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Abstract: To obtain the load spectrum of the traction resistance of the three-point suspension device
under tractor-plowing conditions, a load spectrum extrapolation method based on a genetic algorithm
optimal threshold selection is proposed. This article first uses a pin force sensor to measure the
plowing resistance of the tractor’s three-point suspension device under plowing conditions and
preprocesses the collected load signal. Next, a genetic algorithm is introduced to select the threshold
based on the Peak Over Threshold (POT) extremum extrapolation model. The Generalized Pareto
Distribution (GPD) fits the extreme load distribution that exceeds the threshold range, generating
new extreme points that follow the GPD distribution to replace the extreme points in the original data,
achieving the extrapolation of the load spectrum. Finally, the loading spectrum that can be achieved
on the test bench is obtained based on the miner fatigue theory and accelerated life theory. The results
show that the upper threshold of the time-domain load data obtained by the genetic algorithm is
10.975 kN, and the grey correlation degree is 0.7249. The optimal lower threshold is 8.5455 kN, the
grey correlation degree is 0.7722, and the fitting effect of the GPD distribution is good. The plowing
operation was divided into five stages: plowing tool insertion, acceleration operation, constant speed
operation, deceleration operation, and plowing tool extraction. A traction resistance loading spectrum
that can be achieved on the test bench was developed. The load spectrum extrapolation method
based on the genetic algorithm optimal threshold selection can improve the accuracy of threshold
selection and achieve the extrapolation and reconstruction of the load spectrum. After processing the
extrapolated load spectrum, it can be transformed into a load spectrum that can be recognized by the
test bench.

Keywords: tractor; peak over threshold (POT) model; generalized pareto distribution (GPD); genetic
algorithm; miner fatigue theory

1. Introduction

During farming operations in the field, the load spectrum of a tractor is subjected to
random loads due to the complex and variable environment. The load spectrum is a load
time history that reflects the loading situation of the entire structure or key components [1],
containing load information and the distribution law of the tractor under operating con-
ditions [2]. By extrapolating and reconstructing the load spectrum, a full-life-cycle load
spectrum can be obtained within a finite detection time of the load spectrum, thereby
reducing time and testing costs. This is of great significance for predicting fatigue life and
conducting reliability testing of various components of tractors [3]. The extrapolated load
spectrum cannot directly guide relevant performance tests. To facilitate the loading of the
test bench, it is necessary to convert the load spectrum into a constant stress spectrum, i.e.,
to compile the load spectrum.

In recent years, the application of load spectrum extrapolation in agricultural machin-
ery has become increasingly widespread. Shao et al. established a load transfer model for
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tractor plowing operations and analyzed the load characteristics of the tractor transmission
system for field plowing operations through rainfall basin extrapolation [4]. Roberto Tovo
proposed a new method to evaluate the single Weibull distribution of the period generated
by the rainflow count of random processes, which provides a basis for reliability analysis
of fatigue behavior of actual components under service loads [5]. Wang et al. proposed a
tractor power take-off (PTO) torque load spectrum extrapolation method based on FDR
(False Discovery Rate) threshold automatic selection and optimized the time-domain ex-
trapolation threshold selection method [6]. Yang et al. proposed a time-domain load
extrapolation method based on the EMD-POT (Empirical mode decomposition-peaks over
threshold) model to address the two issues of insufficient adaptability of traditional POT
extrapolation methods to non-stationary loads and the lack of discussion on extrapolation
reconstruction. The stability of the mean and standard deviation of this extrapolation
reconstruction method has been improved by 28.5% and 31.2%, respectively. Compared
with the random reconstruction method, the damage consistency has been improved by
9.4% [7]. He et al. address the problems that the conventional time-domain extrapolation
ignores: the interval time of extreme adjacent values and the high sensitivity of the POT
model to extreme thresholds. A computer numerical control machine tool load extrapola-
tion method based on the GRA-POT model (Gray relational analysis-peak over threshold
mode) is proposed, which can obtain a POT extrapolation model with high fitting accuracy.
In addition, the accuracy of the load spectrum of CNC (computerized numerical control)
machine tools is improved [8]. Yang et al. studied the time-domain extrapolation method
of tractor drive shaft load under static working conditions and proposed a time-domain
extrapolation method of tractor drive shaft load based on the MCMC-POT (Markov chain
Monte Carlo-peak over threshold) model [9]. Yang et al. obtained the load spectrum of a
high-power tractor drive shaft under field working conditions, and a time-domain extrap-
olation method of high-power tractor-drive shaft load was proposed based on the POT
model, aiming at the limitations of rain flow counting and rain basin extrapolation methods
in the compilation of traditional driveline load spectrum. This method can not only obtain
the load time-domain sequence of any mileage, but also preserve the order of measured
load cycles to a great extent, providing real and reliable data support for future indoor load
spectrum loading tests of high-power tractor transmission systems [10]. Dai et al. proposed
the CEEMDAN-POT (Complete Ensemble Empirical Mode Decomposition with Adaptive
Noise -Peak Over Threshold) model to comprehensively construct the ground load spec-
trum of tractor vibration in its full life cycle under six ground conditions and different field
operating conditions. After extrapolation, the overall distribution of rain–flow matrix is
more consistent, and the mean value and amplitude of spectral data increase. This study
unifies the load spectrum of tractors operating and transporting under various farm surface
conditions and provides the real load data of the laboratory four-column drill test [11].
Wang et al. proposed a PTO loading method based on the dynamic load spectrum obtained
in field work, taking PTO torque load as the object. The load extremity was extended from
(63.24, 469.50) to (60.88, 475.18) by the time-domain extrapolation method, and the coverage
was extended by 1.98%. This study provides a reference for the practical application of
PTO load spectrum of tractor [12]. Wang et al., in view of the problems that the traditional
parameter extrapolation compilation method fails to verify, or the poor fitting effect on
the operating loads with multiple peaks and unclear probability distribution, and taking
the measured tractive loads of three-point suspension of tractors as the object, proposed a
load spectrum compilation method based on optimal distribution fitting, and conducted
an indoor bench test to verify the reliability of the load spectrum [13].

Comparing and analyzing existing research results shows that load spectrum extrap-
olation is mainly divided into time-domain extrapolation methods [14–16] and rain-flow
extrapolation methods [17–19]. Rain-flow extrapolation methods are widely used and
have high computational efficiency, but there is a loss of time sequence information for
the load and the need to reconstruct the load-time history to obtain the load is a problem.
Conversely, time-domain extrapolation methods can retain the time sequence of the load,
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making it more suitable for extrapolating steady loads [20]. The time-domain extrapolation
method is more appropriate for the traction resistance load spectrum of the tractor plowing
operation studied in this paper. However, for time-domain extrapolation, selecting an
appropriate threshold is crucial for determining the effectiveness of the load spectrum
extrapolation. Currently, the method combines image and grey correlation analysis to select
the threshold. However, this method requires calculating the grey correlation degree for
the threshold within the initial selection range, which is computationally intensive and
has low accuracy. Therefore, optimizing the selection method for threshold values and
selecting the optimal threshold is of great significance for improving the fitting effect and
rationality of the load spectrum extrapolation.

In this study, the traction resistance signal of the three-point suspension device of
the tractor was collected under the plowing operation condition, and the load data was
preprocessed. The time-domain extrapolation method was used to extrapolate and recon-
struct the load spectrum of the tractor’s traction resistance under the plowing operation
condition. To address the problem of high computational intensity and low accuracy in
selecting the threshold range of the POT extreme value extrapolation model, this paper
proposes a load spectrum extrapolation method based on genetic algorithm optimization
of the threshold value. It verifies the rationality of the extrapolated load spectrum. Based
on the Miner fatigue theory and accelerated life theory, the plowing operation condition
was divided into five working stages, and the load spectrum was converted into a constant
stress spectrum to obtain a loading spectrum that can be realized on the test bench, laying
the foundation for predicting the fatigue life and conducting reliability testing of tractors.

2. Materials and Methods
2.1. Load Spectrum Extrapolation Principle and Process

Using the time-domain load extrapolation method, the preprocessed time-domain
load data is directly extrapolated to obtain the long-term load time history. The extreme
load is the center of gravity for extrapolation, and the tail data of load distribution is
mainly described through extreme value theory [21]. The process of time-domain load
extrapolation mainly includes the following: removing small cycles from time-domain
load data and extracting inflection points of extreme values; selecting an appropriate
extreme load model and establishing an extreme load distribution model; and randomly
generating a new time-domain extreme load sequence using the extreme load distribution
to obtain extrapolated long-term time-domain loads. According to different extreme
value models, common time-domain load extrapolation methods can be divided into time-
domain extrapolation based on the BMM (Block Maximum Method) model, time-domain
extrapolation based on the POT model, and time-domain extrapolation based on the MIS
(Management Information System) model.

The process of load spectrum extrapolation is shown in Figure 1, which mainly in-
cludes the following steps: determining typical test conditions, load measurement, signal
preprocessing, statistical counting [22], load extrapolation, program loading spectrum, and
reliability testing.
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3.5–4 N/cm2 and the experiment area was 5000 m2. The Dongfeng DF1004 tractor is taken 
as the research object, and the tractor’s three-point suspension is connected to the L1-435 
moldboard plow to collect traction resistance signals under plowing conditions. The de-
tails of plow connection and sensor layout are shown in Figure 2b. The sensor adopts the 
XZNJNY-T3d30 KN electric quantity weighing sensor produced by Ningbo Keli Sensing 
Technology Co., Ltd. Ningbo China. This sensor is a pin-type force sensor, arranged at the 
pull-down rod of the three-point suspension device and collects the tractor traction re-
sistance load signal through a wired collection system. The field test and sensor layout are 
shown in Figure 2. The technical specifications of the tractor, the sensor, and the mold-
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Figure 2. Field experiment and sensor arrangement of the three-point linkage: (a) the tractor plow-
ing resistance load test setup; (b) three-point linkage and sensor arrangement. 

  

Figure 1. Load spectrum extrapolation process.

2.2. Collection and Data Preprocessing of Traction Resistance Load Signal
2.2.1. Collection of Traction Resistance Load Signal

The experimental site for collecting traction resistance load signals is located in Liuhe
District, Nanjing City, Jiangsu Province (Figure 2a). The soil specific resistance was about
3.5–4 N/cm2 and the experiment area was 5000 m2. The Dongfeng DF1004 tractor is taken
as the research object, and the tractor’s three-point suspension is connected to the L1-435
moldboard plow to collect traction resistance signals under plowing conditions. The details
of plow connection and sensor layout are shown in Figure 2b. The sensor adopts the
XZNJNY-T3d30 KN electric quantity weighing sensor produced by Ningbo Keli Sensing
Technology Co., Ltd. Ningbo China. This sensor is a pin-type force sensor, arranged at
the pull-down rod of the three-point suspension device and collects the tractor traction
resistance load signal through a wired collection system. The field test and sensor layout are
shown in Figure 2. The technical specifications of the tractor, the sensor, and the moldboard
plow are shown in Table 1 [23].
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Table 1. The technical specifications of the sensor.

Name of Part Parameter Parameter Value

The tractor

Model name DF1004X
Outer dimension (mm ×mm ×mm) 4555 × 2270 × 2775

Wheel pitch
(Front wheel mm/rear wheel mm) 1550–2010, 1650

Engine-calibrated power (kW) 73.5
Minimum ground spacing (mm) 425

Minimum service quality (kg) 4340
Power output shaft power (kW) 63

The sensor
Model name XZNJNY-T3d30 KN

Supply voltage (V) 12
Output signal (V) 2.5–4.5

The moldboard plow

Model name 1L-435
Matching power (kW) 66.1–88.2

Outer dimension (mm ×mm ×mm) 3400 × 1650 × 1350 mm
Total weight (kg) 1050

Depth range (mm) 200–350
Plow number 4

Adjustable range of total tillage (mm) 1400
Plow spacing (mm) 880

Operating speed (km/h) 8–12
Matching tire spacing (mm) 1700–1900

Connection type three-point suspension

2.2.2. Preprocessing of Traction Resistance Load Signal

According to the traction resistance data of the three-point suspension system collected
from field experiments, the original load signal can be obtained by processing the data, as
shown in Figure 3.
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Figure 3. Original load signal.

Due to the complex field environment, there may be interference signals in the mea-
sured load signals during field experiments. If the original data is directly used to compile
the load spectrum, the reliability of the compiled load spectrum will not be very high.
Therefore, for the original load signal of tractor traction resistance collected by the testing
system, preprocessing is necessary, and the processed signal needs to be verified and
prepared for the compilation of load spectra for subsequent tractor field operations [24].

The collected raw signal data Itself has a certain range of oscillations, and in addition,
there may be some low-frequency components that affect our calculations or observations.
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The polynomial least squares method is used to eliminate the trend term from the original
load signal, and the results are shown in Figure 4.
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Due to the harsh working conditions in the field, there are some abnormal peaks in
the lines drawn after dispersion due to external interference or human error during the
tractor field test. In order to obtain true and reliable load data, outlier of the original signal
should be detected and smoothed before spectrum compilation, and the abnormal peaks
should be eliminated [25,26], and the results are shown in Figure 5.
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2.3. Extrapolation of Traction Resistance Load Spectrum
2.3.1. Determine the Distribution Function

Assuming {xi}(i = 1, 2, . . . , n) is the load spectrum sample data, and its distribution
is F (x). For a specific threshold, samples that are greater than the threshold are referred
to as over-threshold samples, and zi = xi − µ(i = 1, 2, . . . , n) is the excess amount. The
distribution functions of the exceeding amount and exceeding threshold are shown in
Equations (1) and (2), respectively:

Fµ(z) = P{X− µ ≤ z|X ≥ µ} = P{µ ≤ X− µ ≤ z}
X ≥ µ

=
F(z + µ)− F(µ)

1− F(µ)
, z ≥ 0 (1)

Fµ(x) = P{X ≤ x|X ≥ µ} ==
F(x)− F(µ)

1− F(µ)
, x ≥ µ (2)
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According to the load characteristic analysis data, the threshold’s candidate interval
is [7.898, 12.47] kN. Research has shown that the excess distribution tends to follow the
generalized Pareto distribution (GPD) when the threshold is sufficiently large. Therefore,
this article fits the excess distribution based on the GPD distribution.

The expression for the GPD cumulative distribution function is:

G(z, µ, σ, ξ) =

{
1− (1 + ξ z

σ )
− 1

ξ , ξ 6= 0, x > µ

1− exp(− z
σ ), ξ = 0, x > µ

(3)

The expression of the GPD probability density function is:

g(z, µ, σ, ξ) =

{
1
σ (1 + ξ z

σ )
− 1+ξ

ξ , ξ 6= 0, x > µ
1
σ exp(− z

σ ), ξ = 0, x > µ
(4)

In the equation, zi = xi − µ(i = 1, 2, . . . , n) is the excess, xi (kN) is the observed load
value, µ (kN) is the threshold value, σ is the scale parameter, and ξ is the shape parameter.

2.3.2. Determining the Threshold

The mean function of the excess of the random variable X is defined as e(µ), and its
expression is:

e(µ) = E(x− µ|X > µ) =
σ + ξµ

1− ξ
(5)

When the scale parameter σ and shape parameter ξ are determined, there is a linear
relationship between e(µ) and the threshold. Each threshold has a mean of the excess
corresponding to it, as shown in Equation (6).

en(µ) =
1
N

n

∑
i=1

Xi − µ (6)

In the formula, µ is the threshold, and N is the number of excess samples.
The graph of the mean function of the upper threshold exceedance is shown in Figure 6:
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From the graph, it can be seen that as the threshold increases, the tail means oscillates
violently. The linear change interval [10.10, 11.00] that is closest to the oscillation before the
oscillation is selected as the initial upper threshold interval.

Similarly, the graph of the mean function of threshold exceedance can be obtained, as
shown in Figure 7, with [8.50, 9.50] as the initial threshold interval.
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• Threshold selection method based on grey correlation analysis;
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Grey correlation analysis is a common threshold selection method. Grey correlation
analysis is used to quantify the goodness of fit of the GPD distribution of excess quantities
with different thresholds. The greater the grey correlation, the better the fitting effect [27].
The correlation analysis process is as follows [28]:

(1) Given an alternative threshold, the corresponding excess sample data, and GPD fitting
data are shown in Equation (7).{

f (xi) = f1, f2, · · · , fn

f̂ (xi) = f̂1, f̂2, · · · , f̂n
, (i = 1, 2, 3, · · · , n) (7)

In the formula, f (xi) is the quantile of the sample point distribution of the original
load data, f̂ (xi) is the quantile of the fitting GPD distribution, and n is the number of
excess samples.

(2) Using the averaging method to f̂ (xi) perform dimensionless processing on the load
sample data f (xi) and fitting data, as shown in (8).

f (xi) =
fi

n
∑

i=1
fi/n

f̂ (xi) =
f̂i

n
∑

i=1
f̂i/n

, (i = 1, 2, 3, · · · , n) (8)

(3) Calculate the absolute difference between the sample and the fitted data after normal-
ization and calculate the correlation coefficient based on the extreme values.

∆(xi) =
∣∣∣ f̂ (xi)− f (xi)

∣∣∣ (9)

{
M = max(∆(xi))
m = min(∆(xi))

(10)

ω(xi) =
m + ηM

∆(xi) + ηM
(11)

In the formula, ∆(xi) is the absolute difference, η is the resolution coefficient, and is
taken as η = 0.5.
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(1) Calculate alternative thresholds µ Corresponding grey correlation degree λ.

λ(µ) =
1
n

n

∑
i=1

ω(xi) (12)

• Optimal threshold selection based on genetic algorithm;

The threshold obtained by using the grey correlation analysis method was calculated
using only 10 data points to reduce computational complexity. Therefore, this method’s
accuracy of the threshold obtained is relatively low. This section uses genetic algorithm to
optimize threshold selection and find the optimal threshold. The process is as follows [29]:

(2) Determine the threshold range and initialize the population. The sample accuracy
of the input data is 10−2. If the input data is converted into binary encoding, the
encoding length of the individual is:

lG = 1 + log2
(µ2 − µ1)

eps
(13)

In the formula, lG is the data encoding length, eps is the sample accuracy, µ1 and µ2 is
the upper and lower intervals of the initial threshold range.

(3) Calculate individual fitness. Individual fitness is the survival probability of an individ-
ual under given environmental conditions. Based on the optimization objective, select
the fitness function as the “environmental condition” in the genetic algorithm. This
article aims to find the threshold that best fits the GPD function. Therefore, the good-
ness of fit of each candidate threshold is calculated as the fitness of the individual in
the “environment”. This paper takes the grey relational degree as the fitness function.
The greater the grey relational degree, the higher the probability that individuals can
survive in the environment and pass on genes to the next generation and vice versa.

(4) Individual survival rate. The survival rate of individuals in the environment is
essentially the principle of “survival of the fittest” proposed by evolutionary theory.
According to the choice function, the individuals with high fitness will have a higher
survival rate, and the good genes will be passed on to the next generation, whereas
the inferior genes in the population will be eliminated. The common roulette wheel
method is selected as the choice function, in which the survival rate of each individual
in the population is proportional to its fitness.

p(i) =
fg(i)

N
∑

j=1
fi(xj)

(14)

In the formula, fg(i) (i = 1,2,3 . . . , n) is the fitness of each individual in the population,
and p(i) is the survival probability of the i-th individual in this inheritance.

(5) Intersection and variation. The crossover and mutation process in genetic algo-
rithms simulates the pairing and mutation of two pairs of chromosomes in nature.
During the crossover process, two sets of data exchange “chromosomes” through
certain crossover methods to form new individuals. This article adopts a single-point
crossover. Mutation refers to the phenomenon where a certain “gene” within the data
has a certain probability of being transformed into an opposite gene.

2.4. Equivalence of Traction Resistance Load Signal

The load spectrum obtained from the GPD distribution cannot directly guide the
reliability tests related to plowing operations and the fatigue life prediction of key functional
components. In order to facilitate the loading of the test bench, the principle of equal
damage can be adopted to convert the load spectrum of each working stage into a constant
stress spectrum. Then, according to the test requirements, the loading time of each working
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stage can be reasonably divided to obtain the loading curve of each cycle, which is called
the loading spectrum [30,31].

Miner fatigue theory believes that each pressure applied to a part will cause certain
damage to the part, and the magnitude of the damage is determined by the combined
magnitude of the applied stress and the characteristics of the material itself [32]. When the
damage accumulates to a certain value, the part fails, and vice versa, no failure occurs. The
expression is:

D = ∑
i

ni
Ni

(15)

Among them, D is the amount of damage, and D ∈ [0, 1) when the part does not
fail. When D = 1, the part experiences fatigue failure. ni is the Si number of loadings
under stress Si, and Ni is the number of loadings where fatigue damage occurs under the
equivalent force. The expression for Ni is:

Ni = CSi
−β (16)

where C is a constant and β is the inverse slope coefficient of the material S-N curve, which
is related to the material’s own properties, β = 7.1 [33,34].

From Equations (15) and (16), the equivalent loading stress Sk and equivalent loading
frequency n expressions can be obtained as:

Sk =

β

√√√√√ n
∑

i=1
niSi

β

n
(17)

n =

n
∑

i=1
niSi

β

Sk
β

(18)

where Sk is the equivalent loading stress, n is the equivalent loading frequency, Si is the
load spectrum extrapolation data, and ni is the frequency of loading stress.

3. Results and Discussions
3.1. Load Characterization and Smoothness Testing after Pre-Processing

The load characteristics before and after pretreatment are shown in Table 2. By
comparing the data in Table 2, the data of maximum and minimum values before and after
preprocessing changed significantly, which is due to the elimination of abnormal spikes
during our preprocessing, and the variance and standard deviation were reduced after
preprocessing, which indicates the good noise reduction effect of preprocessing. The mean
and median values remain unchanged, which indicates that the data characteristics of the
original load signal are also well preserved after preprocessing.

Table 2. Comparison of characteristics before and after load signal preprocessing.

Minimum
/kN

Maximum
/kN

Mean
/kN

Median
/kN

Std
/kN

Range
/kN

Before 0.7946 14.44 10.22 10.2 1.232 13.65
After 7.898 12.47 10.2 10.16 0.8382 4.57

Using the adtest function in MATLAB, the ADF test (Augmented Dickey–Fuller test)
can be performed on the smoothness of the load signal. The function’s output is “1”, and
the test proves that the pre-processed load signal is smooth.
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3.2. Threshold Selection Results and Analysis
3.2.1. Threshold Selection Method Based on Grey Correlation Analysis

Based on the initial range of upper and lower thresholds obtained by the image
method, 10 thresholds are selected at equal intervals, and the gray correlation degree is
calculated. The gray correlation degrees of different thresholds are shown in Table 3 below.

Table 3. Grey correlation degree corresponds to each threshold within the threshold interval.

Upper Threshold Lower Threshold

Threshold/kN Gray Correlation Threshold/kN Gray Correlation

10.10 0.6763 8.60 0.6942
10.20 0.6762 8.70 0.6630
10.30 0.6855 8.80 0.7153
10.40 0.6788 8.90 0.6443
10.50 0.6887 9.00 0.6962
10.60 0.6832 9.10 0.6738
10.70 0.7005 9.20 0.6598
10.80 0.7092 9.30 0.7001
10.90 0.7182 9.40 0.6620
11.00 0.7173 9.50 0.6540

Based on the calculation results, the bolded thresholds in the red rectangular boxes
in Table 3 were the best-fitting thresholds. The threshold interval was determined to be
[8.80, 10.90] kN.

Using the extracted exceedance samples for parameter estimation, the exceedance
samples were fitted to the GPD distribution using the great likelihood estimation method to
find the corresponding scale parameter σ and shape parameter ξ, as shown in Table 4 [35].

Table 4. GPD fitting results corresponding to threshold based on grey correlation analysis.

Threshold/kN Scale Parameter σ Shape Parameter ξ

8.80 117.7353 −1.3046
10.90 61.2523 −0.2479

3.2.2. Optimal Threshold Selection Based on Genetic Algorithm

By writing the program in MATLAB, 50 iterations yielded an optimal upper threshold
of 10.975 kN, at which time the gray correlation was 0.7249; the optimal lower threshold
was 8.5455 kN, at which time the gray correlation was 0.7722, and the evolutionary process
of the upper and lower threshold genetic algorithm is shown in Figure 8.

The comparison of the data with the gray correlation analysis method is shown in
Table 5. The results show that the gray correlation of the upper and lower thresholds
selected by the genetic algorithm increased by 0.933% and 7.950%, respectively, compared
with the traditional gray correlation analysis method, and the gray correlation of the
thresholds obtained by this method was greater, indicating that the GPD fit of the threshold
exceeded the amount was better.
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Table 5. Thresholds and gray correlations obtained by the two methods.

Upper
Threshold/kN

Gray
Correlation

Lower
Threshold/kN

Gray
Correlation

Threshold selection
method based on grey

correlation analysis
10.90 0.7182 8.80 0.7153

Threshold selection
method based on
genetic algorithm

10.9750 0.7249 8.5455 0.7722

Using the extracted exceedance samples for parameter estimation, the exceedance
samples were fitted to the GPD distribution using the great likelihood estimation method
to find the corresponding scale parameter σ and shape parameter ξ, as shown in Table 6.

Table 6. GPD fitting results corresponding to the optimal threshold.

Threshold/kN Scale Parameter σ Shape Parameter ξ

8.54558 146.8319 −0.4468
10.975 58.5881 −0.2369

After obtaining the scale parameter σ and shape parameter ξ for the upper and
lower thresholds, the cumulative distribution functions and probability density functions
corresponding to the upper and lower thresholds can be written: G(z, µ, σ, ξ) = 1− (1− 0.2369 x−1097.5

58.5881 )
4.2212

g(z, µ, σ, ξ) = 0.0171(1− 0.2369 x−1097.5
58.5881 )

3.2212 (19)

 G(z, µ, σ, ξ) = 1− (1− 0.4468 x−854.55
146.8319 )

2.2381

g(z, µ, σ, ξ) = 0.0068(1− 0.4468 x−854.55
146.8319 )

1.2381 (20)

The goodness of fit can be observed more visually by plotting the Q–Q plot (Quantile–
Quantile) of the original sample points against the fitted sample points. As shown in
Figure 9, the fitted data points for the upper and lower thresholds (as the blue crosses in
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the figure) have a slight deviation around the reference line at both ends, whereas in the
middle region, they fit the reference line very well, and the Q–Q plot of the final fitted
sample approximates a straight line, which indicates a good fit of GDP at this threshold.
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3.3. Load Spectrum Extrapolation Reconstruction Results and Validation

Combined with the probability density function of the GPD fitted distribution of
the excess amount, a random load sequence consistent with the number of samples is
generated, and the extrapolated time-domain signal is obtained by replacing the original
excess amount at the original time point with the generated load sequence [36,37]. The
original load is compared with extrapolated time courses of 1×, 2×, and 10×, as shown
in Figure 10.
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Figure 10. Time history of extrapolated load and original load: (a) extrapolation of 1-time load
history; (b) extrapolation of 2-time load history; (c) extrapolation of 10-time load history.

The 10-time original load and 10-time extrapolated load are counted, and the compari-
son of the accumulated frequency data of 10-time original load and 10-time extrapolated
load is shown in Figure 11. It can be seen that the changing trend of the accumulated fre-
quency of extrapolated load and original load is basically the same, and this extrapolation
method is reasonable.
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Figure 11. Comparison of cumulative frequency between original load and 10-time extrapolated load.

The load spectra obtained by extrapolation and the original load spectra are counted
separately for rainfall, and the mean frequency histogram can be obtained, as shown in
Figure 12. The load cycle distribution obtained by extrapolation in the time domain has
similarity with the original data load cycle distribution, and the correlation coefficients of
its magnitude and mean value are 0.95913 and 0.99187, respectively, indicating that the
load cycle distribution can better simulate the real distribution law of the load under the
plowing-operation conditions of the tractor.
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Figure 12. Histogram of mean and amplitude frequency: (a) extrapolated of 1-time load mean;
(b) extrapolation of 1-time load amplitude; (c) extrapolated of 10-time load mean; (d) 1 extrapolation
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3.4. Plotting of Loading Spectra and Accelerated Loading Spectra
3.4.1. Analysis of the Plowing Process

The operating conditions of plowing operations consist of five stages: plow tool entry,
accelerated operation, uniform speed operation, deceleration operation, and plow tool exit.
The boundary of each working phase was distinguished by observing the change in load
signal of each moving structure. The time consumption of each working stage is 4.1 s, 1.9 s,
5.6 s, 1.6 s, and 1.8 s. The working stages are shown in Figure 13.
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3.4.2. Division of Loading Loops

In order to facilitate the preparation of the subsequent loading spectra and the easy
implementation of the test bench loading, the time periods were rounded, and the elapsed
time of each working phase in one loading cycle is shown in Table 7.

Table 7. Time consumption of each work stage.

Plow Tool
Entry

Accelerated
Operation

Uniform Speed
Operation

Deceleration
Operation

Plow Tool
Exit

Time/s 4 2 5.5 1.5 2

Preparing the loading spectrum requires the calculation of equivalent loading stresses
for each working stage and the extrapolation of the load spectrum for rainflow counting
statistics. According to the literature, the load level divided into 8 levels can accurately
reflect the fatigue characteristics of the material, so the amplitude load interval of each
working stage of the plowing load is divided into 8 levels with the ratio coefficients of 0.125,
0.275, 0.425, 0.575, 0.725, 0.850, 0.950, and 1.000 [38]. The amplitude equivalent of different
working stage load spectrum is shown in Table 8 below.
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Table 8. Amplitude Equivalent Load Spectrum.

1 2 3 4 5 6 7 8

Plow tool entry Amplitude/kN 0.4963 0.9925 1.4888 1.985 2.4813 2.9775 3.4738 3.9658
Frequency 3 1 3 3 2 0 0 1

Accelerated
operation

Amplitude/kN 0.4129 0.8258 1.2387 1.6512 2.0646 2.4774 2.8903 3.3032
Frequency 1 2 2 0 0 1 1 0

Uniform speed
operation

Amplitude/kN 0.4563 0.9125 1.3688 1.8250 2.2813 2.7375 3.1938 3.6412
Frequency 12 1 5 0 2 1 2 1

Deceleration
operation

Amplitude/kN 0.4380 0.8761 1.3141 1.7522 2.1902 2.6282 3.0663 3.5043
Frequency 0 1 0 0 1 0 0 1

Plow tool exit
Amplitude/kN 0.4488 0.8975 1.3463 1.795 2.2438 2.6925 3.1413 3.5891

Frequency 0 3 2 1 1 0 0 1

According to the measured limited load data, the load cycle accumulation frequency
is extended to 106 times according to Equation (21) so as to obtain the extrapolation
factor. Keeping the loading times constant, the loading times of each working stage
after extrapolation are 236,364, 127,273, 436,364, 54,545, and 145,455, and the amplitude
equivalent load spectrum after extrapolation is shown in Table 9.

Ni
′/Ni = 106/N (21)

where N is the total frequency of load, Ni is the frequency of load in a certain operation
phase, and Ni

′ is the frequency of load after expansion.

Table 9. Equivalent load spectrum of amplitude after frequency extrapolation.

1 2 3 4 5 6 7 8

Plow tool entry Amplitude/kN 0.4963 0.9925 1.4888 1.985 2.4813 2.9775 3.4738 3.9658
Frequency 54,546 18,182 54,546 54,546 36,364 0 0 18,182

Accelerated
operation

Amplitude/kN 0.4129 0.8258 1.2387 1.6512 2.0646 2.4774 2.8903 3.3032
Frequency 18,182 36,364 36,364 0 0 18,182 18,182 0

Uniform speed
operation

Amplitude/kN 0.4563 0.9125 1.3688 1.8250 2.2813 2.7375 3.1938 3.6412
Frequency 218,182 18,182 90,909 0 36,364 18,182 36,364 18,182

Deceleration
operation

Amplitude/kN 0.4380 0.8761 1.3141 1.7522 2.1902 2.6282 3.0663 3.5043
Frequency 0 18,182 0 0 18,182 0 0 18,182

Plow tool exit
Amplitude/kN 0.4488 0.8975 1.3463 1.795 2.2438 2.6925 3.1413 3.5891

Frequency 0 54,546 36,364 18,182 18,182 0 0 18,182

3.4.3. Preparation of Loading Spectra

The equivalent force of each working stage is calculated according to Equation (17), as
shown in Table 10.

Table 10. Equivalent stress at each working stage.

Plow Tool
Entry

Accelerated
Operation

Uniform
Speed

Operation

Deceleration
Operation

Plow Tool
Exit

Time/s 4 2 5.5 1.5 2
Equivalent

Amplitude/kN 2.799476 2.289872 2.565511 3.016759 2.694487

Equivalent Stress
/kN 9.698 10.379 9.857 9.621 9.855
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The loading spectrum is plotted according to the time consumed in each working
phase and the equivalent force obtained from Table 9, as shown in Figure 14.
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3.4.4. Development of Accelerated Loading Spectrum

The loading test is time-consuming, and the human, financial, and time costs are too
great if the test is loaded directly. Therefore, choosing a suitable acceleration factor to
accelerate the equivalent force and make the part fail quickly on the test bench is necessary.

The acceleration factor is related to the material of the part. The fatigue characteristics
of the material can be described by the S-N curve, through the S-N curve can get the fatigue
strength ratio Kn of the part under different stresses. However, the material used in the
process, as well as variations in its composition, can also influence the selection of the
acceleration factor. To account for the inherent dispersion of the material, it is necessary to
introduce the material dispersion correction factor, denoted as Kv. Therefore, it can be seen
that the acceleration factor K can be expressed by the formula (22).

K = KnKv (22)

where K is the acceleration factor, Kn is the fatigue strength ratio of the material, 1.15,
and Kv is the discrete correction factor of the material, 1.3. Thus, it can be calculated that
K = 1.5 [39].

After the acceleration, the equivalent force of each working stage is shown in Table 10.
The accelerated loading spectrum is plotted according to the time consumed in each
working stage and the equivalent force obtained from Table 11, as shown in Figure 15.

Table 11. Accelerated stress at each working stage.

Plow Tool
Entry

Accelerated
Operation

Uniform
Speed

Operation

Deceleration
Operation

Plow Tool
Exit

Accelerated
Stress/kN 14.547 15.5685 14.7855 14.4315 14.7825
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Comparing Figures 14 and 15, it can be seen that the waveforms of the accelerated
loading spectrum are consistent with those before the acceleration, and only the accelerated
stress of each section is raised to the loading stress. This shows that when using accelerated
loading spectra for reliability testing on a test stand, the test time can be shortened while
achieving the desired results, which greatly reduces human, financial and time costs.

4. Conclusions

From the above research and analysis, this paper concludes the following five points:

(1) Taking the Dongfeng DF1004 tractor as the research object, the plowing operation was
carried out in a test field with an area of about 5000 m2, and the axle-pin force sensor
was used to collect the traction resistance load signal of the three-point suspension
device under the plowing condition. We stored sensor signals with the EPEC controller
and transmitted them to the host computer. The foundation was laid for plotting the
load time course curve later on;

(2) Based on the least squares method, the original load signal was processed by de-
trending, the data was noise-reduced by smoothing, and the smoothness of the
pre-processed traction resistance load signal was verified by ADF test to obtain the
original load time history of traction resistance under plowing conditions, which laid
the foundation for the extrapolation and reconstruction of the load spectrum later on;

(3) Based on the POT model, the time-domain extrapolation of the original load data
is carried out, and the excess threshold values are selected using gray correlation
analysis and genetic algorithm. The threshold values obtained are [8.80 kN, 10.90 kN]
and [8.5455 kN, 10.975 kN], respectively, and the GPD distribution goodness-of-fit
test is performed on the selected upper and lower thresholds. The fit superiority of
the upper and lower thresholds obtained by the genetic algorithm is improved by
0.933% and 7.95%, respectively, which proves that the fitted curves obtained based on
the optimal threshold selection of the genetic algorithm can better reflect the actual
loading situation;

(4) Based on the threshold thresholds obtained from the optimal threshold selection of the
genetic algorithm, the original load time histories were extrapolated and reconstructed.
The extrapolated load spectra obtained from the original load signal and 10-fold
extrapolation were compared and analyzed by rain flow counting. The results show
that the changing trend of the extrapolated load and the accumulated frequency of
the original load are basically the same, and the extrapolation method is reasonable;
the load cycle distribution obtained by time-domain extrapolation is similar to the
load cycle distribution of the original data, and the correlation coefficients of its
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amplitude and mean value are 0.95913 and 0.99187, respectively. The load cycle
distribution can better simulate the real load under the working condition of tractor
plowing-distribution law;

(5) The plowing condition is divided into five working stages: plow tool entry, acceler-
ated operation, uniform speed operation, deceleration operation, and plow tool exit.
The accumulated frequency of load cycles was extended to 106 times to obtain the
amplitude equivalent load spectrum. Based on Miner fatigue theory, the equivalent
force of each working stage was calculated, and the loading spectrum under plowing
working conditions was drawn. Based on the accelerated life theory, the acceleration
factor of 1.5 is obtained according to the S-N curve, and the accelerated loading spec-
trum under plowing conditions is finally drawn. The accelerated loading spectrum is
consistent with the loading spectrum waveform, and only the stress is accelerated to
the loading stress, which is convenient for loading on the test bench.
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