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Abstract: Cadmium (Cd) contamination in edible agricultural products, especially in crops, has
raised worldwide concerns regarding food safety consumption. This review summarizes the current
knowledge of the applicable methods and perspectives for reducing Cd contamination of agricultural
products. Agricultural approaches of soil amendments, irrigation management, microbial agent,
and cropping patterns were systematically concluded to illustrate the developments and achieve-
ments in crop contamination management. The use of traditional soil amendments as well as novel
nano-materials has contributed to producing safe crops in agricultural soil contaminated with Cd.
This review provides an inspiring and promising tool for maintaining food safety by reducing Cd
accumulation in edible agricultural products.
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1. Introduction

Cadmium (Cd) is a non-essential heavy metal widely detected in soil [1,2]. The
main sources of Cd contamination in agricultural soil mainly include industrial sources,
such as the steel industry, waste incineration, agricultural sources of phosphate fertilizers,
pesticides, and sewage sludge applications [3–6]. The continuous use of Cd-contaminated
agriculture soil has resulted in Cd pollution in cereal crops, fruits, vegetables, and other
dietary crops in recent years [7–9]. Cd exposure through the daily dietary intake of Cd-
contaminated agricultural products has been explored in numerous studies [6,10–12]. The
most well-known toxicity of the prolonged dietary intake of Cd through rice is itai–itai
disease in Japan [13]. The other toxic effects of long-term Cd exposure include kidney
failure, reproductive organs impairment, immune system damage, cardiovascular diseases,
and prostate, ovarian, and renal carcinogenicity in humans [6,14–16].

Cd accumulations differ greatly among crop species, e.g., between 0.002 and 0.41 mg kg−1 DW
for wheat in the USA, Netherlands, UK, and Canada [17–20], between 0.012 and 0.64 mg kg−1 DW
for barley grain in the Netherlands [19], and between 0.04 and 8.2 mg kg−1 for rice in Thailand and
China [21,22]. Apart from cereal grains, Cd concentrations ranging from 0.08 to 0.28 mg kg−1 DW
for legumes, from 0.07 to 0.27 mg kg−1 for grasses, from 0.001 to 0.054 mg kg−1 for nuts, from
1.20 to 1.54 mg kg−1 for root vegetables, from 0.94 to 4.13 mg kg−1 for leafy vegetables, and from
0.14 to 0.34 mg kg−1 for fruits were found in different regions around the world [23–27], some
of which have exceeded the Cd limitation suggested by the Food and Agricultural Organization
of the United Nations (FAO) (0.02 mg kg−1 g DW) [28,29]. Therefore, it is critical to develop
applicable methods to reduce cadmium accumulation in edible agricultural products to
maintain food safety.
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Physical, chemical, and biological solutions were put forward to minimize the potential
health risks of Cd pollutants in agricultural products from the Cd-contaminated soil [30,31].
Nevertheless, traditional physical and chemical strategies were difficult to widely promote
in agricultural land due to their high costs, high energy consumption, long-term fallow,
and potential secondary pollution [32,33]; these agricultural methods in Cd minimization
provide promising solutions to maintain crop safety against Cd contamination. This
review systematically summarizes the approaches employed in alleviating Cd pollution
in edible agricultural products, which provide an effective path for food safety against
Cd contamination.

2. Soil Amendment to Reduce Cd Bioavailability

Remediation approaches involving Cd immobilization in the soil have been widely
conducted to alleviate the Cd uptake of food crops. A variety of nontoxic mineral amend-
ments are supplied into soils (Table 1) to reduce the soil’s Cd mobility and bioavailability
through adsorption, precipitation, and complexation mechanisms in soil.

Table 1. Effects of mineral nutrient amendments to reduce Cd immigration from soil to crops.

Amendment Type
Applied

Concentration
(mg kg−1)

Cd Treatment
(mg kg−1) Plant Soil Type Results/Observation References

Phosphorous
Fertilizer 50, 200, 1000 82 Rice Sandy loam Increased soil pH and converted

Cd to a less mobile form. [34]

Diammonium
phosphate (DAP) 230 0.19 - silt loam Acted as a stabilizing agent to

reduce Cd uptake. [35]

Phosphate Rock
(PR) 2500 0.6, 1.5 Brassica campestris Red soil

Immobilized Cd via formation or
co-precipitation of insoluble metal

phosphates in the soils.
[36,37]

Super Phosphate
(SP) 5000 0.20, 0.15, 0.02,

0.04, 0.06 Wheat Surface
agriculture soil

SP efficiently immobilized the soil
Cd but caused potential soil

acidification risk.
[38]

Phosphate Rock
(PR) + Mud

compost (CP)

10,000, 20,000
+20,000 0, 10, 30 Maize Sandy loam

The combined application of
PR + CP improved the growth of

maize and reduced soil Cd
bioavailability.

[39]

Diammonium
Phosphate (DAP) 60, 920, 2300 1090 - Sandy loam

Application of 2300 mg kg−1 was
the most effective for

immobilizing Cd, Pb, and Zn
from the contaminated soil.

[40]

Zinc (Zn) 0, 100, 200 0, 1.5, 3 Chamomile Mixture of sandy +
humus garden soil

The addition of Zn to the soils led
to a suppressed Cd accumulation
into the above-ground plant parts.

[41]

ZnS04 0, 80.7, 322 104 Thlaspi
caerulescens -

Cd competed with Zn uptake
while Zn did not compete with

Cd uptake.
[42]

Zinc Sulfate
(ZnSO4·7H2O) 60 0, 1, 2, 5

Chickpeas, mung
beans, wheat,

and maize
Sandy loam

Soil-applied Zn antagonized Cd
to cope with its toxicity, thus

favoring plant growth.
[43]

Zinc Oxide
Nanoparticles

(ZnO NPs)
0, 25, 50,75, 100 7.38 Wheat Sandy loam

The Cd concentrations were
reduced in the grains (16–78%)

with the soil application of ZnO
NPs as compared to the control.

[44]

Zinc (Zn) 0, 2, 10, 100, 1000 0, 15, 30, 50 Wheat Loamy Zn application decreased Cd
concentration in plants. [45]

Zinc (Zn) 0, 2.5, 10 0, 5 Wheat Clay loam
Zn treatment alleviated Cd
toxicity by decreasing Cd
concentrations in wheat.

[46]

Calcium
polypeptide

0, 210, 420, 840,
1260, 1680 2.0, 5.0 Brassica campestris Red loam

Competitive inhibition effect of
calcium on Cd enrichment

in plants.
[47]

Calcium dichloride
(CaCl2) 200.4 200, 300 Brassica juncea Peat, Perlite and

Sand (1:1:1, v/v/v)

Decreased Cd content and
Improved growth and biomass

yield of Brassica plants.
[48]

Ca(OH)2 5.62–23.1 0–10 Brassica juncea Egmont and
Tokomaru soil

Transformed Cd to fewer mobile
fractions and reduced

phytoavailability.
[49]

Hydroxyapatite
(HAP) + Cupriavidus

sp. strain ZSK
30,000 + 108 cells/g 13.82 Ramie,

Dandelion, Daisy Smelter soil

Combined application of HAP+
Cupriavidus sp. reduced Cd

accumulation in ramie, dandelion,
and daisy by 44.9%, 51.0%,

and 38.7%, respectively.

[50]

Calcium Silicate
(Ca2O4Si)

0, 410, 830,
1650, 3310 6.1 Amaranths -

Free Cd ions convert into inactive
Cd forms by Ca amendment in

soil and are sequestered in
subcellular compartments.

[51]
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Table 1. Cont.

Amendment Type
Applied

Concentration
(mg kg−1)

Cd Treatment
(mg kg−1) Plant Soil Type Results/Observation References

Potassium Silicate
(K2SiO3) 8 0, 10, 50, 100

Pennis
etumglaucum and

Pennisetum glaucum
peat soil and sand

Significantly increased plant
biomass and Si content, reduced
Cd content, and decreased the

enrichment factor in shoots
and roots.

[52]

Sodium Metasilicate
(Na2SiO3) 400 20, 40 Maize Weathered

acidic soil
Si significantly increased soil pH

and decreased soil Cd availability. [53]

Calcium Silicate
(CaSiO3) 50, 100, 150 10 Wheat Surface soil

Si application caused a decrease
in the Cd contents of shoots and

grains and the translocation from
roots to shoots and grains.

[54]

Hydrous
manganese

oxides (HMO)
1000 18 Ryegrass, tobacco,

and bean Limed silty soil

The amendment application did
not increase biomass production,

but treatment with HMO
markedly decreased the mobility

of Cd, Zn, and Pb.

[55]

Zero-valent iron
(Fe(0)) 0, 500, 1000, 5000 10 Rice -

The Fe(0) application increased
the less available Cd content, and
decreased the exchangeable and

Fe-Mn-oxide-bound (more
available) Cd content.

[56]

Iron oxide (Fe2O3) 50,000 0.5, 1.5, 3.0, 4.0, 8.5 Maize, Barley Silt loam.

Fe2O3 appears to be effective in
response to plant yield, metal
content in plant tissues, and

bioavailable Cd.

[57]

gypsum 0, 2000, 4000, 8000 3.02 Wheat Sandy clay loam

Increased pH and reduces the
availability of Cd due to increased

Cd precipitation and surface
adsorption on the amendment.

[58]

CaCO3 and CaO 0, 10,000, 30,000,
50,000 15.27 Loam

Increased soil pH; formation of
Cd-carbonate, phosphate,

or hydroxide.
[59]

Monoammonium
phosphate (MAP)

and gypsum
0, 2000, 4000, 8000 3.15 Rice Sandy clay loam

MAP and gypsum increase grain
yield and biomass of rice, whereas,

decreased gain and straw Cd
concentrations and uptake in rice.

[60]

Lime + peat 0, 500, 1250 15.44 Mixed clay Liming reduced Cd available
fraction in soil. [61]

Eggshell 50,000 0.24 Alkaline soil

Decreased mobility of Pb, Cd, and
Zn in the soil by transforming
their readily available forms to

less accessible fractions.

[62]

Sodium
nitroprusside 100 um/L 150 um/L Lycopersicon

esculentum
Mixture of sand,
perlite, and peat

Improve resistance mechanism by
modulation of antioxidative
defense system. NO boosts

mineral uptake and reduced
Cd accumulation.

[63]

2.1. Inorganic Amendments
2.1.1. Phosphorous (P)

Phosphorous-containing materials turned out to be a double-edged sword for con-
trolling Cd in soil. Phosphate compounds reduced the Cd bioavailability in soils through
various mechanisms, i.e., direct Cd adsorption by phosphate chemicals, adsorption by
P-induced negative charge of soil particles, and Cd precipitation by forming metal phos-
phates, such as Cd(H2PO4)2 and Cd3(PO4)2 [64–66]. He, et al. [67] showed that the nano-
hydroxyapatite (nHA) application significantly reduced water-soluble (90%), bioacces-
sible (16.77–34.66%), and phytoavailable (64.6%) Cd through metal adsorption on the
surface of nHA and precipitation of Cd-containing phosphates. The extremely high P
addition (16,000 mg kg−1) in Cd-contaminated soil might be involved in Cd precipitation
(Cd3(PO4)2), whereas the low recommended field application of P fertilizer might not
precipitate Cd as (Cd3(PO4)2 and CdCO3), suggesting the Cd immobilization by adsorption
instead of precipitation [68]. Furthermore, P treatments also increased electro-negative
ions, such as HPO4

2− and H2PO4
−1, which could absorb Cd onto the cell wall component

and further reduce Cd translocation in maize by adsorption, complexation, and precipita-
tion [69]. The superphosphate (SP) application in Cd-contaminated soil is responsible for
the inhibition of Cd translocation from the root to the shoot and the decrement of the Cd
content in wheat grain through Cd-P complexes and cell wall components [70].
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Some phosphate compounds increase Cd solubility through decreasing soil pH. Phos-
phate fertilizers (1% w/w) of triple superphosphate (TSP) and phosphate rock (PR) applica-
tions in contaminated soil increased Cd uptake by sorghum plants owing to the declined
soil pH [71]. High Cd concentrations in TSP and PR fertilizers also liberated soluble forms
of Cd, consequently increasing the Cd uptake of the plant. The dissolution of precipitated
and absorbed Cd in rhizosphere soil might account for the high Cd concentration in the
root and increase the uptake of Cd in the plant roots [72]. Therefore, the application of
phosphate amendments and dosages to remediate Cd-contaminated soil must be carefully
composed according to the soil’s physicochemical properties.

2.1.2. Zinc (Zn)

Zn is an essential microelement for numerous vital enzymes in plants. Zn affected plant
Cd uptake by competing for binding sites on the soil and root surfaces [73]. Cd could enter
root cells through Zn-specific ZIP (Zn/iron-regulated transporter-like protein) transporters
and redistribute within plants by Zn transporters [74]. Transporters from IRT1, HMA2,
HMA3, ZIP, and NRAMP family also participate in the uptake and translocation of Zn, Cd,
and other ions in plants [75,76]. The influences of Zn on Cd accumulation in plants can
either be antagonistic [42,43] or synergistic [77]. Zn activity from 10−7.6 to 10−5.2 M could
decrease the Cd concentration of the root and shoot from 0.20 to 0.03 mg kg−1 DW [78].
Soil-applied Zn through irrigation water reduced Cd accumulation in plant tissues in
legumes and cereal crops [43]. Zn could alleviate the Cd uptake in different crop species of
wheat [79–81], rice [82,83], barley [84,85], maize [86,87], mustard [88], lettuce, spinach [89],
sunflower [90], and tomato [91]. In contrast, several studies reported the synergistic
effect between metal absorption and accumulation in plants [92,93]. Increased Cd and
Zn concentration in tomatoes induces the accumulation of oxidative stress, suggesting
synergistic effects on the growth parameters and oxidative stress [91]. Zn amendments
may not always be effective in the reduced Cd uptake in plants. Grant, et al. [94] showed
that Zn deficiency in soil had mild effects on wheat grain Cd concentrations. Free Zn2+

with sub-phytotoxic levels (10−7.6 to 10−6.1) cannot inhibit Cd accumulation by rice [95].
The Zn application could decrease Cd uptake, translocation, and accumulation by

regulating Cd transporter genes. For example, Zhou, et al. [96] reported that foliar Zn
applications reduced root Cd translocation to shoots by downregulating leaf TaHMA2
expression, whereas soil Zn applications reduced root Cd concentrations by downregulat-
ing root TaLCT1 expression. Zn applications in soil (99 kgha−1 ZnSO4·7H2O) and foliar
(0.36 kgha−1 ZnSO4·7H2O) can effectively reduce Cd in grains. The time-dependent appli-
cation of Zn fertilizer could also decrease Cd uptake and accumulation in plants [97,98].
Lime application at the basal stage along with Zn application at the tillering stage caused
a 73% decrement in Cd phytoavailability and reduced the Cd uptake and accumulation
in brown rice [99]. Moreover, reducing the Cd: Zn ratio via Zn fertilizer application in
areas with high Cd contamination would be a useful approach to decrease the Cd uptake
and accumulation in the foliar parts of plants [100]. A lower Cd: Zn ratio by increasing
the Zn concentration significantly reduced the root symplastic accumulation of Cd and
decreased Cd xylem loading and transportation, with lowering Cd accumulation in leaves
of lettuce [101]. Low Cd uptake and accumulation were observed in legumes, fruits, tubers,
and grains when the Cd: Zn ratio in soil was 1:100 [102].

2.1.3. Calcium (Ca)

Ca is also a divalent ion with similar physical and chemical properties to Cd. Gen-
erally, Ca is a competitor of Cd adsorption sites on soil surfaces and root plasma mem-
brane transporters [6]. Several Ca plasma membrane transporters/ion channels, such as
hyperpolarization-activated calcium channels (HACCs), depolarization-activated calcium
channels (DACCs), and voltage-insensitive cation channels (VICCs) are involved in Cd
transportation into the root cell in the forms of ions and metal chelates [103]. In addition,
the application of Ca to the rhizosphere has been shown to increase the membrane potential
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of the root epidermal cell to reduce the uptake of Cd by plant roots [104]. Therefore, the
exogenous application of Ca supplements in Cd-contaminated soil can reduce the amount
of bioavailable Cd in plants [104–106]. It has been noted that Ca reduces the apoplast Cd
concentration but not the symplast Cd concentration in the roots of Picea abies, which might
be ascribed to the Ca and Cd competition of cell wall-binding sites [107]. It was reported
that the competition between Cd and Ca ions for influx transporters into the roots of rice
plants blocked Cd absorption into rice roots, suggesting the protective effect of Ca on Cd
toxicity [108]. A decrease in the root Cd concentration of Brassica juncea was observed
under a Ca + Cd combination rather than Cd alone [109]. The Ca polypeptide not only
promoted the plant growth of the Brassica campestris but also showed competitive inhibition
of Cd uptake in plants [47].

The application of Ca (through lime, gypsum) increased the Cd bioavailability in soils
by exchanging Cd with Ca at exchange sites and releasing free Cd in the soil solution,
which was subjected to plant absorption. The effect of Ca supplements on soil bioavailable
Cd is dose-dependent. Although a similar significant decrease in Cd accumulation in
Boehmeria nivea was observed under 5 mM Ca treatment, a contrasting significant increase
in Cd uptake and accumulation was unraveled under 1 mM Ca treatment [110], supporting
the dose-dependent effect of Ca on Cd uptake in plants. The repression of Cd accumulation
by Ca supplements was significant at 2–3 mM; suppression reached its peak when the Ca
concentration was at 5 mM [47]. Similar reductions in Cd absorption and accumulation in
the wheat and soybean roots were observed at Ca concentrations of 1 mM and 10 mM [111].

2.1.4. Silicon (Si)

Si is a non-essential but beneficial element for plant growth, especially for plants
grown under heavy metals, such as Cd, in a stressed environment [112,113]. Si application
in soil decreases water-soluble Cd and reduces Cd availability to plants via increasing pH
to fulfill Cd immobilization. The supplement of 400 mg kg−1 Si against 20 or 40 mg kg−1

Cd treatments increased the soil pH significantly and decreased the soil Cd availability
by 92% and 98%, respectively [53]. However, few studies have suggested that the effects
of Si on Cd reduction mainly rely on metal speciation in the soil rather than soil pH
elevation. For example, the calcium silicate treatment in Cd-contaminated soil reduced the
Cd concentration in the maize shoot without increasing soil pH. Si is a structural component
of the cell wall [114], and the deposition of Si in the surrounding root endodermis partly
blocks the apoplast flow and restrains the apoplastic Cd transport [115,116]. The application
of Si alone or in combination with selenium (Se) noticeably reduced the Cd concentration
by increasing Cd adsorption on the cell wall and restrained the Cd translocation from root
to shoot, which lowered the Cd concentration in the shoot of Chinese cabbage [112]. Si
application stimulated the development of suberin lamellae, Casparian bands, and root
vascular tissues, which led to a considerable decrease in the symplastic Cd concentration of
maize shoots [117,118].

To explore the cellular fluxes of the Cd, the rice suspension cell and root cell were
exposed to Cd and Si treatments. Researchers discovered that in a wall-bound organosil-
icon compound, the majority of Si accumulated in the cell walls. When compared to
protoplasts from Si-limiting (−Si) cells, total cadmium (Cd) concentrations in protoplasts
from Si-accumulating (+Si) cells were significantly lower at moderate concentrations of
Cd in the culture medium. It was found that the hemicellulose-bound form of Si with a
negative charge is responsible for reducing Cd accumulation in rice cells via the mechanism
of the (Si hemicellulose matrix) Cd complexation and co-deposition [119,120]. Furthermore,
the exogenous application of Si suppressed the Cd uptake and accumulation in plants
via the Si-induced antioxidative mechanism and improved plant growth and photosyn-
thetic characteristics by lowering the reactive oxygen species (ROS) damage [121]. The
Si-mediated alleviation of Cd accumulation is also attributed to its role in altering gene
expression. Cd uptake and accumulation are related to the downregulation of the Cd
transporter (OsNRAMP5 and OsHMA2) by silicon treatment and are associated with the
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phytochelatin-driven vacuolar Cd compartmentation in rice roots [122]. Downregulation
of LCT1, HMA2, and NRAMP5 proteins and upregulation of PCS1 and IRT1 proteins are
also responsible for Cd uptake reduction in wheat and rice after Si addition [123,124].

2.1.5. Liming Materials

Liming material in soil has been used to decrease plant Cd uptake by elevating soil
pH [125]. Liming material, including calcium carbonate (CaCO3), calcium hydroxide
(Ca(OH)2), calcium oxide (CaO) dolomite [CaMg(CO3)2], and slag (CaSiO3) [126,127] could
effectively relieve soil acidification and decrease Cd availability in soil, varying in their
acid-neutralizing capacity. Cd concentration in rice grains [128], lettuce [129], peas [130],
radish [131], potato tubers, oat straw, and ryegrass [132] were decreased along with the
increased soil pH by liming material. Application of liming materials in contaminated soil
can significantly increase soil pH due to the release of hydroxyl ions after hydrolysis of
calcium carbonate. Rising pH due to liming leads Cd2+ to form Cd(OH)+, exerting a strong
affinity to soil adsorption sites compared with Cd2+ [133,134]. Moreover, liming promotes
Cd precipitation in the form of carbonates, phosphates, hydroxides, and oxides at higher
soil pH and decreases the mobility of available Cd in contaminated soil [135,136]. However,
liming is not always effective at reducing Cd uptake in plants [137]. Few effects of liming
have been observed in the Cd uptake of plants. Therefore, the effectiveness of liming on
Cd uptake reduction could vary depending on the type of liming amendment, soil, metal,
and crop species. Understanding the causes that affect liming effectiveness in the soil is
necessary for its application in controlling Cd contamination in soil.

2.1.6. Nitrogen

Nitrogen (N) mineral is present in low quantity in heavy metal-contaminated soils. The
low N content in the soil might be ascribed to the lowered nitrogen metabolism associated
with Cd stress. N fertilizers are usually applied in the soil as ammonium (NH4

+), nitrate
(NO3

−), or urea to promote plant growth and pollutant phytoextraction in contaminated
soils [138,139]. N supplementations increase Cd tolerance in plants by enhancing photosyn-
thesis. Panković, et al. [140] found that N amendment in soil increased the photosynthesis
capability of sunflowers by increasing ribulose 1,5-bisphosphate carboxylase (Rubisco)
activity and soluble protein content. The addition of the basic mineral (N, P, K, and Fe) fer-
tilizers in soil could alleviate the inhibitory effects of Cd, Pb, Ni, and Hg in plants [141]. The
alleviation of Cd toxicity by N fertilizer application also depends on the N source. There is
a substantial difference among N forms on Cd and N uptake. The application of (NH4)2SO4
in soil reduced Cd and increased N uptake in rice leaves as compared to Ca(NO3)2 and
NH4NO3 application, suggesting a partial antagonistic effect between NH4

+ -N and Cd
and a synergistic effect between NO3

− -N and Cd [142]. NO3 supplementation might
increase organic acid production and promote Cd translocation via xylem through organic
acid complex forms [142]. Several other studies also revealed that N fertilizer in the form
of NH4

+ in soil increased Cd uptake via rhizospheric acidification and root cell proton
excretion in sunflower and S. nigrum plants [138,143]. Moreover, Xie, et al. [144] found that
supplementation with NO3

− promotes Cd and Zn phytoextraction by Noccaea (Thlaspi)
caerulescens. Increased biomass production by enhancing photosynthesis activity under N
fertilizer application could be another reason for N-induced alleviation of Cd toxicity. N
fertilizer application alleviated Cd toxicity in Sedum by promoting chlorophyll synthesis
and antioxidant enzymes of SOD, catalase, and peroxidase [145]. Moreover, plant response
to N supply varied with genotypes under Cd stress [146], in which Milyang 46 accumulated
more Cd than Zhenshan 97B in the presence of N application.

2.1.7. Potassium (K)

Potassium (K) minerals minimize ROS formation during photosynthesis and inhibit
oxygen radical-generating NADPH oxidase activation in plants under stress conditions.
Umar, et al. [147] found that optimal K supply decreased the inhibitory effect of Cd in mus-
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tard plants by enhancing antioxidative enzyme activities and reducing H2O2 content and
lipid peroxidation. A similar Cd reduction was observed in rice seedlings due to increased
antioxidative enzyme activities by exogenously applied K minerals [148]. Similar to N, the
Cd toxicity alleviation effects of K application varied among K formations. Zhao, et al. [149]
have shown differential effects of K forms on Cd accumulation, among which KCl and
K2SO4-fed plants had high Cd uptake compared to KNO3. The 0 to 55 mg kg–1 addition of
K minerals in soil resulted in a 60–90% reduction in Cd concentration in KCl and K2SO4-fed
plants, while KNO3 application mainly functioned in maintaining the dry mass of plant
roots and shoots. In conclusion, the reduced Cd toxicity with efficient growth and yield
can be attained by selecting suitable forms of N and K, and the proper genotype.

2.1.8. Iron/Manganese (Fe/Mn)

Fe and Mn metal oxides are natural soil components. Small particle sizes, highly reac-
tive surface areas, and low solubility under average soil pH are important characteristics
that make Fe and Mn oxides suitable for the immobilization and adsorption of diverse soil
pollutants [150,151]. Co-precipitation, formation of inner-surface complexes, and specific
sorption are the ubiquitous mechanisms for the immobilization of soil pollutants through
metal oxides [66,151]. The oxidation and reduction reactions of Fe oxides in the plant
rhizosphere affect the soil Cd bioavailability [152]. Fe oxides present intense capabilities
for Cd adsorption and immobilization in soil [153]. The application of zero-valent Fe(0)
in Cd-contaminated soil significantly reduces bioavailable Cd in rice plants without toxic
effects on plant growth [56]. The release of O2 oxidant in the soil, and Fe2+ to Fe3+ oxidation
with iron oxide or hydroxide on the root surface area are the common mechanisms for Fe
plaque formation on the root surface. Fe plaque could absorb and sequester Cd ions onto
root surfaces and prevent Cd uptake by rice plants [154]. Different types of Fe fertilizers
and application methods have exerted different effects on Cd uptake and accumulation
in plants. The soil application of EDTA–Na2Fe fertilizer significantly decreased Cd con-
centration in the roots, shoots, and grains of rice, whereas, increased Cd concentrations in
the roots and shoots were observed under foliar application of FeSO4 and EDTA–Na2Fe
fertilizers [155].

Mn oxides were effective sorbents for Cd, Pb, Co, Zn, and Cu [66,156]. Scientific
literature dealing with Mn oxides as immobilizing components in contaminated soil is
insufficient. A hydrous Mn oxide was applied in contaminated soil and successfully
stabilized Cd, Pd, and Zn. Birnessite, todorokite, cryptomelane, manganite, and pyrolusite
are commonly occurring Mn oxides in the soil environment [157,158]. The metal adsorption
through Mn oxides in the form of hydroxylation cations was responsible for the highest
adsorption capacity of metals by birnessite [156]. In addition, an antagonistic relationship
between Cd and Mn relied on a competitive mechanism for the same membrane transporter
between Cd and Mn [159].

2.2. Organic Amendments
2.2.1. Biochar

Biochar is a soil amendment obtained from the thermal composition of organic ma-
terials under oxygen-limited conditions. Due to its physiochemical properties, including
porous structure, large particle size, high pH, cation exchange capacity (CEC), high car-
bon content, and active functional groups [160], biochar amendments not only reduce the
bioavailability of heavy metals, such as Cd in soil, but also decrease plant heavy metal
uptake through precipitation, complexion, and cation exchange (Table 2) [161–163]. How-
ever, the Cd immobilization by biochar largely depends on the soil condition and type
of biochar used [161,164,165]. Wang, et al. [166] reported an over 63% reduction in Cd
bioavailability after applying three different Fe-derived biochars (rice, wheat, and corn
straw) in Cd-As co-contaminated soil. Yang, et al. [167] found 25.35–61.90%, 46.97–72.90%,
and 24.17–48.87% reduction of Cd in yellow soil, purple soil, and paddy soil after applying
1%, 3%, and 5% swine biochar produced at 450 ◦C. Ion exchange, complexation, π bond
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action, and precipitation on the surface of the biochar were the dominant mechanisms of
metal immobilization. Wheat straw biochar pyrolyzed at 550 ◦C achieved 70.9, 64.8, and
60.9% reduction in Cd bioavailability during a three-year field experiment. Cd immobi-
lization by sorption on clay minerals and precipitate with carbonates might rely on the
reduction of soil pH. Furthermore, mineral–organic layers formed on surfaces of biochar
were thickened with increasing immobilized Cd over time, [168].

Ahmad, et al. [169] showed that litter-derived biochar produced at a low tempera-
ture (<500 ◦C) is more efficient at immobilizing heavy metals in soils. Accordingly, the
immobilization of heavy metal is mainly attributed to the physiochemical properties of
biochar, particularly the functional groups and surface area. The O-functional group on
the biochar surface is more efficient for metal binding to immobilize organic and inorganic
pollutants from soil [169,170]. Cottonseed hull-derived biochar pyrolyzed at a lower tem-
perature (350 ◦C) contains high O-containing functional groups, resulting in the reduced
bioavailability of Cu, Ni, Cd, and Pb in soil [170]. Moreover, in multiple studies, biochar
was crushed to a lower particle size and increased the surface area and adsorption capac-
ity [171]. Fahmi, et al. [172] revealed that empty fruit bunch biochar (EFBB) produced at
250 ◦C with a particle size less than 50 mm exerted higher Cd and Pb adsorption capacities
than the biochar with a larger particle size, which was due to the inner pore exposure areas
and functional groups. Despite these benefits, the cost and efficiency of biochar are critical
issues for its better practice.

Table 2. List of organic amendments and their effectiveness for Cd immobilization.

Amendment Pyrolysis
Temperature Doses Applied Cd Treatment

mg kg−1 Plant Species Effects/Results References

Biochar

Rice hull 500 ◦C 0, 0.5, 1, 2, 5, 10% Cd, Cu, Pb, Zn Lettuce
No significant increase in yield, a
decrease in the bioavailability of

heavy metals in soil.
[173]

Rice straw 500 ◦C 0, 10, 20 ton/ha 3.3, 5.9 Lettuce Exchangeable Cd decreased due
to increased soil pH [174]

Rice husk +
nano-Fe3O4

particles coating
400 ◦C 0.05, 0.1, 0.2, 0.4,

0.8, 1.6% 1.6 Rice

BC-Fe treatments promoted iron
plaque formation and increased

soil CEC and reduced Cd
availability by 6.81–25.0%.

[175]

Rice straw 450 ◦C and 550 ◦C 0, 3.0, 5.0% 2.86 Wheat
Increased soil pH, 35, 47, and 57%

decrease in roots, shoots, and
grains Cd content.

[161]

Wheat straw 485 ◦C 0, 20, 40 ton/ha 0.9 Rice

Increased soil pH and reduced
CaCl2-extractable Cd in soil and

grain Cd concentration. The effect
decreased over time.

[61]

Wheat straw 450 ◦C 0.7–2.9% 22.65 Rice

Metal ions Precipitate with CO
and/or PO4 Binding of Cd and Pb
to the inner biochar particles, with

8.0–44.6% reduction in
exchangeable Cd.

[176]

Willow chips 450 ◦C and 600 ◦C 0, 0.2, 1.0, 5% 0, 1, 5 Pepper

Low-temperature biochar was
more efficient in immobilizing Cd

in soil and higher biochar
application decreased the Cd

in roots.

[177]

Willow
biomass + Zeolite 350 ◦C and 500 ◦C 0.50% 2.5 Tall fescue

and cocksfoot
Higher biomass production was
observed in the tested grasses. [178]

Sugarcane straw 700 ◦C 0, 1.5, 3.0, 5.0% 8.4 Jack bean,
Mucuna aterrima

Metal bioavailability in the soil
and plant uptake by roots

was reduced.
[179]

Olive mill waste 450 ◦C 0, 5, 10, 15% 7.1 Common bean

Increase in shoot length and dry
weights of leaves and roots was

observed. Cd in leaves was below
the detection limit at the highest

rate of biochar applied.

[180]

Pigeon pea stalk 300 ◦C 0, 0.25, 0.5% 0, 5, 10 Spinach

Increased soil pH and organic
matter contents, DTPA extractable
Cd was decreased in the soil and

decreased Cd concentration in
leaf and roots was observed.

[181]

Cotton sticks 450 ◦C 0, 3, 5% 0, 25, 50, 75, 100 Spinach

Decreased the shoot and root Cd
concentration and increased the

biomass and chlorophyll contents
and gas exchange parameters.

[182]

Hickory nutshell
and Maize straw 0, 15, 30 ton/ha 0.7, 2.04 Rice Reduce Cd accumulation in rice

grains by immobilizing soil Cd. [183]
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Table 2. Cont.

Amendment Pyrolysis
Temperature Doses Applied Cd Treatment

mg kg−1 Plant Species Effects/Results References

Bamboo chips 350 ◦C 1.00% 3, 20 Rice

Reduced Cd contents in rice
plants in highly contaminated soil,

supported metal-resistant and
growth-promoting bacteria in

the rhizosphere.

[184]

Coconut shell and
GSA-4 (compositing

organic manure
with lime

and sepiolite)

1% 0.83 Rice and Wheat
Cadmium fractionation showed a

significant decrease in the
extractable fractions.

[125]

peanut shell and
wheat straw 300–350 5% 0.507 Rice

led to significantly higher pH, soil
organic carbon (SOC), and cation

exchange capacity (CEC) in paddy
soil, while the content of

MgCl2-extractable Cd and Pb
was lower

[185]

wheat chaff 750 0.5, 5% 0, 10, or 50 Juncus
Subsecundus

pH increased and
CaCl2-extractable Cd decreased

significantly. Biochar immobilized
soil Cd but did notimprove the

growth of the emergent wetland
plant species atthe early

growth stage

[186]

Sewage sludge,
soybean straw, rice

straw, and
peanut shell

0, 2, 5% 0.81 Turnip

Fresh biomass was the highest
with lower biochar (2%)

compared to the control and
higher biochar (5%) treatment.
The highest reduction in metal

uptake was recorded with peanut
shell biochar.

[187]

Compost

Agriculturalpostharvest
wastecompost

6.25, 12.5% 25 Sorghum and
barnyard grass

Compost decreased the solubility
and mobilization of Cd (especially

in dry soil).
[188]

Bamboo biochar,
rice, and

wheat straw
750 ◦C 2% biochar

or 1% straw 2 Maize and ryegrass

Increase in soil pH and organic
carbon. The Cd concentration in
shoots of maize was reduced by

50.9%, 69.5%, and 66.9% with
biochar, rice straw, and wheat

straw, respectively.

[177]

composted sewage
sludge and green

waste compost
5, 10,15% 813 Ryegrass Compost immobilized Cu and Cd

in contaminated soils. [189]

Manure

chicken manure 0, 5.5, 11, 16.5,
22 ton/ha 0.41 Rice

Converted Cd to more
immobilized fractions by

decreasing the exchangeable Cd
fraction and increasing the

carbonate-, oxide-, and organic
matter-bound fractions.

[190]

Farmyard manure 20–30 kg/ha 0.35 Wheat The release of organic ligands
immobilizes soil Zn and Cd [191]

Pig manure 1.3, 4 g/kg 6.79 Rice

Increased the grain yield by
0.3–15.3 fold, and effectively

decreased the Cu and Cd
concentrations in grain.

[192]

Swine manure 30 g/kg 2.91 Sunflower
Swine manure and salicylic acid

reduced the Cd/Zn ratio in
the sunflower.

[193]

2.2.2. Compost

In compost, microorganisms and enzyme activities degrade and convert organic
waste (animal/plant residue, sewage sludge, and municipal solid waste) into CO2, H2O,
mineral ions, and humic substances through mesophilic, thermophilic, and maturation
phases [194]. Compost, such as humic acid, mineral ions, and microorganisms substantially
enhances the heavy metal immobilization in agriculture soils and reduces the ecological
and environmental risks of heavy metals [195,196]. Compost from green waste (tree leaves,
bark, garden grass, weeds, and mushrooms) are ideal soil amendments due to the high
carbon and nitrogen levels and low heavy metal contents. Greenish weed compost reduces
the Pb, Cd, and Cu uptake by 22, 55, and 20%, respectively, in contaminated paddy
soil [197,198]. The hydroxyl and phenolic groups in humic compounds are the dominant
ligands for heavy metals [199]. Milojković, et al. [200] demonstrated that the hydroxyl,
carboxyl, carbonyl, and phenyl functional groups on the surfaces of compost derived
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from Myriophyllum spicatum, were active binding sites for heavy metal and immobilize
Pb, Cu, Cd, Ni, and Zn in agriculture soil. The available Cd and Cu concentrations in
clay loam soil were decreased from 0.057 to 0.005 and 2.20 to 1.90 mg kg−1, respectively,
after being treated with mushroom-derived compost [201]. Hanafi and Salwa [202] noted
that Cd and Zn appeared primarily as exchangeable in compost-amended soils according
to their cation exchange capacity. The application of compost derived from agriculture
postharvest waste reduced the solubility and mobility of Cd (especially in dry soil) and
Ni (in both soils) [188]. The application of plant-derived compost and biochar improves
the compost’s immobilization efficiency. Karer, et al. [203] showed that the application
of garden green waste compost together with poplar woodchip biochar was capable of
reducing the available Cd and Zn concentrations in soil.

2.2.3. Animal Waste/Manure

Animal waste, such as chicken manure/litter, cow manure, and pig manure are commonly
used as fertilizers in agricultural soil due to their abundant nutrient content. Some animal waste
was involved in the immobilization of heavy metals in soil and improving soil fertility [204]. The
application of cow manure to contaminated soil at lower rates (<54 t ha−1) has been shown to
reduce Cd availability, while at higher rates (>108 t ha−1), it enhanced Cd phytoavailability due
to the formation of soluble metal–DOC complexes in soil [205]. Houben, et al. [206] observed that
the chicken manure and bone meal compost application in Cd-contaminated soil reduced the
leaching of Cd by 63.1% with cow manure and by 72.9% with bone meal. In addition, farmyard
manure, pig manure, and cow manure reduced the Cd translocation and accumulation in rice
by decreasing the exchangeable Cd fraction but increasing the carbonate-, oxide-, and organic
matter-bound fractions [3,190,207,208]. These manures effectively reduce Cd bioavailability by
increasing soil pH and decreasing and transforming Cd into more stable fractions. Moreover,
the introduction of pathogens, antibiotics, and secondary pollutants is associated with animal
manure–soil applications. Two solutions to overcome these issues are to (i) increase the biodegra-
dation of contaminants in compost during the thermophilic phase and (ii) converse the manure
into biochar with degrading organic and microbial contaminants and immobilize unnecessary
elements in manure by pyrolyzing at higher temperatures (>700 ◦C) t. [66]. Hence, animal
manure can be applied to contaminated soils as a source of nutrients for crop growth.

Nowadays, numerous inorganic and organic amendments are exhibiting effective
soil Cd passivation stability in agricultural soil. However, their application is limited
by several problems. The extra high costs and workloads have limited the application
of soil amendments to lower soil Cd availability. The same Cd amendments exhibit
divergent Cd passivation effects on soil with different physicochemical properties. The
soil condition evaluation and cost calculation should be taken before the application of soil
Cd amendments. Moreover, the application of soil amendments might bring long-term
influences on soil conditions such as pH, porosity, and fertility, which would affect the
production capacity of agricultural soil. Therefore, soil amendments combining soil Cd
passivation and fertility improvement are promising for agricultural application.

3. Irrigation Management to Reduce Cd Uptake

Water management involves promising, controllable, and environmentally friendly
approaches to reduce Cd bioavailability and uptake [209,210] by crops, such as rice, from
soil [211]. Under flooding conditions, a lower redox potential (Eh) and higher pH were
achieved to reduce Cd bioavailability in soil. At a lower Eh, soil Cd will bind with soil sulfur
(S) to form the Cd-S complex to maintain low solubility. The flooding condition has reduced
the soil Cd uptake in rice by forming an insoluble Cd compound with S [212]. Likewise,
several studies on rice grown in paddy soil under different water regimes and growth stages
suggest that low soil Eh and pH are involved in Cd uptake alleviation in rice [213–215].

Moreover, radial oxygen loss (ROL) from the root generates Fe plaque formation on
root surfaces under flood irrigation treatment, which influences soil Eh and pH in the rhi-
zosphere [216,217], and affects soil Cd bioavailability and translocation [218]. The anaerobic
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conditions associated with flood irrigation treatment enhance root porosity, and lead to high
rates of ROL from water spinach [219] and rice roots [220], resulting in the alleviation of Cd
accumulation in edible parts of these crops. Interestingly, these Cd alleviation effects were
cultivar-dependent, i.e., the low Cd-accumulating rice cultivar shows higher levels of ROL and a
higher Cd combination with Fe plaque than the high Cd accumulating cultivar under a flooded
regime [217]. Moreover, the combined application of continuous flooding with soil amendments
significantly reduced Cd bioavailability by changing the chemical forms of Cd in soil [221–223].
Lower Cd contents in rice grains were also documented by intermittent irrigation [214,224].
Furthermore, the plant stage at the time of irrigation is also a critical factor to reduce Cd uptake
and accumulation. The flood irrigation before the heading stage significantly reduced Cd uptake
into the rice [225]. Cd bioavailability could be restrained by continuous flooding at the full
tillering stage and flood irrigation during the reproductive stage of rice is efficient at alleviating
Cd concentration in rice plants [212,226]. In addition, the salt anion in irrigation water also influ-
ences the Cd content of the plants [94,227,228]. Khoshgoftar, et al. [229] reported that enhanced
NaCl levels in irrigation water impacted the Cd uptake by plants through the chlorine–Cd ion
complexation (CdCln2−n) in soil solution. The lower Cd charge in the chlorine–Cd complexation
decreases Cd sorption and enhances the Cd uptake of plants [230] either through the direct
uptake of the Cd ion complex or through the diffusion of Cd into the root apoplast.

4. Effect of the Cropping Pattern on the Cd Contamination of Crop

Intercropping and crop rotations are traditional cropping systems that allow maximum
use of light, heat, water, and soil resources to improve the quintessence of a conventional
agriculture system. Significant contributions were also made to remediate the heavy
metal-contaminated soils and safe crop production (Figure 1).
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4.1. Intercropping

Intercropping is a traditional agricultural system that has high nutrient bioavailability
for plants, improves ecological functions, regulates the rhizospheric environment, and
alters root-secreted organic acid composition and profiles. These characteristics contribute
to the regulation of the Cd fraction in intercropped plants and a decrease in Cd uptake.

Intercropping with hyperaccumulators significantly increases heavy metal content
in the hyperaccumulator and decreases metal concentrations in non-hyperaccumulator
plants [231]. The root morphology and activity are changed under intercropping inter-
actions [232]. The roots of metal hyperaccumulators are inclined to grow toward metal
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contamination while the crop root can decrease the heavy metal accumulation in soil.
Thlaspi caerulescens is a strong hyperaccumulator of Zn and Cd, and its root morphology is
apt for increasing heavy metal accumulation [233].

The intercropping between eggplant seedlings and two Cd hyperaccumulator Solanum
species (S. nigrum and Solanum photeinocarpum) decrease Cd uptake and enhance antioxidant
enzyme activities in the eggplant seedling through the inter-crop [234]. In addition, organic
acid in the soil solution largely affects the adsorption and desorption of heavy metal ions
through the soil pH; compared to the other organic acids, citric acid could increase Cd
availability in the soil at a pH of 5–6 [235]. The much lower Cd content in a grape crop
intercropped with different floricultural Cd accumulators (sunflower, sulfur cosmos, garden
cosmos, and garden balsam) is partially ascribed to the higher soil pH, suggesting the
release of organic acid and other root exudates from intercropped plants compared with
grape monoculture [231]. Hei, et al. [236] also reported increased soil pH and solubility
of organic compounds due to the intercropped maize by providing more soluble Zn and
Cd for the hyperaccumulator Sedum alfredii. The influence of intercropping on the crop
Cd uptake was dependent on the intercropped species. A higher foliar Cd concentration
(5.05 mg kg−1) was observed in maize intercropped with legumes compared to those
intercropped with non-legumes (2.42 mg kg−1) [237]. Similarly, higher Cd uptakes were
also found in other crops intercropped with legumes [238,239].

4.2. Crop Rotation

Crop rotation is a promising approach used to improve soil fertility, crop yield, and
tolerance to heavy metals [240]. In a crop rotation system, the phytoextraction of Cd by
a high-Cd-accumulative rice cultivar significantly reduces the Cd content of successive
soybean and rice grains in Cd-contaminated paddy soil [241,242]. Crop rotation with high
Cd-accumulating oilseed rape (Brassica campestris) significantly decreases the Cd concen-
tration in subsequent rice grains and Chinese cabbages [243,244]. Plant root excretion not
only influences the soil pH but also influences the Cd availability in soil. Thus, the oilseed
rape plant not only phytoextracts Cd from the soil by changing its environment but also
influences the Cd contents of successive crops. When fast-growing, economically important
oilseeds crops that are not used for food are grown in different rotation systems i.e., oilseed
rape–sunflower, oilseed rape–peanut, and oilseed rape–sesame, the Cd removal efficiency
is 458.6, 285.7, and 134.5 g ha−1, respectively, from contaminated soil [240]. The Cd con-
centrations in the seed oils of all crops meet the Chinese standards (50.05 mg kg−1 DW),
suggesting their usability for biodiesel and biofuel production [240].

The combined application of crop rotation with other amendments could increase the
efficiency to reduce the bioavailable Cd in soil. Hyperaccumulator Sedum alfredii rotation
with low Cd accumulators of water spinach and Chinese cabbage combined with denitrify-
ing microbes, CO2 fertilization, water management, and fermentation residue significantly
increase the biomass and Cd uptake of S. alfredii and decrease Cd and nitrate concentrations
in water spinach and Chinese cabbage [245]. The CO2 fertilizer application is responsi-
ble for the increased root exudation and decreased soil pH [246], which increase the Cd
bioavailability in the S. alfredii rhizosphere [247]. The cucumber–sweet potato–oilseed rape
rotation in contaminated agriculture soil decreased the Cd and Pb concentrations of all
three crops with increasing biochar doses in a 1-year field experiment [248]. The applica-
tion of biochar with crop rotation changes the soil’s physiochemical properties to reduce
bioavailable Cd concentration by increasing the pH, CEC, and DOC of the soil. Similarly,
several other studies on the combined use of crop rotation and fertilizer application have
exhibited remarkable effects on heavy metal contamination management [249,250].

In conclusion, despite the immense potential of intercropping and crop rotation, sev-
eral issues need to be addressed for wider applicability of intercropping and crop rotation to
reduce Cd bioavailability in the soil. Identifying the Cd hyperaccumulator plant germplasm
with higher biomass should be encouraged. Further, site-specific management practices
need to be developed for sustainable and safe utilization/disposal of metal-contaminated
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biomass. Production of biomass-based energy (biodiesel and biofuel production) and
utilization in small industries (paper, timber, and biomass bricks with impermeable coating)
would lead to a promising economic return.

5. Effect of Microorganisms

Compared to conventional physicochemical remediations, the use of microorgan-
isms in remediating heavy metal-contaminated soil is an eco-friendly and cost-effective
strategy [251,252]. Bacteria and fungi are the ubiquitous microorganisms for soil heavy
metal passivation (Table 3), whereas yeast and algae also exhibit the potential for metal
passivation in contaminated soils [253]. Microorganisms do not degrade heavy metals but
transform them into less harmful forms by changing their physical and chemical states [254].
Figure 2 depicts the mechanisms of Cd removal from soil by microbes.
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Table 3. Microorganisms (fungi and bacteria) and their mechanisms to alleviate Cd contamination in plants.

Group Species Type Plant/Crop Resistance Mechanism/References References

Fungi

Glomus versiforme AMF Solanum nigrum Enhancement of soil acid
phosphate activity [255]

Aureobasidium pullulans Endophytic fungi Cucumis sativus Regulate soil enzymatic activities to
reduce Cd uptake [256]

Rhizophagus irregularis AMF Lotus japonicus Enhanced intraradical
immobilization of Cd [257]

Rhizophagus intraradices and
Glomus versiforme AMF Zea mays PC and GSH transformed Cd into the

inactive form [258]

Funneliformis mosseae Endo-mycorrhizal fungus Nicotiana tabacum Enhanced GSH content reduced
Cd accumulation [259]

Funneliformis mosseae,
Glomus versiforme,

and Rhizophagus intraradices
AMF Brassica chinensis

Altered plant–soil interaction by
increased soil pH

and electrical conductivity
[260]

Penicillium janthinellum Endophytic fungi Solanum lycopersicum

Reduced electrolytes and lipid
peroxidation and increased

glutathione content
and catalase activity

[261]

Fusarium tricinctum and
Alternaria alternata Endophytic fungi Solanum nigrum

Improve tolerance mechanism by
low POD and PPO activities and

high CAT activity
[262]

Bacteria

Methylobacterium oryzae and
Burkholderia sp. PGPB Lycopersicon esculentum Reduced stressed ethylene and ACC

deaminase activity [263]

Ralstonia eutropha and
Chryseobacterium humii PGPR Zea mays

Cd retention in roots by
immobilization and reduced Cd

translocation to shoots
[264]

Pseudomonas putida Acidophilic bacteria Vigna radiata
Metallothioneins and ABC
transporter/P-type ATPase,

intracellular Cd bioaccumulation
[265]

Rhodobacter sphaeroides Purple non-sulfur bacteria Triticum aestivum
Reduced the bioavailable Cd

fractions (e.g., exchangeable and
carbonate-bound phases)

[251]

Bacillus megaterium and
Neorhizobium huautlense PGPB Oryza sativa

Increased Cd immobilization in
rhizosphere soil and reduced

Cd uptake
[266]

Pseudomonas aeruginosa and
Burkholderia gladioli PGPR Lycopersicon esculentum

Improve resistance mechanism by
modulation of antioxidative

defense system
[267,268]

Azotobacter sp. Nitrogen-fixing bacteria Triticum aestivum

Metal ion complexation either
through f extracellular polymeric

substance (EPS) or through cell wall
lipopolysaccharides (LPS)

[269]
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5.1. Bacteria

Bacterial populations account for 70–90% of the total microorganism amount in the soil.
Several bacterial species are reported to be involved in reducing Cd bioavailability from
contaminated soil [266,270,271]. The inoculation of the Neorhizobium huautlense strain T1–17
decreases the available Cd/Pb and restricts Cd uptake in the hot pepper plant by increasing
the pH of rhizospheric soil [271]. Metal resistant-bacteria alleviates Cd accumulation in
rice grains by reducing the available Cd in soil [272]. Likewise, Pseudomonas aeruginosa in
the Cd-contaminated soil adsorbs more Cd and decreases the Cd content of rice grains
compared to Beauveria bassiana and Bacillus subtilis [273].

Rhodobacter sphaeroides, a purple non-sulfur, Gram-negative bacteria, has a high toler-
ance for different pollutants [266,274]. This bacterium generates sulfides (S2−) through the
activity of desulfhydrase and helps to decrease the heavy metal mobility in soil [270,274].
The inoculation of R. sphaeroides in Cd-contaminated soil reduces the Cd bioavailabil-
ity by changing its chemical form [270]. Similarly, the application of R. sphaeroides in a
wheat seedling experiment reduced phytoavailable Cd by 30.7% [251], which was also
observed with sulfate-reducing bacteria (SRB) [275]. Bacteria could be used to decrease Cd
bioavailability by microbially induced calcium carbonate precipitation (MICP) [276]. The
consortium of bacterial strains shows better performance in reducing Cd bioavailability in
soil rather than single strains. The synergistic effects of a bacterial mixture of Sporosarcina soli
strain B-22, Viridibacillus arenosi strain B-21, Enterobacter cloacae strain KJ-46, and E. cloacae
strain KJ-47 improve heavy metal resistance and decrease Cd, Pb, and Cu bioavailability
from contaminated soil as compared to single strain cultures [277]. The Cd removal effi-
ciency from Cd-contaminated soil is the highest in a combined leaching system (32.09%)
as compared to autotrophic bacteria (isolated from acid mine drainage) (23.24%) and het-
erotrophic bacteria (isolated from Cd-contaminated soil) (0.74%) systems [278]. Further,
combining both organic and inorganic supplements with microorganisms is more efficient
to clean up polluted soil [279]. These combinations could both reduce the Cd bioavailability
and improve soil properties by modifying the local soil microbial communities [280].

5.2. Fungi

Soil fungi play a critical role in Cd detoxification from contaminated soil and re-
duce plant Cd bioavailability [256]. The carboxylic–hydroxylic group-mediated negatively
charged fungal cell wall could bind with positively charged metalloid ions and reduce Cd
bioavailability in soil [281]. The Cd removal efficiency reached 84% with 0.7 g L−1 biomass
of Aspergillus niger [282]. The Aspergillus species isolated from coastal water and sediments
showed 13.87% biosorption efficiency of Cd from contaminated soil [283]. Furthermore,
Trametes versicolor fungi absorbs 100 mg kg−1 and 350 mg kg−1 Cd after 2 and 7 days of
exposure, respectively, suggesting its potential at reducing Cd bioavailability in soil [284].
Trichoderma harzianum is capable of reducing plant Cd concentrations by 47.5% and the
plant enhances Cd resistance through its Cd biosorption capability [285]. The Cd biosorp-
tion capability of T. harzianum is likely fulfilled via the induction of glutathione and its
precursor’s metabolism [286].

The mutual interaction of endophytic fungi with plants exerts a significant influence on
plant resistance against Cd stress and alleviates Cd toxicity from contaminated soils [262].
The inoculation of the Triticum aestivum root with the endophyte Piriformospora indica re-
duces the Cd uptake in roots and promotes plant growth under Cd stress [287]. Similarly,
ubiquitously present arbuscular mycorrhizal fungi (AMF) in highly contaminated soil form
a symbiotic mycorrhizal association with the plant species [288], and would reduce Cd
uptake from the contaminated soil. A dense mycelium layer of AMF fungi around the root
cortical tissues serves as an intermediate link between plant roots and soil [289]. The AMF
colonization in maize leads to increased Cd accumulation in roots but decreases translo-
cation in shoots [290,291]. Mycorrhizal colonization also increases Cd immobilization in
the roots of Lotus japonicus and decreases Cd translocation to plant shoots [257]. However,
direct evidence for Cd immobilization in mycorrhizal roots by AM fungi is absent.
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5.3. Algae

Algae are non-vascular plants, and “phytoremediation”, or bioremediation by algae, is
an effective way to remove heavy metals from wastewater [292]. They are very good at re-
ducing abiotic stresses in plants and stress damage [293,294]. Algae are excellent candidates
for heavy metal removal because they can grow both heterotrophically and autotrophically,
have high surface-to-volume ratios, are tolerant of HMs, are phototaxis, have the ability to
be genetically modified, and express phytochelatins [295]. In recent decades, there has been
a lot of interest in using algae to treat Cd-contaminated wastewater [296,297]. However, far
fewer studies have been conducted to investigate Cd remediation in soil using algae. Cd
accumulates internally in algae as a result of a two-phase uptake process [298]. The first
phase is characterized by rapid physicochemical adsorption of Cd onto cell wall-binding
sites, which are most likely proteins and/or polysaccharides. This is followed by a lag phase
and then a steady intracellular uptake. This latter phase is energy-dependent and could
involve the transport systems used to accumulate other divalent cations, such as Mn and Ca.
Some evidence suggests that plasmid-encoded genes control Cd resistance and possibly the
uptake in algae and cyanobacteria [299,300]. The algal isolate C. sorokiniana ANA9 is highly
resistant to heavy metals, such as Cd, with a minimal inhibitory concentration of 4 mM.
Algae could absorb heavy metal ions, i.e., Cd, Zn, and Cu, at 43.0, 42.0, and 46.4 g/mg of
dry weight, respectively, and have the potential to reduce heavy metal mobility in soil [301].
Moreover, algal extracts (biostimulants) are used to alleviate Cd uptake from the soil. The
algal biostimulant has no effect on the Cd content of N. officinale roots, increases Cd ex-
traction by the roots, and inhibits Cd transport from the roots to shoots, resulting in lower
Cd contents in the shoots; the algal biostimulant increases the soil’s urease activity while
decreases the soil’s catalase activity, but only the 600-fold dilution increases soil invertase
activity. The algal biostimulant reduces the soil pH, which increases the activity of some
soil enzymes and changes the soil exchangeable Cd concentration [302]. In conclusion,
algal biostimulants are thought to be effective and eco-friendly in nature, with the ability to
persist and establish themselves in any ecosystem. The use of renewable sources as carrier
systems, such as clay, soil, vermicompost, and paddy straw, makes them environmentally
preferable. As a result, further research into algae and algal extracts as biostimulants will
demonstrate their utility in preventing Cd diffusion in the soil’s environment.

6. Novel Sustainable Strategies for Mitigating Cd Toxicity
6.1. Nanoremediation

Nanotechnology is an interdisciplinary field of study concerned with the development
of nanoscale structures for advanced applications. Nanotechnology has sparked intense
research interests in the field of environmental remediation in recent decades [303,304]. Due
to their large surface areas, higher adsorption sites, higher surface activities, and excellent
mechanical properties due to the size quantization effect, nanoparticles with sizes in the
range of 1–100 nm are thought to be promising absorbents for the immobilization of heavy
metals in contaminated soil [44,305–307].

Several studies have been conducted in order to better understand the underlying
mechanisms of action of nanoparticles in order to reduce HM stress [308]. The HMs present
in the soil are transformed or absorbed by NPs, reducing their bioavailability and mo-
bility. For example, the application of Fe3O4 NPs has been shown to reduce cadmium
mobility [309]. Cadmium can be converted into a more stable form when exposed to
mercapto Si NPs [310]. An X-ray diffraction analysis revealed that the key mechanisms for
Pb/Cd immobilization in soil involve both surface complexation on the surface of nano-
hydroxyapatite (nHA) and dissolution of the nHA amendments, as well as precipitation of
Pb/Cd-containing phosphates. In contaminated soil, nHA reduces the phytoavailability
of Pb and Cd by 65.3% and 64.6%, respectively [67]. Furthermore, the performance of
NPs when combined with other remediation strategies is a hot topic. Through phytoreme-
diation and bioremediation (bacteria, fungus, yeast, and actinomycetes), nanomaterials
(NMs) can significantly alleviate heavy metal stress. For instance, the impact of TiO2
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(nano-titanium dioxide) on Cd accumulation from the soil in Glycine max plants was re-
ported. TiO2 nanoparticles decrease Cd toxicity and increase Cd absorption by protecting
plants from oxidative damage and scavenging free radicals produced by Cd toxicity [311].
According to Gong, et al. [312], the dosage of nanoparticles used in phytoremediation
varies. Starch-stabilized (s-nZVI) nanoparticles alleviate oxidative damage in ramie under
Cd-stress at 100 mg kg−1, whereas plant growth is inhibited and oxidative damage to
plants is exacerbated at 500 and 1000 mg kg−1 S-nZVI. These findings show that the appli-
cation of nZVI in combination with phytoremediation may be a promising and practical
way to treat Cd-contaminated land because it effectively promotes plant growth while
reducing Cd-induced toxicity in plants, enhances Cd uptake, accumulates in plants, and
promotes the immobilization of Cd ions in the soil. Similarly, FeO nanoparticles coated
with polyvinylpyrrolidone (PVP) have been widely used by Halomonas sp. (Gram-negative
bacteria) to improve the bioremediation of Pb and Cd-polluted land. This method elimi-
nates almost 100% of Pb after 24 h and almost 100% of Cd after 48 h when compared to
bacteria or just NPs [313].

The use of nanomaterials for cleaning heavy metal-polluted soils is considered promis-
ing and efficient; they are capable of reducing/immobilizing heavy metals in contaminated
soils. Any technology, though, has two sides to it. The widespread use of nanomaterials
might be followed by risks to the environment, so one must not ignore this possibility.
According to recent reports, nanoparticles pose significant issues for agriculture. It has
been reported that pH could be altered in soils containing nanoparticles, which is one of
the most important parameters affecting soil nutrient availability, soil microbiology, soil
health, and plant growth and development [314]. An important step toward applying
nanomaterials for the remediation of heavy metal is having a thorough understanding of
the advantages and disadvantages of using them to clean up heavy metal-contaminated soil.
This knowledge also serves as a theoretical foundation for future practical applications.

6.2. Phytoremediation

Phytoremediation is a cost-effective and environmentally friendly technique that uses
green plants to remove Cd from contaminated soil and water [315]. Phytoremediation
uses a variety of mechanisms to remove Cd from the soil, including phytoextraction,
phytofiltration (accumulation), phytostabilization, phytovolatilization, and phytostimula-
tion [316,317]. Metal bioavailability, soil properties, plant species, uptake capacity, mutual
fitness of plant–soil relationships, and the nature of metal are all factors that influence the
mechanisms and efficacy of phytoremediation [318,319]. Hyperaccumulators are plants
that have high heavy metal accumulation and tolerance characteristics. Hyperaccumulat-
ing plants typically have well-developed roots capable of absorbing high levels of heavy
metals in the soil and transferring them to aboveground parts [320]. A large number of
plant species and cultivars have been studied in the last few decades to determine their
accumulation for the phytoremediation of Cd-contaminated soil [321,322], and it has been
discovered that Sedum alfredii, Phytolacca americana, Arabis gemmifera, and Prosopis laevigata
can hyperaccumulate Cd to above 2000 mg kg−1 in shoots [320].

Different hyperaccumulators have varying abilities to extract Cd from the soil. This
is because Cd has a low affinity and mobile nature [323]. Soil and hydroponic systems
were studied to find more efficient soil plants for Cd remediation. S. nigrum has also been
reported to accumulate high concentrations of Cd, as well as Cu and Zn [324]. B. napus was
shown to be more stable when exposed to Cd, as lipid changes in B. napus cell membranes
were observed upon direct exposure to metal [325]. B. pekinensis, also known as Chinese
cabbage, was also investigated for Cd extraction from soil, and six different varieties were
discovered to extract a significant amount of Cd [326]. Despite this, only a few field trials
for the phytoremediation of Cd metal have been reported [327]. In agricultural fields
in Mae Sot District, Thailand, five different plant species—Chromolaena odorata, Gynura
pseudochina, Conyza sumatrensis, Nicotiana tabacum, and Crassocephalum crepidioides were
tested; all four species, aside from Chromolaena odorata, were successful at removing Cd from
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the soil [328]. Similarly, eleven native Turkish species were evaluated for their ability to help
with phytoremediation in the Gümüşköy mining region. In this region, contaminated soil
was found to contain a high concentration of Cd (82.8 mg kg−1). The native plants under
investigation accumulated 55.4 mg kg−1 Cd in their roots and 43.5 mg kg−1 Cd in their
shoots, respectively. Carduus nutans and Phlomis sp. were shown to be the most effective
of the eleven native-tested species [329]. Although there are many potential resources for
phytoremediation, the efficiency of this process is hindered by the small biomass of plants,
slow growth rates, regional distribution, and a lack of plant species that are suitable for
Cd-contaminated soils. In this context, it is equally crucial to select and/or breed plant
resources for phytoremediation that have strong heavy metal tolerance and accumulation
capacities, large biomasses, and rapid growth rates.

7. Conclusions

Cadmium contamination has become a major concern for global food safety production
and consumption. The high concentrations of Cd in crops retard plant growth, reduce
crop production, and even promote severe Cd contamination in agricultural products. In
this article, we reviewed Cd immobilization with various soil amendments to minimize
the bioavailability and toxicity of Cd. A range of organic and inorganic amendments,
such as phosphate, Zn, Si, metal oxides, biochar, compost, manure, etc., are commonly
used as immobilizing agents of Cd. However, some important factors must be considered
when selecting a suitable immobilizing agent. (i) The soil’s physicochemical properties
and Cd behaviors under different environmental conditions should be determined for
effective remediation. (ii) Long-term field trials are needed to determine the benefits
and risk assessments of the applied amendment. (iii) Combining the applications of
organic, inorganic, and other amendments should be conducted to increase the efficiency
of these treatments. Moreover, soil microorganisms, especially bacteria and fungi, play a
vital role in Cd immobilization in different soil environments. The changes in microbial
activity, diversity, and processes with respect to Cd immobilization in farmlands are
essential to promote their remediation efficiencies. Identifying hyperaccumulator plants
with fast growth and higher biomasses under Cd stress in connection with strategies that
utilize Cd-contaminated biomasses is a key issue for the functional application of crop
rotation and inter-cropping remediation techniques. Moreover, irrigation management
can provide economically viable and environmentally friendly options for the remediation
of Cd-contaminated soil, but the mechanism of this strategy is still not well known and
needs further study. Nanoremediation to mitigate Cd availability and toxicity holds great
potential for reducing plant Cd uptake. The development and combination of these various
solutions will contribute to the sustainable and safe utilization of Cd-contaminated soil.
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photosynthesis in Cd-treated sunflower plants. Ann. Bot. 2000, 86, 841–847. [CrossRef]

141. An, Z.; Wang, X.; Shi, W.; Yan, W.; Cao, Z. Plant physiological responses to the interactions between heavy metal and nutrients.
Soil Environ. Sci. 2002, 11, 392–396.

142. Hassan, M.J.; Wang, F.; Ali, S.; Zhang, G. Toxic Effect of Cadmium on Rice as Affected by Nitrogen Fertilizer Form. Plant Soil 2005,
277, 359–365. [CrossRef]

143. Maqbool, A.; Ali, S.; Rizwan, M.; Arif, M.S.; Yasmeen, T.; Riaz, M.; Hussain, A.; Noreen, S.; Abdel-Daim, M.M.; Alkahtani, S.
N-Fertilizer (Urea) Enhances the Phytoextraction of Cadmium through Solanum nigrum L. Int. J. Environ. Res. Public Health 2020,
17, 3850. [CrossRef]

144. Xie, H.L.; Jiang, R.F.; Zhang, F.S.; McGrath, S.P.; Zhao, F.J. Effect of nitrogen form on the rhizosphere dynamics and uptake of
cadmium and zinc by the hyperaccumulator Thlaspi caerulescens. Plant Soil 2009, 318, 205–215. [CrossRef]

145. Zhu, E.; Liu, D.; Li, J.G.; Li, T.Q.; Yang, X.E.; He, Z.L.; Stoffella, P.J. Effect of Nitrogen Fertilizer on Growth and Cadmium
Accumulation in Sedum alfredii Hance. J. Plant Nutr. 2010, 34, 115–126. [CrossRef]

146. Qin, D.; Chen, M.-X.; Rong, Z.; Chao, Z.-Y.; Zhu, Z.-W.; Shao, G.-S.; Wang, G.-M. Cd toxicity and accumulation in rice plants
vary with soil nitrogen status and their genotypic difference can be partly attributed to nitrogen uptake capacity. Rice Sci. 2009,
16, 283–291.

147. Umar, S.; Diva, I.; Anjum, N.; Iqbal, M. Potassium nutrition reduces cadmium accumulation and oxidative burst in mustard
(Brassica campestris L.). Electron. Int. Fertil. Corresp. 2008, 16, 6–9.

148. Sun, Y.; Li, Z.; Guo, B.; Chu, G.; Wei, C.; Liang, Y. Arsenic mitigates cadmium toxicity in rice seedlings. Environ. Exp. Bot. 2008,
64, 264–270. [CrossRef]

149. Zhao, Z.Q.; Zhu, Y.G.; Li, H.Y.; Smith, S.E.; Smith, F.A. Effects of forms and rates of potassium fertilizers on cadmium uptake by
two cultivars of spring wheat (Triticum aestivum L.). Environ. Int. 2004, 29, 973–978. [CrossRef] [PubMed]

150. Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J.; Park, J.; Makino, T.; Kirkham, M.B.; Scheckel, K. Remediation of
heavy metal (loid) s contaminated soils–to mobilize or to immobilize? J. Hazard. Mater. 2014, 266, 141–166. [PubMed]

151. Kumpiene, J. Trace Element Immobilization in Soil Using Amendments; Chapter 15; Wiley: Hoboken, NJ, USA, 2010.
152. Zhang, C.; Ge, Y.; Yao, H.; Chen, X.; Hu, M. Iron oxidation-reduction and its impacts on cadmium bioavailability in paddy soils:

A review. Front. Environ. Sci. Eng. 2012, 6, 509–517. [CrossRef]
153. Ran, L.; Altschul, E.B.; Hedin, R.S.; Nakles, D.V.; Dzombak, D.A. Sequestration Enhancement of Metals in Soils by Addition of

Iron Oxides Recovered from Coal Mine Drainage Sites. J. Soil Contam. 2014, 23, 374–388.
154. Liu, H.; Zhang, J.; Christie, P.; Zhang, F. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.)

seedlings grown in soil. Sci. Total Environ. 2008, 394, 361–368. [CrossRef] [PubMed]
155. Shao, G.; Chen, M.; Wang, D.; Xu, C.; Mou, R.; Cao, Z.; Zhang, X. Using iron fertilizer to control Cd accumulation in rice plants: A

new promising technology. Sci. China Ser. C Life Sci. 2008, 51, 245–253. [CrossRef]
156. Feng, X.H.; Zhai, L.M.; Tan, W.F.; Liu, F.; He, J.Z. Adsorption and redox reactions of heavy metals on synthesized Mn oxide

minerals. Environ. Pollut. 2007, 147, 366–373. [CrossRef]
157. Hettiarachchi, G.M.; Pierzynski, G.M.; Ransom, M.D. In Situ Stabilization of Soil Lead Using Phosphorus and Manganese Oxide.

Environ. Sci. Technol. 2000, 34, 4614–4619. [CrossRef]
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