land evaluation suitable to
local conditions.

Land cover monitoring using remotely sensed data involves precise mapping of
complex land cover and land use categories, necessitating the employment of strong
classification systems [18]. Waske and Braun [19], who compare the ensemble classifiers
with approaches such as the maximum likelihood classifier for land cover classification
using C-band multi-temporal SAR data, observed that random forest (RF) outperformed
maximum likelihood by more than 10%. A comprehensive comparison of machine learning
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algorithms has been conducted by Lawrence and Moran (2015) using uniform procedures
and 30 distinct datasets. Their results showed that RF had the highest classification accuracy
of 73.19% than SVM, which had an accuracy of 62.28%. Of the total 30 classifications, RF
was the most accurate in 18 classification scenarios. Talukdar et al. [20] reviewed six
machine-learning classifiers for LULC classification using satellite observations. Based
on overall accuracy, results indicate that RF is the best machine-learning LULC classifier
(0.89, RMSE = 0.006), compared to support vector machine (Kappa = 0.86, RMSE = 0.11),
artificial neural network (Kappa = 0.87, RMSE = 0.09), fuzzy adaptive resonance theory-
supervised predictive mapping (0.85, RMSE = 0.17), spectral angle mapper (Kappa = 0.84,
RMSE = 0.23), and Mahalanobis distance (Kappa = 0.82, RMSE = 0.28). This makes the
machine learning algorithm suitable for LULC classification. Furthermore, a recent study
by Adugna et al. [21], who compare RF and SVM machine learning methods, found that
RF outperformed SVM, yielding overall accuracy (OA) of 0.86 and a kappa (k) statistic of
0.83, respectively, which is 1–2% and 3% higher than the best SVM model.

Nowadays, machine learning technology is used for feature selection to assist in
mapping LULC categories. The advantage of RF is its capability for feature selection, which
has been proven to improve classification accuracy in previous studies [22–24]. A study
by Balzter et al. [11], who developed a method for CORINE Land Cover mapping using
RFs, demonstrates the importance of variable selection using Sentinel-1A radar backscatter
coefficient at HH and HV polarizations (summer acquisitions) and VV and VH polarization
(winter acquisitions) and SRTM Digital Elevation Model Data. The classification out-of-
bag error rate was 52.5%, and kappa (κ) = 0.38 for the Sentinel-1 variables. When the
variables generated from the S.R.T.M. data were added, the quality of the classified map
was improved substantially, with an out-of-bag error rate of 31.6% (68.4% accuracy) and
κ = 0.63. R.F. clearly describes the benefits of including variable selection in the land cover
classification process in a complex environment [25].

The RF technique is well-established in land remote sensing today. Still, it has not been
adequately evaluated by the remote sensing community as compared to more traditional
pattern recognition algorithms. In addition, there have been observations about how
the importance of variables varies depending on the data and ecosystem in question,
necessitating further exploration [23,25,26]. To assist decision-makers in a variety of spatial
planning applications (e.g., cropland management, irrigated agriculture intensification,
flood vulnerability assessment, water management, or human settlement/resettlement
planning in floodplains), the thematic LULC classes were created to represent the local
characteristics of the semi-arid region, in Nigeria. Specifically, the objectives of this study
were; (1) to evaluate the applicability of an RF classification algorithm for LULC mapping
using local class definitions and training data sets in an agriculturally dominated landscape
in Nigeria; (2) to assess the contribution of an individual satellite band in the RF model;
(3) to improve model performance and reduce prediction errors of LULC maps based on
RF feature selection. The novelty of this study is the synergistic use of different sources of
satellite data to identify the most important variables to reduce prediction error. Therefore,
one of the most important contributions of the work is the methodology developed to
improve classification performance. The insights gained in this work to improve model
performance and reduce prediction errors not only support policymakers in applying
accurate LULC maps in spatial planning but also enrich the methodological system of
LULC assessment through machine learning.

2. Materials and Methods
2.1. The Study Area

This study was conducted in Kebbi state, the northwestern part of Nigeria
(Figure 1a,b). This area is located between latitude 4◦27′0′′–4◦54′0′′ N of the equator
and longitude 4◦19′12′′–4◦48′0′′ E of the Greenwich meridian (Figure 1a). This area falls
in the Argungu local government and parts of Augie, Birnin-Kebbi, and Gwandu local
government areas. The climate in the area is tropical continental, with two distinct seasons,
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dry and wet. This is caused by the presence of two contrasting air masses, the tropical
continental and the tropical maritime, which originate from the Sahara Desert and the
Atlantic Ocean, respectively. The wet season lasts from May to October. The dry season
lasts from November to April. The average rainfall is 800 mm. The average temperature is
27 ◦C which can rise to 40 ◦C in the summer. Sudan savannah is the predominant vegetation
type in the area [27–29]. Geologically, the area is composed of sedimentary rock, primarily
undifferentiated sands, gravels, clays (mostly in the upland areas), and floodplains that
surround riverine communities [30]. It is, therefore, possible to identify two types of soil
in the area: sandy soil for the upland area and clayey and hydromorphic soils for the
floodplain area (clay, clay-loam, sandy-loam, loamy sand). The area is mostly characterized
by lowland with a few highland areas of up to 344 m, dissected by large flowing rivers
(e.g., River Rima) (Figure 1a). The area is characterized by Sudan savannah vegetation
type. It includes trees/shrubs (Pilliostigma reticulatum, Combretum nigricans, Combretum
verticellatum, Guira senegalensis Azadirachta indica, Piliostima thonningii, Guira senegalensis and
grass species (Borroria scabra, Borroria radata, Pennisetum peicellatum, Pennistum peicellatum,
Corchorus fascicularis, Digitaria horizontalis, Lam (karangiya), Commelina forskalei, Eragrostis
gangetica, etc.) [28]. These species of plants have different phenological cycles (e.g., leaf
flush and senescence period). However, most of these species have their leaf-on up to the
end of November.
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Nigeria showing Kebbi State and the location of the study area.

A large number of subsistence farmers use the floodplain area for irrigation activities
where rice, wheat, tomatoes, etc., are being cultivated. But the majority of the farmers
engaged in rice cultivation. In the upland areas, crops such as millet, guinea corn, legumes,
etc., are usually cultivated. The main harvest time for cereals (such as millet) is late
October, except for Guinea corn and legumes, which are usually harvested around mid-
November. However, most of the cultivated land in the upland region grows millet. The
main harvesting season for rice is November and December, depending on the type and
timing of planting. Rice grown in the rainy season is fed to some extent by the rain,
as it is strongly supported by irrigation activities. Approximately 75% of the people in
the area work as farmers and cultivate crops through rain-fed and irrigation practices in
the floodplain area [31]. The area is well-known for its contribution to rice production
and fishing in Nigeria. The river Rima in Argungu provides an opportunity for tourism-
the famous Argungu International Fishing and Cultural Festival on the one hand, and
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industrial development- the WACOT rice mill company-employing many thousands of
people as well as enhancing rice production in the region. Currently, land use patterns are
undergoing various transformations as a result of changing demographic and economic
characteristics in the area, creating a wide range of environmental problems. As the land
use system continues to undergo rapid changes, there is a need to develop an accurate
mapping framework so that an assessment of future land use patterns and the sustainability
of land resources may be well-studied.

2.2. Remote Sensing Data
2.2.1. Sentinel-1 Normalized Backscatter

Sentinel-1 is a C-band synthetic aperture radar (SAR) satellite mission of the European
Copernicus Program. In this study, the Sentinel-1 Analysis Ready Data (ARD) is one of the
remote sensing data used as input variables for feature importance selection with the RF
Classifier. The Sentinel-1 data were acquired on 4 October 2020, and were downloaded
from the Digital Earth Africa website (https://www.digitalearthafrica.org/, accessed on
15 August 2022. Because the wet season occurs from the end of May to the end of October,
the image acquisition period was found suitable to capture the phenology of plant species
and crops. The data are available in single polarization (VV) and double polarization (VH).
In addition, radiometric terrain correction (RTC) was applied to the normalized backscat-
ter [32]. To increase the number of variables in the RF model, two additional variables were
created from these polarizations. The mean and total sum of VV and VH were generated
and included in the RF model to assess whether these variables could contribute to model
performance. In general, data from SAR, such as those from Sentinel-1, provide different
and complementary information than that provided by optical remote sensing. A radar
signal can penetrate clouds and provide information about the Earth’s surface that optical
sensors cannot work due to topography, land cover structure, orientation, and moisture
characteristics.

2.2.2. Sentinel-2 Surface Reflectance

In addition to other remote sensing data, this study incorporates the Copernicus
sentinel-2 multispectral data to map the LULC of the study area. The Sentinel-2 ARD
for 17 October 2020, was downloaded from the Digital Earth Africa website at https:
//maps.digitalearth.africa/, accessed on 15 August 2022. The acquisition period of the
imagery was considered useful in capturing the phenology of woody plants, grasses, and
crops. The spectral bands used for this study include blue (band 2), green (band 3), red
(band 4), red edge (band 5), red edge (band 6), red edge (band 7), NIR (band 8), NIR (band
8a), SWIR1 (band 11) and SWIR2 (band 12). The spatial resolution of these data is 20 m.
The data were pre-processed and atmospherically corrected by the providers. Sentinel-2
has promise in LULC mapping in semi-arid/agriculturally dominant landscapes based on
RF feature selection [33,34].

2.2.3. SRTM Digital Model Data

It is a collaboration between the National Geospatial-Intelligence Agency and the
National Aeronautics and Space Administration (NASA) to provide elevation data at a
global scale to produce the most complete high-resolution digital topographic database of
Earth using radar data. The 30 m, ArcGRID format was used in this study and is available at
http://www2.jpl.nasa.gov/srtm/index.html (accessed on 15 August 2022). Three variables
were created from the data. These include elevation, slope, and aspect. This will be used
to represent the surface elevation of the study site. The 30 m DEM was upgraded to
20 m through the nearest neighbor interpolation techniques to make it compatible with
Sentinel data.

https://www.digitalearthafrica.org/
https://maps.digitalearth.africa/
https://maps.digitalearth.africa/
http://www2.jpl.nasa.gov/srtm/index.html
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2.3. Method
2.3.1. Workflow

This study identified the most critical spectral and topographic variables for enhancing
model performance using ARD sentinel data (1 and 2) and SRTM DEM. The RF classification
method was used to classify LULC types (river, wetland/flooded, irrigated land, barren,
built-up area, tree/shrubland, farmland, and grassland) in the area. The flowchart is shown
in Figure 2. The figure illustrates a high-level summary of the processes and procedures
employed in this study.

Agriculture 2023, 13, x FOR PEER REVIEW 6 of 23 
 

 

using radar data. The 30 m, ArcGRID format was used in this study and is available at 

http://www2.jpl.nasa.gov/srtm/index.html (accessed on 15 August 2022). Three variables 

were created from the data. These include elevation, slope, and aspect. This will be used 

to represent the surface elevation of the study site. The 30 m DEM was upgraded to 20 m 

through the nearest neighbor interpolation techniques to make it compatible with Sentinel 

data. 

2.3. Method 

2.3.1. Workflow 

This study identified the most critical spectral and topographic variables for enhanc-

ing model performance using ARD sentinel data (1 and 2) and SRTM DEM. The RF clas-

sification method was used to classify LULC types (river, wetland/flooded, irrigated land, 

barren, built-up area, tree/shrubland, farmland, and grassland) in the area. The flowchart 

is shown in Figure 2. The figure illustrates a high-level summary of the processes and 

procedures employed in this study. 

 

Figure 2. The workflow of the processes and approaches implemented in the study. 

2.3.2. Resampling 

The data used in this study are not on the same spatial resolution. For example, the 

ARD Sentinel-2 data is 20 m, Sentinel-1 is 25 m, and STRM DEM is 30 m. This makes it 

necessary to resample these datasets on the same spatial resolution. However, there are 

different techniques of resampling that are used depending on the problem. The first one 

is done as a result of a mismatch between the different raster datasets, while the other type 

Figure 2. The workflow of the processes and approaches implemented in the study.

2.3.2. Resampling

The data used in this study are not on the same spatial resolution. For example, the
ARD Sentinel-2 data is 20 m, Sentinel-1 is 25 m, and STRM DEM is 30 m. This makes
it necessary to resample these datasets on the same spatial resolution. However, there
are different techniques of resampling that are used depending on the problem. The first
one is done as a result of a mismatch between the different raster datasets, while the
other type is when a raster dataset is converted into a different coordinate system. In this
study, the reason for resampling is due to the mismatch between the different data sets
mentioned earlier. Three resampling methods, including bi-linear, nearest neighbor, bicubic
or cubic convolutional interpolation, are commonly used for resampling raster data [35].
The nearest neighbor resampling approach was found to be more suitable and was therefore
used to resample the normalized sentinel backscatter data and data from DEM to 20 m.
The nearest neighbor assigns the DN (or another pixel value, like backscatter) based on the
input matrix’s nearest pixel. It has the advantage of computational simplicity and does
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not potentially change input pixel values [35]. Zheng et al. [36], who assessed the effects
of different spatial resolution unification schemes and methods on LULC classification,
discovered that nearest neighbor interpolation could satisfy the needs of local and regional
LULC applications.

2.3.3. Feature Importance Selection

Predictor variables were selected based on an understanding of how spectral re-
flectance varies across surface features and how it contributes to land surface characteriza-
tion. The electromagnetic spectrum offers a wide range of options for discriminating among
various objects. Even within a land cover category, there are variations in the spectral signa-
tures of different electromagnetic spectrum components. For example, in vegetation, light
absorption by leaf pigments dominates in the visible wavelength (400–700 nm), whereas leaf
pigments are transparent to NIR (700–1300 nm), and leaf absorption is small [37]. Sentinel-2
data, for instance, has 13 bands, each of which contributes differently to the differentiation
of the land surface. A unique characteristic of vegetation is its reflectance signature, which
is observed by active sensors such as microwaves (e.g., shortwave or longwave radar data).
Whether it is day, night, or cloudy, microwave sensors can image any part of the planet.
Through this, radar data complement passive optical data in mapping LULC types. Some
variables are more relevant for some phenomena than others, depending on the situation
at hand. In Figure 3a, normalized backscatter variability is shown for the 8 LULC types
being studied. Based on these spectral variations, the LULC types seem to be distinguished
across different polarizations (VV, VH, mean VV & VH, VV+VH). Figure 3b shows the
spectral curves of the 8 LULC types from Sentinel-2 multi-spectral data. In general, there is
a possibility that these classes could be well distinguished by the classifier based on their
emittance behavior (Figure 3a,b). The visible wavelengths, especially the blue and green
bands, do not discriminate between these LULC types. The LULC classes of red, NIR, and
SWIR 1 and 2, however, possess distinct spectral characteristics (Figure 3b).

The complexity of the environment makes it challenging to easily identify which
feature is most useful for predicting land cover categories. This is due to the uncertainty as
to which of the features will contribute most to the accuracy of classification. Additionally,
auxiliary features such as topographic variables are usually included in an RF feature
selection to complement spectral data. The ability to combine numerous variables to
enable feature selection to better predict outcomes is provided by the RF machine learning
feature selection [38,39]. Mean decrease accuracy (MDA) has been recognized as one of
the standard procedures for assessing feature importance, which is based on the OOB
estimates of the RF model [40,41]. The higher the value, the more important the variable is.
To find the most important features for enhancing model performance, sets of scenarios
with various features were established, which assessed these features based on individual
datasets and in combinations for this investigation (Table 1).

Table 1. Predictor variables for the RF feature selection.

S/No
Scenario 1 Scenario 2 Scenario 3 Scenario 4

Sentinel-2 Bands Sentinel-1 Bands SRTM Data Combined (Scenario
1, 2 & 3)

1 Blue VV Elevation Blue
2 Green VH Aspect Green
3 Red Mean (VV & VH) Slope Red
4 NIR_8 VV+VH NIR_8
5 NIR_8a - - NIR_8a
6 SWIR1 - - SWIR1
7 SWIR1 - - SWIR1
8 Red edge_1 - - Red edge_1
9 Red edge_2 - - - Red edge_2

10 Red edge_3 - - - Red edge_3
11 - - - VH
12 - - - Elevation
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2.3.4. Training Data

A previous study evaluating the RF method found that classification accuracy increases
with increasing training data [40,41]. This means that accurate classification requires many
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training polygons. Therefore, this study digitized 430 polygons for the seven LULC classes
using an RGB composite derived from Sentinel-2 and Google Earth.

2.3.5. RF Classification

Breiman [24] explains that “RF classification is a combination of tree predictors such
that each tree depends on the values of a random vector sampled independently and with
the same distribution for all trees in the forest”. RF classification of images is based on
the principles that construct several decision trees. From the large collection of trees, each
tree in the RF splits out a class prediction, and model prediction is performed based on
the class with the most votes. This method relies on bootstrap and feature randomness
when generating each tree [24]. Liaw and Wiener [42] explain the basic steps in the RF
classification procedure as follows:

i. First, create n
tree bootstrap samples using the original data.

ii. Create an unpruned classification or regression tree for each of the bootstrap samples.
At each node, select the best split from a randomly selected subset of the predictors
rather than the best among all predictors.

iii. Assemble the predictions of the ntree trees to predict new data (i.e., majority votes for
classification, the average for regression).

In this study, the RF classification was implemented in R statistical software by ap-
plying the ‘RandomForest’ package [42] and other packages such as ‘raster’ [43], ‘sp’ [44],
‘rgdal’ [45], ‘sf’ [46], ‘gstat’ [47]. As explained earlier, the LULC in the study area was
classified into eight classes. For increased classification accuracy, all pixels in the training
data were used for each class. Four scenarios were established based on the predictor
variables to determine the most important features and accurate results. To evaluate the
performance of classifications, various input features were used:

i. In the first scenario, only the Sentinel-2 bands were considered as predictor variables.
ii. In the second scenario, Sentinel-1 normalized backscatter (VV, VH, VV+HH, and the

mean of VV and VH) were considered.
iii. In the third scenario, only the DEM variables (elevation, aspect, and slope) were considered.
iv. All of the variables considered in scenario 1 and most variables in the second and

third scenarios were utilized in the fourth scenario.

2.3.6. Out-Of-Bag Error Estimates

The accuracy of the classifications was assessed based on the Out-of-bag (OOB) con-
fusion matrix, which is usually computed internally by the model. The training data is
divided into 70%, which is used for the classification, while the remaining 30% is used for
the OOB estimation. An estimate of the error rate can be obtained, based on the training
data, by the following:

1. At each bootstrap iteration, predict the data not in the bootstrap sample (what Breiman
(2001) calls “out-of-bag”, or OOB, data) using the tree grown with the bootstrap sample.

2. Aggregate the OOB predictions (On average, each data point would be out-of-bag
around 30%, which aggregates these predictions). Calculate the error rate and call it
the OOB estimate of the error rate.

The OOB confusion matrix, kappa statistics, overall accuracy, and error rate were
presented. In addition, class errors were also presented as they can depict LULC type that is
more or less accurate and can therefore disentangle the uncertainty associated with overall
accuracy based on the classification performance [48].

2.3.7. Independent Validation

Researchers are concerned about the reliability of accuracy assessments. This is even though
OOB error calculated by the RF is widely recognized as a standard method of error reporting by
the scientific community [49,50], some scholars are still of the view that an independent test is
required due to bias nature of the RF accuracy assessment [51,52]. It was proposed that cross-
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validation can reduce the remaining bias [51]. A well-known phenomenon is RF’s preference for
predicting classes where the majority of training observations originate [53]. A stratified random
sampling of equal size was used for the selection of validation data in this study. The selection
of validation shapefile was carried out in R programming software using the ‘sp’ [44] and
‘raster’ [43] packages. One hundred points were extracted for each class from the classified maps.
However, further confirmation and verification of the individual points were done in QGIS
with the help of RGB composite and Google Earth so that the correct class could be assigned to
each point data. Similarly, the accuracy assessments of the classified maps were performed in
R programming software using the validation datasets created earlier. The same R packages
were used for accuracy assessments. This cross-validation aims to: (1) complement OOB error
estimates of the RF, (2) find out whether two validation results can maintain a consistent pattern,
and (3) find out whether sampling the same number of observations in each class could serve
as an alternative means of reducing bias.

3. Results
3.1. Feature Importance Selection

Based on the proposed scenarios for evaluating the feature importance, all variables
were put into the RF model, and the importance of each variable was calculated by the score
of the accuracy of their contribution to the RF classification (4a/d). The RF classification
algorithm is robust as it outputs the contribution of different variables in the model. The
feature analyses were carried out for each dataset (Sentinel-1, 2, and topographic variables)
separately, and the most important features were selected for the last scenario. Based on the
random nature of the model, different scores of importance were derived. The Sentinel-2
variables show the lowest out-of-bag error. Therefore, one of the most important features in
the second scenario (VH normalized backscatter) and the third scenario (SRTM elevation)
were selected to complement the Sentinel-2 data.

Figure 4a,d shows the mean decrease in accuracy of the model for the four scenarios
established and implemented in this study. The greater the accuracy, the more influential
the variable is for the classification. Figure 4a shows the mean decrease in accuracy of
the first scenario, which uses only the Sentinel-2 data. The mean decrease in accuracy
between these variables and for this specific scenario. This means that the difference
between the most and least important features is substantial. The blue band contributes
the most, followed by the SWIR1 band and the NIR band 8a, NIR band 8a, and SWIR2. In
this particular scenario, the red edge bands are the least important features (Figure 4a),
with mean decrease accuracy ranging from 40–75. In this scenario, the OOB error estimates
are less, meaning that all features have yielded the overall accuracy of the model. These
results point to the importance of spectral reflectance property variation and the role of the
interacting medium.

The feature importance for the second scenario is shown in Figure 4b. Only the
Sentinel-1 normalized backscatter was considered in this scenario. In this scenario, VH
normalized backscatter appears as the most important feature compared to VV, Mean, and
sum of VV and VH. And there is a wide gap between them. And the VH backscatter has the
highest contribution to the model. This does not, however, means that the Sentinel-1 data
outperformed the Sentinel-2 data when reference is made to the MDA scores. Although
the mean decrease accuracy shows the most important feature based on MDA, the scores
do not, however, determine the overall accuracy of the model, especially if two different
scenarios are being considered. Feature importance in an RF model depends to a large
extent on the combinations of the variables in the model. In the third scenario, only
topographic variables were assessed. In the third scenario, elevation has the highest scores,
followed by slope and the aspect, aspect. The gap between the elevation scores and that
of other topographic features is substantial. This suggests that elevation has an important
contribution in discriminating land cover/use categories. In the fourth scenario (Figure 4d),
12 features, selected from across the 1st, 2nd, and 3rd scenarios, were combined to optimize
the features and therefore ensure an increase in model performance. In this scenario,
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elevation is the most important feature and therefore has the greatest contribution to the
classification, followed by the blue band > VH > NIR_8a > SWIR1 > NIR_8 > SWIR2 >
green > red and then the red edge band as the least contributors in that order (Figure 4d).
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3.2. Out-Of-Bag Error Estimates

Here, the study presented only the two most accurate classifications (based on Sentinel-2
data and based on a combination of Sentinel-1 VH, Sentinel-2 bands, and SRTM elevation data)
based on the most important features of the four classification scenarios explained above. As
earlier stated, the purpose of different scenarios implemented in this study was to find out the
most important feature for model optimization.
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3.2.1. Sentinel-2 (Scenario 1) Classification Results

The overall OOB error estimates show that Sentinel-2 bands have an overall accuracy
of 84.2%, an OOB error rate of 15.8%, and k = 0.4 (Table 2). Going by the overall accuracy,
one can infer that the classification results for these data are highly accurate. However, as
expected, and as it is most common to many classification results, there are omission as
well as commission errors in the classification results. The RF model provides an error rate
for each class of the land cover/use category. Irrigated land has the least class error (5.3%),
while grassland has the highest (21%), followed by tree/shrubland (18.30%) and then
farmlands (17.49%) (Table 2). This means that there is a probability that pixels classified
in these categories may not be the actual land cover on the ground. For example, the
spectral signatures of farmlands resembled that of grassland and farmland. This led to
confusion and misclassifications of these land categories. The misclassification is confirmed,
given that these classes recorded the highest errors. The river and the wetland were
overestimated, given the spatial resolution of the datasets. Barren and built-up areas
confuse each other with barren land in the floodplain region classified as built-up owing to
their spectral similarity.

Table 2. OOB confusion matrix for Sentinel-2 (Scenario 1) classification results.
Overall error rate = 15.8%, Overall accuracy = 84.2%, κ = 0.38.

LULC Category 1 2 3 4 5 6 7 8 Row Total Class Error (%)

River 1145 71 46 11 20 0 0 0 1293 11.45
wetland 84 776 1 6 11 0 1 0 879 11.72

irrigated land 9 0 443 1 0 14 0 1 468 5.34
Built-up 1 3 7 1263 29 0 20 0 1323 4.54
Barren 5 2 0 135 7516 374 187 9 8228 8.65

Tree/shrubland 0 0 108 2 56 1978 208 69 2421 18.30
Farmland 0 2 57 425 581 3702 32,745 2173 39,685 17.49
Grassland 2 0 3 0 0 15 21 147 188 21.81

Column total 1246 854 665 1843 8213 6083 33,182 2399 54,485

3.2.2. Sentinel-1 (Scenario 2) Classification Results

The overall OOB error estimates show that Sentinel 1 backscatter has an overall
accuracy of 83%, an OOB error rate of 17%, and k = 0.22 (Table 3). Going by the overall
accuracy, the result is encouraging. However, the RF’s class error shows otherwise. Only
farmland achieved a class error of less than 5%, while other classes recorded not less than
43%. The Sent1nel backscatter does not separate the different classes proposed in this study.

Table 3. OOB confusion matrix for Sentinel 1 (Scenario 2) classification results.
Overall error rate = 17%, Overall accuracy = 83%, κ = 0.22.

LULC Category 1 2 3 4 5 6 7 8 Row Total Class Error (%)

River 285 118 2 33 48 12 794 1 1293 77.95
wetland 80 496 0 56 7 0 239 0 878 43.50

irrigated land 0 1 109 2 67 5 283 1 468 76.70
Built-up 37 54 0 505 31 2 692 0 1321 61.77
Barren 11 5 14 16 5419 97 2663 3 8228 34.13

Tree/shrubland 8 0 5 3 222 703 1479 1 2421 70.96
Farmland 133 63 37 277 1034 299 37,826 15 39,685 4.68
Grassland 1 0 0 0 28 0 134 25 188 86.70

Column total 555 737 167 892 6856 1118 44,110 46 54,482

3.2.3. SRTM Elevation Data (Scenario 3) Classification Results

The overall OOB error estimates show that SRTM data (elevation, aspect, and slope)
have an overall accuracy of 76.44% and an OOB error rate of 23. 56%, and k = 0.10 (Table 4).
Going by the overall accuracy, the result is encouraging. On the contrary, the RF’s class
error shows otherwise. Only farmland achieved a class error of less than 4%, while other
classes recorded not less than 60%. The SRTM data do not separate the different LULC
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classes proposed in this study. However, it always shows a good result when it is combined
with other multi-spectral and radar data.

Table 4. OOB confusion matrix for SRTM data (Scenario 2) classification results.
Overall error rate = 23.56%, Overall accuracy = 76.44%, κ = 0.10.

LULC Category 1 2 3 4 5 6 7 8 Row Total Class Error (%)

River 476 152 34 12 404 1 114 1 1194 60.13
wetland 259 169 52 8 202 0 121 0 811 79.16

irrigated land 75 51 80 6 130 1 96 0 439 81.78
Built-up 62 28 19 125 184 14 830 1 1263 90.10
Barren 92 73 35 24 1881 14 5363 0 7482 74.86

Tree/shrubland 1 5 2 8 109 67 2039 0 2231 97.00
Farmland 39 52 50 46 960 45 36,109 0 37,301 3.20
Grassland 3 0 0 3 11 1 160 0 178 99.00

Column total 1007 530 272 232 3881 143 44,832 2 50,899

3.2.4. Sentinel-1, 2, VH Backscatter and SRTM Elevation Data (Scenario 4)
Classification Results

Table 5 presents the confusion matrix for the classification results in scenario 4. Re-
garding Sentinel-2 classification results, a consistent pattern has been maintained by the
combinations of Sentinel-1, -2, VH backscatter, and SRTM elevation data but with im-
provement in the classification accuracy (Table 5). The overall accuracy is 89.8% and a κ

value of 0.4 (Table 5). This show an increase of 4.9% and 5.3% compared to Sentinel-2 for
overall accuracy and kappa statistics, respectively. Similarly, grassland has the highest class
error (18.09%), which is still 3% lower than that of Sentinel 2. Grassland was followed by
wetland/flooded area (12.19%), farmland (11.8), and tree/shrubland (12.02%). The class
error for tree/shrubland is the lowest for this scenario and is 6.28% lower than that obtained
in scenario 2 (Table 5). Generally, the addition of the other two features (VH normalized
backscatter and elevation data) has improved the overall accuracy of the classification.

Table 5. Out-of-bag confusion matrix of the Sentinel-1, -2, VH backscatter, and SRTM elevation data
(Scenario 4) classification. Overall OOB error rate = 10.9%, Overall accuracy = 89.1%, κ = 0.4.

LULC Category 1 2 3 4 5 6 7 8 Row Total Class Error (%)

River 1178 50 37 11 17 0 0 0 1293 8.89
wetland 88 771 0 1 17 0 1 0 878 12.19

irrigated land 7 0 457 4 0 0 0 0 468 2.35
Built-up 1 3 8 1276 14 0 19 0 1321 3.41
Barren 0 0 1 64 7617 297 242 7 8228 7.43

Tree/shrubland 0 0 60 2 41 2130 156 32 2421 12.02
Farmland 0 0 18 451 682 2143 34,965 1426 39,685 11.89
Grassland 2 0 2 0 0 12 18 154 188 18.09

Column total 1276 824 583 1809 8388 4582 35,401 1619 54,482

3.3. Independent Validation

To complement the validation results obtained in an RF model (which uses 30% of
the training datasets), another independent validation was carried out to compare the two
scenarios (Tables 6 and 7).
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Table 6. Confusion matrix for Sentinel-2 accuracy assessment (Scenario 2) classification. Overall error
rate = 30.1%, Overall accuracy = 69.9%, κ = 0.66.

LULC Category 1 2 3 4 5 6 7 8 Row Total
Accuracy (%)

Producer’s User’s

River 91 20 16 6 0 0 0 0 133 90.1 68.4
wetland 10 79 1 26 0 1 0 0 117 79 67.5

irrigated land 0 0 72 0 0 16 0 0 88 72 81.8
Built-up 0 0 3 46 2 0 1 6 58 46.9 79.3
Barren 0 0 0 5 90 7 4 6 112 90.9 80.4

Tree/shrubland 0 0 6 0 5 66 20 22 119 64.7 55.5
Farmland 0 1 0 15 2 5 75 25 123 75 61
Grassland 0 0 2 0 0 7 0 39 48 39.8 81.2

Column total 101 100 100 98 99 102 100 98 798

Table 7. Confusion matrix for Sentinel 2, 1 (VH backscatter) and SRTM elevation data (Scenario 4)
classification. Overall error rate = 24.8%, Overall accuracy = 75.2%, κ = 0.71.

LULC Category 1 2 3 4 5 6 7 8 Row Total
Accuracy (%)

Producer’s User’s

River 93 13 13 6 0 0 0 0 125 92.1 74.4
Wetland 8 86 2 26 0 5 0 0 127 86 67.7

Irrigated land 0 0 75 0 0 7 0 0 82 75 91.5
Built-up 0 0 3 48 2 0 2 7 62 49 77.4
Barren 0 0 0 3 91 5 4 5 108 91.9 84.3

Tree/shrubland 0 0 3 13 5 78 13 12 124 76.5 62.9
Farmland 0 1 1 2 1 3 79 24 111 79 71.2
Grassland 0 0 3 0 0 4 2 50 59 51 84.7

Column total 101 100 100 98 99 102 100 98 798

3.3.1. Sentinel-2 Accuracy Assessments (Scenario 1)

The confusion matrix for the Sentinel-2 data classification (Scenario 2) is presented
in Table 6. In this validation, an equal-size stratified random sampling was used for the
selection of validation datasets (800 points, 100 points each for the eight land cover/use
categories) were used. The study reports an overall accuracy of 69.9%, an error rate of error,
and a κ value of 0.66. Except for grassland and built-up area, all LULC categories achieved
producer and user accuracy of more than 55%.

3.3.2. Sentinel-1, -2, VH Backscatter and SRTM Elevation Data (Scenario 4) Accuracy
Assessment

Table 7 indicates the accuracy assessment of the RF classification results conducted
based on an independent validation for Sentinel-1 and -2, VH backscatter, and SRTM
elevation data. In this scenario, the study observed an overall accuracy of 75.2% and a k-
value of 0.71. The study noticed an improvement in terms of model performance compared
to when Sentinel-2 only was used. In this scenario, all classes recorded the user’s accuracy
of at least 62%.

3.4. LULC Maps and Area Covered by Each LULC Category

Table 8 shows the area proportion as extracted from the LULC maps obtained from
the RF classifications for Sentinel-2 only (Figure 5a) and the combination of Sentinel-1, -2,
VH backscatter, and the SRTM elevation (Figure 5b), which are presented in Figure 5a,e, the
two most accurate LULC maps. Quantitatively, it is obvious that cultivated areas dominate
the landscape, with farmland occupying close to 3000 km2 of the land. On the other hand,
wetlands, rivers, and grassland constitute a smaller proportion. The maps show the types
of LULC categories that exist in the area. Visually, the maps show that cropland (upland
agriculture) predominates in the area. Despite the predominance of upland agricultural
land use, the RF model’s ability to discern across classes makes the maps even more
intriguing. LULC categories like river, wetland/flooded, irrigated land, and grassland
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are relatively modest in comparison to other LULC categories, but the amount of specific
information that comes from the classification is detailed and relatively accurate. The
floodplain area was clearly distinguished from the LULC in upland areas. This has been
achieved in both scenarios. Figure 5c,e shows a full-resolution comparison between the
two maps based on Sentinel-2 RGB color composite. In comparison to RGB, there is a clear
difference between how the two scenarios classified the LULC classes. Sentinel-2 only
seems to have observed more barren land than the combined datasets (Figure 5c,f). On the
other hand, the map produced from the combined datasets shows a more vegetated area.
These differences occur as a result of variations in the spectral reflectance signature of the
land categories. But the use of sentinel backscatter and elevation data has helped to adjust
the confusion between classes, which led to improved classification performance.
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Table 8. Area proportion (km2) for each LULC category.

LULC Category Sentinel-2 Sentinel-1, -2 & SRTM Elevation

River 58.42 55.38
wetland 22.91 25.34
irrigated land 140.07 183.54
Built-up 110.67 142.28
Barren 481.55 425.56
Tree/shrubland 305.80 310.62
Farmland 2990.68 2964.54
Grassland 3.63 2.27

4. Discussion

This study reports on the production of LULC maps based on random feature selec-
tion to evaluate its application in an agriculturally dominated landscape in Nigeria. The
potential of using Sentinel-1 optical data, Copernicus Sentinel-1 c radar backscatter, and
SRTM topographic variables were investigated to ascertain whether this synergy could
improve classification accuracy. The general findings that emerged from this study suggest
that: (1) the application of RF classification appears promising in this ecosystem; (2) the use
of multiple remote sensing and environmental variables is an important contribution to
quantitative remote sensing applications; (3) feature selection methods can improve classifi-
cation accuracy; however, the evaluation of classification accuracy requires a thorough and
critical assessments.

The mapping performed in this study was guided by the RF feature selection procedure
based on the ranking of MDA as a function of OOB error estimates. The contribution of
each satellite band varies. Some bands make a better contribution than others. What
makes these results interesting is the procedure used to test each data set individually and
then in combinations. Interestingly, the most important bands also provide the largest
spectral differences between classes, except for the normalized backscatter polarizations,
where the spread between classes is not very large, but this is similar behavior observed
for the Sentinel-2 blue band (Figure 3a,b). Among the Sentinel-2 data variables, the blue,
SWIR1, and NIR bands were found to be the most important variables (Figure 4a). Similar
behavior for the SWIR1 and blue spectral bands of Sentinel-2 has been observed in previous
vegetation, tree species, and crop mapping studies [54,55]. ED Chaves et al. [56] have
explained that Sentinel’s two SWIR bands are very sensitive to chlorophyll content, which
allows them to distinguish different vegetation types and determine classification accuracy
for LULC. ED Chaves, CA Picoli, and D. Sanches [56] stated that Sentinel’s two SWIR bands
are very sensitive to chlorophyll content, allowing them to distinguish different vegetation
types and determine classification accuracy for LULC. In addition, visible and shortwave
infrared wavelengths are known for their spectral variations, which can explain variations
caused by chlorophyll content, soil type, and soil color [57].

Using the normalized backscatter, the VH polarization has the highest rank, which is
due to the combinations of the different polarizations (Figure 4b). For the topographic SRTM
variables, the elevation data had the highest rank (Figure 4c). The stand-alone classification
results for the Sentinel-1 data (Table 3), as well as for the topographic SRTM variables
(Table 4), achieved very low accuracy compared to the Sentinel-2 data (Table 2). Therefore,
the synergy between VH, elevation data, and Sentinel spectral bands was evaluated to see if
the accuracy of the model could be improved. The ranking of the most important variables
shows that elevation, blue band, VH, NIR8a, and SWIR1 are the five most important
variables (Figure 4d). Elevation makes the largest contribution to the classification. These
results are consistent with a recent study by Zhao, Zhu, Wei, Fang, Zhang, Yan, Liu, Zhao,
and Wu [57], the only difference being that they do not include radar backscatter as one of
their input variables. This study highlights the importance of altitude and radar backscatter
data with Sentinel-2 data to improve the classification accuracy of LULC.



Agriculture 2023, 13, 98 17 of 22

The accuracy of the classified maps in this study suggests that it is reasonable to use
different remote sensing data for LULC, as has been done in many previous studies. Based
on the OOB error estimates, two scenarios were considered the most important, so the
comparison is limited to these. The overall OOB classification results for Sentinel-2 data
show an overall accuracy of 84.2% and a κ of 0.38, with the lowest and highest class errors
for classification at 4.54% and 21.81% for built-up areas and grassland, respectively (Table 2).
This level of accuracy is achieved by the Sentinel-2 data alone, further emphasizing their
applicability in LULC mapping in this particular ecosystem. However, when the SRTM
elevation data and VH backscatter were added to the Sentinel-2 spectral bands, the overall
accuracy was 89.1%, and the κ value was 0.4, an increase of 4.9% in overall accuracy
(Table 3) compared to the Sentinel-2 data alone. The lowest classification error was found
in the irrigated areas, with only 2.15%, while the highest error occurred in the grassland
areas (18.09%), which in this case were reduced by 3.72%. The cultivated areas had a class
error of 3.41%, which is a further reduction of 1.13% compared to the Sentinel-2 data. For
trees and shrubland, the study found a 6.28% difference between the sentinel data and their
combination with elevation and VH backscatter data.

This is not independent of the role of the elevation and backscatter data in the overall
performance of the model. The topography of the area is heterogeneous, and some of the
classes are located in the floodplain, which is typically undulating compared to developed
and agricultural areas. Several studies have shown the importance of elevation data to
increase the accuracy of the classified map [11,26,40,58]. In the same vein, radar backscatter
was found to improve model performance because it can normalize or reduce the effects
of the atmosphere, topography, instrument noise, etc., to provide consistent spatial and
temporal comparisons [59]. The results from this study are consistent with Meneghini [60],
who evaluates the synergy between the Sentinel-1 and Sentinel-2 data for land cover classi-
fication. Their results show an overall accuracy of 74% and 78% for Sentinel-2 (Only) and in
combination with Sentinel-1 data, respectively. Similarly, several studies have reported the
importance of synergy between sentinel-1 and -2 data for increasing model performance
for biomass estimation [61], crop type classification [62], irrigation mapping [63], and land
cover mapping [64,65].

It has been observed that in a setting in which there is a strong interest in predicting
observations from the smaller classes, sampling the same number of observations from
each class for validation is a promising alternative [53]. Moreover, one of the objectives
of this study was to compare the validation of OOB error estimates of the RF normally
performed internally by the model with another independent validation (external) which
was performed based on equal-size random stratified sampling using 100 polygons for
each LULC category. The overall accuracy of the classification results were 69.9% and 75.2%
for Sentinel’s 2 data only and the combination of the same data with VH backscatter and
elevation data, respectively. The difference between the two is 5.3% which conformed to
the OOB estimates of errors even though the overall accuracy obtained from the OOB is
higher. The consistency of these two validation results manifested even within the class
error. Similar to OOB estimates of error, grassland had the lowest producer’s accuracy
with an 11.2% difference between the Sentinel’s data only and in combination with VH
and elevation data based on the independent validation. In this context, the estimates
from the OOB are, therefore, reliable since the two validation results have maintained a
consistent pattern. The only difference between the two is in kappa statistics, where the
external validation shows higher kappa (k = 0.71, Table 7) than the estimates from the RF
internal validation (k = 0.4, Table 3). This is one of the advantages of a balanced setting
for applying the equalized stratified random sampling for validation [66], but balancing
may not always be possible due to costs or other reasons [4]. But kappa is not a measure of
accuracy but of agreement beyond chance, and chance correction is rarely needed [67,68].
The comparison results obtained in this study are consistent with findings by Adelabu
et al. [69], who tested the reliability of the internal accuracy assessments of the RF for
classifying tree defoliation levels using different validation methods. One of the most
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important deductions that can be made in this context is that where only the RF approach
is applied to the LULC classification, independent validation is not necessary because
validation requires a large number of points, and therefore manual class labeling based
on external validation is tedious and time-consuming. The findings of this current study
provide insights into the reliability and applicability of OOB error estimates.

One of the limitations of this study is the lack of reference ground truth datasets from
a field campaign. Although this study relied on RGB composite images and Google Earth
data for the selection of training and validation datasets, it should be noted that such datasets
are well-acknowledged as a source of training and validation for land cover mapping [70,71].
Furthermore, a comparison of the quantitative and qualitative results showed that the LULC
categories are detailed and very accurate (Tables 2, 3 and 6–8 and Figures 4 and 5). The area
estimated from the two most accurate results shows that there is extensive agricultural land. The
two maps show slight differences for the area of different LULC categories. The study, however,
acknowledged the confusion between the barren land and the built-up areas, which occurred
primarily due to the presence of settlements in or near the floodplain areas, in addition to the
similarity of the spectral reflectance signatures of these LULC classes. Moreover, the difference
between the spectral reflectance signatures between the barren land on the upland and in the
floodplain probably led to the underestimation of barren land in the upland areas. However,
the class error for barren is minimal, as observed for the RF internal validation (7.43%) as well
as for independent validation (producer’s accuracy = 91.9% and user’s accuracy = 84.3%). From
these results, it is obvious that further research in this particular ecosystem may require the need
to incorporate vegetation (e.g., NDVI), bare soil indices (e.g., modified normalized difference
bare-land index), and water indices (e.g., Modified Normalized Difference Water Index) to
improve classification performance. The study also noted confusion between the river network
and wetlands. Earlier reports indicated that significant flooding occurred in the area on October
1 [72,73]. At this time, the volume of rivers usually increases, and flooding is easily possible
when the amount of rainfall is significant, and the dams along these rivers have been opened.
These floods have left many people homeless and severely damaged agricultural land and crops.
Future research could focus on flood vulnerability assessment based on change detection using
sentinel data. In this situation, flood vulnerability mapping can provide critical information to
assess flood risk in the region. Policymakers could be well informed about the risk and thus
develop appropriate mitigation strategies based on the severity of the impacts [74,75].

Similarly, the study observed confusion between the grassland and farmland. Mapping
LULC with Sentinel-2 data in the semi-arid region is quite promising [34] but challenging
because most crops are planted during the rainy season, and their growing season is in
July and August, during which the cloud cover is high in the area. And the reliance on dry
season imagery may not be feasible as there is a transition from cropland to barren land in
the area, especially from early November. Since cropland makes up most of the LULC in
the area, this is not the most appropriate time for LULC mapping. This study minimized
this problem by integrating Sentinel-1 and -2 data in early and mid-October. Van Tricht,
Gobin, Gilliams, and Piccard [63] demonstrate the importance of choosing phenological
cycles for crop mapping based on the synergy between the sentinel-1 and -2 data using an
RF classifier for increasing model performance. Similarly, many studies demonstrated the
importance of Sentinel-1 and -2 for rice mapping in a lowland area [76], mapping paddy
rice [77], and mapping Maize Areas in heterogeneous agriculture [78] based on RF. By
understanding this trade-off, the current study can help in the selection of datasets and
periods for LULC classification with specific applications to agricultural landscapes in
semi-arid regions. Although cloud cover may result in a lack of cloud-free imagery in
this region, a potential area for further research would be to examine crop and vegetation
phenological cycles and by incorporating more variables from the Sentinel-1 data during
the rainy season to minimize the challenge of cloud cover.
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5. Conclusions

This paper proposed LULC mapping by applying an RF classifier to Sentinel-1, -2, and
SRTM digital elevation data to evaluate its applicability based on local class definitions
and training datasets in an agricultural landscape in Nigeria. The main objective was to
develop a methodology to improve model performance and reduce prediction error in
LULC classifications. A feature selection method (RF) was implemented to evaluate the
contribution of individual bands based on a standard OOB error estimate (MDA). The
study showed that the combination of spectral bands, backscatter, and topographic features
could improve classification accuracy. The results show that among the variables in the
sentinel-2 data, the blue, SWIR1, and NIR bands are the most important variables. Using
the normalized backscatter, the VH polarization has the highest rank, which is due to
the combination of the different polarizations. For the SRTM topographic variables, the
elevation data had the highest rank. The ranking of the most important variables when
combining the different data sets shows that height, blue band, VH backscatter, NIR8a, and
SWIR1 are the five most important variables.

The overall OOB classification results for Sentinel-2 data show an overall accuracy
of 84.2%, with the lowest and highest class errors for classification of 4.54% and 21.81%
for built-up areas and grassland, respectively. This level of accuracy is achieved by the
Sentinel-2 data alone (scenario 1), further emphasizing its applicability in LULC mapping
in this particular ecosystem. On the other hand, the class errors for Sentinel-1 (scenario
2) and SRTM data (scenario 3) show high-class errors. However, when the Sentinel-1, -2,
and SRTM elevation data were added to the model, the overall accuracy was 89.1%. This
represents a 4.9% improvement in overall accuracy compared to Sentinel-2 alone and a
6.1% and 12.66% improvement compared to Sentinel-1 and SRTM data, respectively. The
lowest classification error was found in the irrigated areas at only 2.15%. In comparison,
the highest error occurred in the grassland areas (18.09%), which in this case were reduced
by 3.72% compared to the Sentinel data alone. According to the study, there was a 6.28%
difference between sentinel data and their combination with elevation and VH backscatter
data for trees and shrubland. The results of an independent validation based on an equal-
size random sampling of 800 points are consistent with OOB error estimates. The study
shows how the synergy of optical, radar, and elevation data can significantly improve
LULC map accuracy. Based on these results, LULC maps could be used in a broad range of
spatial planning applications.
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