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Abstract: In recent years, the adverse effect of climate change on soil properties in the agricultural
sector has become a dreadful reality worldwide. Climate change-induced abiotic stresses such
as salinity, drought and temperature fluctuations are devastating crops’ physiological responses,
productivity and overall yield, which is ultimately posing a serious threat to global food security and
agroecosystems. The applications of chemical fertilizers and pesticides contribute towards further
deterioration and rapid changes in climate. Therefore, more careful, eco-friendly and sustainable
strategies are required to mitigate the impact of climate-induced damage on the agricultural sector.
This paper reviews the recently reported damaging impacts of abiotic stresses on various crops, along
with two emerging mitigation strategies, biochar and biostimulants, in light of recent studies focusing
on combating the worsening impact of the deteriorated environment and climate change on crops’
physiological responses, yields, soil properties and environment. Here, we highlighted the impact of
climate change on agriculture and soil properties along with recently emerging mitigation strategies
applying biochar and biostimulants, with an aim to protecting the soil, agriculture and environment.
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1. Introduction

Climate change refers to a long-term and significant change in measures of climate
such as rainfall, temperature, wind or snow patterns [1]. Global warming and greenhouse
gas (GHG) emissions are considered major factors responsible for adversely accelerating
the degree of climate change [2]. Due to continuously increasing anthropogenic activities,
the global average temperature increased by 0.9 ◦C since the 19th century and it is expected
to be further increased to 1.5 ◦C by 2050 [3]. Manifold and continuous increases in GHG
emissions are highly affecting terrestrial, freshwater and marine ecosystems by causing
substantial and irreversible losses [4]. These GHGs block the transmission of infrared radi-
ations that tries to escape from the atmosphere and thus trap heat, as in a ‘greenhouse’ [5].
The major GHG sources include burning fossil fuels, use of nitrogen fertilizers, soil man-
agement, flooded rice fields, land conversions, burning biomass, livestock production
and manure management [6]. Climate change is projected to have significant impacts
on agriculture through direct and indirect effects on crops, soils, livestock and pests [7].
Though climate change is a slow process involving relatively small changes in temperature
and precipitation over long periods of time, these slow changes in climate nevertheless
influence various soil processes, particularly those related to soil fertility. The effects of
climate change on soils are expected mainly through alterations in soil moisture conditions
and increases in soil temperature and CO2 levels as a consequence [8]. Global climate
change is projected to have variable effects on soil processes and properties important for
restoring soil fertility and productivity [9]. The major effect of climate change is expected
through an elevation in CO2 and increases in temperature and salinity [10].
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Crop production is vulnerable to climate variability, and climate change-associated
increases in temperature, increases in CO2 and changing patterns of rainfall may lead to a
considerable decline in crop production [3]. Changes in temperature, moisture, wet–drying
and freeze–thawing cycles, etc., can lead to alterations in the growth and physiology of soil
microorganisms [11]. Climate-induced changes in environmental parameters can indeed
influence both the structure and function of soil microbial communities and modify, for
instance, the level of interaction among microorganisms required for the degradation of
organic pollutants in soil, soil organic carbon stocks, soil properties such as pH, cation
exchange capacity (CEC), water holding capacity (WEC) and nutrients stock [12–14]. Also,
extreme weather events such as droughts, extreme heat waves and heavy rainfall leading
to floods have increased in past decades, increasing leaching, soil erosion and runoff at
alarming rates. Enhancing crop production to meet rising demands owing to the increasing
population, against the background of the threats of climate change, is a challenging task.
Therefore, we require more attention towards adaptation and mitigation research. In the
past few decades, agricultural technologies have been successful in eradicating hunger
from many parts of the world, but by the virtue of chemical means and usage, which has
raised more concern for environment, health and future agriculture [15]. In recent, high-
input farming systems and technologies, chemical fertilizers (consisting of N, P or K) are
applied excessively to provide the plant nutrient requirement for increasing the agricultural
productivity worldwide [16]. The use of chemical fertilizers has caused more harm than
good in long-term perspectives. Therefore, the modern agricultural sector needs more
clean and green strategies for simultaneously improving crop productivity and mitigating
climate change impacts.

Various terms and strategies have come forth to counter the use of agrochemicals
and provide assistance in improving agriculture, such as biochar, biostimulants and bio
fertilizers [17–19]. Recent advances in research have provided evidence of these strategies
having potential to improve soil properties and crop yield and offset GHG emissions
at significant levels. All of these strategies work on minimizing the adverse effects of
climate change and act as replacement for agrochemicals. These strategies further drawn
attention towards naturally occurring products to substitute the need and use of synthetic
products [20–22].

In efforts to summarize the potential of biological innovations towards simultaneous
increases in soil fertility, crops’ productivity and environmental solutions, we highlight
the unique advantages of two innovations: biochar and biostimulants. In this review,
we provide an evaluation, based on what is recently known, of the potential of various
biological tools such as biochar and biostimulants as a green strategy to counter the impact
of climate change on atmosphere and agriculture.

2. Impact of Climate Change on Agriculture and Soil Properties

In the agricultural sector, fluctuations in climate, such as global rainfall, continuous
rise of carbon dioxide and average temperature, have led to an increase in the frequency
of extreme events that cause flood and drought disasters by posing a serious threat to
global crops andcereal productivity [23,24] (Figure 1). The variation in temperature and
rainfall has direct effects on the growth and maturity time of crops, due to which the crops
are adversely subjected to various biotic and abiotic stresses [25]. According to a recent
study, these biotic and abiotic stresses are responsible for losses of 30–50% of agricultural
productivity worldwide [26]. In addition to this loss of productivity, climate change is also
a threat in terms of a significant expansion in the range of pests and pathogens that could
lead to an increased frequency and severity of plant diseases [27–29].

With the increase in human population and industrialization, the frequency and
consequences of global warming are expected to rise, which will not be confined to any
particular region but ultimately will be distributed in the global ecosystems [30]. These
dangerous impacts of climate change on crop yields may compromise and risk food security
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worldwide [31,32]. Hence, food insecurity and climate change are also considered two
major challenges of the 21st century [33].
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In addition to having direct effects on plants, climate change is also adversely affecting
the soil systems. Fluctuations in carbon dioxide concentrations in atmosphere, rate, pattern
and precipitation amounts and increasing temperature are modifying the soil–plant system
by influencing the rate of decomposition and soil organic carbon levels [34,35]. The soil
structure, fertility, microbial population and processes directly depend upon available
organic carbon in soil [34,35].

Recent studies have shown that the combinatorial effect of temperature and moisture
determine the transformation process of minerals into soil compounds [36]. Fluctuation
and precipitation frequencies and seasonal temperature also affect the hydro-physical prop-
erties of soil by changing the soil water regime. Soil physical properties, such as mechanical
composition or texture, structure including shape and stability, bulk density and porosity
and size distribution of pores, all significantly affect the hydrological properties (hydraulic
conductivity and water retention, etc.) of soil [37]. All these properties collectively con-
tribute towards air, water and heat management of soil. These physical properties greatly
influence the chemical and biological processes of soil, ultimately having a great impact on
soil fertility and crop yields (Figure 2).

To uncover the degree of influence of climate change on the physical properties of soil
is quite a complex process. The most common and significant direct impacts of climate on
disturbing the soil structure are destructive capability of rain drops, filtering water and
surface runoff and extreme events of rain [38]. Conversely, the indirect effects resulted from
fluctuations in the vegetation patterns and biological properties of soil such as sensitivity
of termites, earthworms and the soil microbiome to these climatic changes [39]. Soil texture,
bulk density and organic matter content directly depend on climate condition [40]. Recent
studies have shown that increased level of carbon dioxide in the atmosphere greatly reduces
soil organic matter by increasing the soil microbial activity. Hence, it results in more carbon
turnover to the atmosphere by accelerating the positive feedback in the global carbon cycle
as a rise in global temperature [40]. In addition, the loss of organic matter due to soil
microbial activity and soil erosion results in an increase in soil bulk density, which in turn
increases the soil compaction. The soil bulk density and compaction inhibit the growth of
plant roots and collectively result in poor crop yields [41].
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Extreme climate events also affect soil chemical properties such as pH, content and
distribution of soluble salts, nutrients, carbonates, cation exchange capacity and value of
base saturation [43]. By increasing precipitation and rate of weathering, these phenomena
lead to accelerated leaching and result in soil acidification. An acidic pH in soil facilitates
the mobility of toxic heavy metals, leaving the soil depleted with basic cations [44]. Recent
studies revealed that soil from more arid and warmer sites possesses lower levels of organic
carbon, nitrogen and phosphorous. Soil organic matter is one of the most important factors
for measuring the efficiency of soil. Biological decomposition aids in increasing the soil or-
ganic matter, and the rate of decomposition by microorganisms increases with an increase in
temperature [45]. However, the increase is not a continuous process, and, after certain limits,
further rises in temperature result in changes in microbial physiology by reducing carbon
usage efficiency. Changes in temperature, moisture, wet–drying and freeze–thawing cycles,
etc., can lead to alterations in the growth and physiology of soil microorganisms. Climate-
induced changes in environmental parameters can indeed influence both the structure and
function of soil microbial communities and modify, for instance, the level of interaction
among microorganisms required for the degradation of organic pollutants in soil.

3. Crops Physiochemical Responses to Various Climate Change Parameters

Crops’ growth and yield depend upon several important factors such as atmospheric
temperature and CO2 levels, precipitation amounts and patterns, associated salinity and
the accumulation of toxins in soil [35]. With the increase in global temperature, significant
changes in several hydrological parameters have been reported, such as evapotranspiration,
runoff, ground water and soil moisture [46]. Most crops have quite a narrow range of sur-
vival over high temperatures (40–45 ◦C) [47]. It is well-known established fact that enzymes
depend upon optimum temperatures to work, and failure of only a single critical enzyme
system can halt the growth of crops or organisms [48]. High temperatures or heat stress is
associated with various physiochemical mechanisms of crops, such as cellular injury, mem-
brane lipids peroxidation and oxidative stress [47]. Moreover, the optimum temperature
levels are different for different crops. For instance, a higher temperature (>35 ◦C) damages
rice crops, sorghum pistils and pearl millet [49]. Similarly, a loss of wheat productivity has
been observed at high temperatures. The exposure of crops to higher temperatures during
different stages of development provides different results [50,51]. Recent studies reported
that rice crops encountering heat stress during the grain development stage affects the crop
the most. Heat stress during anthesis has been observed to inhibit pollen shed and decline
in number of grains. Heat stress during reproductive stages leads to a significant loss of
crop yield, as pollen and pistils are susceptible to high temperatures [52]. Crops possess
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various mechanisms to resist and minimize the losses of flowering such as increases in the
rate of transpiration to create a cooling environment around plants [53]. However, at high
temperatures, the plant prefers to use more energy for maintenance and respiration, which
results in a compromise on their growth [54].

According to one estimate, with every 1 ◦C rise in temperature, the yield of crops can
significantly reduce by 5–10% in the future [55]. Higher temperatures compel plants to
complete their growth cycle in less time. This leaves plants with less time to reproduce,
and ultimately results in a considerable loss in yield [56]. It is also observed that higher
temperature ranges cause declines in rice yields and reproduction in beans by increasing
respiration at night [57].

Increases in salinity are also a major threat to crops yield, and it has been reported to
increase in coastal agriculture land, resulting from increases in sea levels during consecutive
years. The water moves from the soil towards plant roots via osmosis, and this process
depends upon salt levels in the soil and plants [58]. The higher soil salt levels may derive
water back from plant roots towards the soil and can cause reduced productivity or even
death of crop plants. Salinity also affects the uptake of nitrogen by plant roots, growth
and plants’ reproduction [59]. The higher temperatures and lower precipitation increase
the rate of evapotranspiration in crops, which in turn results in salt accumulation on the
soil surface. In this way, the underground water used for irrigation appears brackish and
high in soluble salt contents, such as Na+ and Cl−, with lesser amounts of Ca2+, K+ and
NO−3 [60]. Hyper-ion salt stress causes oxidative damage and metabolic impairment in
crops. The higher Cl− levels also affect the electrical conductivity. For some crops, levels
beyond 2dsm−1 limit their growth and yield [61]. Moreover, higher salinity and temperatures
have been observed to affect the physiological responses of crops in several ways, such as by
inhibiting photosynthesis and stomata closure, reducing water content and osmotic potential
and triggering nutrient imbalances and osmolyte changes (Supplementary Table S1).

With increases in industrialization, urbanization, mining and use of agrochemicals,
natural sources such as water and soil are consistently being polluted with heavy metals
such as nickel, copper, cadmium, lead, cobalt and chromium [62]. These heavy metals are
a serious threat to agroecosystems, with potentially toxic effects on crop plants. The risk of
contamination of soil and the proportion of metals that cause toxicity in soil determines the
active effect on the environment [63]. Climate change affects the bioavailability and mobility
of heavy metals in soils. A higher average temperature increases the mobilization process and
disturbs the natural environmental balance [64]. Climate change also leads to the acidification
of soil, and heavy metals’ toxicity worsens the acidification effect as heavy metals further
decrease photosynthesis and various physiological processes in crop plants [65].

Nickel is reported to have a direct impact on the seed germination of various crop
plants by affecting their enzyme activity of amylase, protease and ribonuclease. In this way,
it significantly affects the digestion and transport of food resources such as carbohydrates
and proteins in seeds during germination [66]. Nickel toxicity has also been reported as
affecting various physiochemical processes by reducing plants’ height, length of roots,
biomass, chlorophyll content and leakage of electrolytes [67]. In a few crops, nickel toxicity
has been reported to have an impact on chlorophyll content and accumulation of various
cations such as K+, Na+ and Ca2+ [68]. Lead toxicity has been observed to significantly
affect various morphological and physiological processes of crops, such as halting germina-
tion, development of seedlings, elongation of roots, transpiration and growth, reducing
chlorophyll, proteins and water content of plants, impairing nutrient uptake and inducing
stomata closure. Lead-polluted soils are reported with inhibited seedling growth with
alterations in possible mechanisms such as increases in peroxidation of lipids, superoxide
dismutase and glutathione ascorbate cycle activation [69].

Copper toxicity has been reported to affect seedlings in sunflower crops by inducing
the generation of reactive oxygen species and lowering the activity of catalase. Another
study reported that copper toxicity halts the germination of seeds via down regulation of
α-amylase activity and affects the uptake of water, transport of food resources and overall
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metabolism [70]. Cadmium and cobalt also affect the seed germination process by causing
delays in germination. Cadmium toxicity is associated with impaired transport of food
resources and membrane damage. It is also reported to strongly affect the germination
percent, growth of embryo and biomass distribution. Chromium toxicity results in reduced
growth of crops, lower chlorophyll, proteins, proline content and higher metal uptake [71].

4. Climate Change Mitigation Strategies for Improved Agriculture

In order to emerge in modern agriculture, green strategies need to simultaneously
deal with improved soil health, crops yields and climate change-associated environmental
challenges. For improvements in soil fertility and plant growth, several options are available
that range from traditional soil amendments to innovative solutions. Two such innovative
solutions gaining immense attention are biochar and biostimulants. The unique potential
of these strategies is that, in addition to enhancing soil fertility and crop yields, at the same
time, these innovations have the ability to mitigate climate change impacts on agriculture
and the environment.

4.1. Biochar

Biochar is a solid black stable carbon material mainly composed of carbon, minerals,
volatile matter and moisture [72]. For thousands of years, the pyrolysis of biomass into
biofuels and biochar has presented a potential capability to sequester CO2 from atmosphere,
as well as to amend soils in earth layers [73]. Biochar, a porous solid material resulting
from biomass carbonization in no-oxygen and low-temperature (400 ◦C) conditions, is
considered a significant tool in the mitigation of climate change because of its role in
reducing GHG emissions from soil and sequestration of carbon in more stable form of
carbon materials [74]. Biochar’s properties highly depend upon the pyrolysis temperature;
biochar produced at high pyrolytic temperatures, such as more than 500 ◦C, has been
reported to improve porosity and bulk density to a significant extent. Biochar produced at
pyrolytic temperatures lower than 500 ◦C has been reported to have a higher impact on
the fungal and bacterial diversity of soil. Especially in coarse textured soil, it is reported to
affect bacterial diversity, whereas in fine textured soils, it affects fungal diversity more [75].
Along with several beneficial properties, the application of biochar has been reported to
cause short-term negative impacts on earthworm populations. Future research efforts are
required to mitigate this impact in favor of beneficial earthworm activity in soil systems [72].

Several recent studies have reported on the role of biochar in improving the efficiency
of fertilizer use and thus reducing the economic and environmental burden of manufactur-
ing given requirements of fertilizers [76–78]. The biochar-based efficient use of fertilizer
can avoid the manufacturing fraction of fertilizers and associated GHG emissions [79].
Biochar-based fertilizers can increase crop productivity significantly and further increase
crop productivity in soils which are not responsive to common fertilizers (Figure 3A) [80].

Biochar has a gigantic ability to sequester CO2 while preventing the release of carbon
back into the atmosphere after its decomposition (Figure 3B) [81]. With this practice,
about 2.5 gigatons of CO2 can be sequestered annually [82]. The slower decomposition
of biochar in comparison to biomass stems from its potential to mitigate climate change
impacts, as it lowers the rates of photo-synthetically fixed carbon returning back into
the atmosphere [83]. The difference in the rates of decomposition of biochar and raw
biomass critically determines the net carbon stock available in soil that has evolved over
time [83]. Biochar presents larger soil carbon stocks with prolonged lifetimes in comparison
to raw biomass [84]. The embedded carbon of biochar in this case is considered as a
redistribution of carbon from biomass sources, with the ability to persistently derive larger
carbon sequestration and influence on net GHG balances [85]. Despite several potential
benefits of biochar, the applications of biochar still have some bottlenecks to be resolved.
The health risks-associated with the inhalation of black carbon particles released during
biochar formation is one of the health and environmental concerns that requires more
research attention and management.
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Biochar is composed of mixture of compounds with varying decaying kinetics in soil,
and over time, the decay rates of biochar slow down [86]. Also, microorganisms cannot
digest biochar completely; therefore, biochar-based amendments of soil are considered a
source of permanent agents for carbon sequestration in soil [87]. Depending on the physico-
chemical properties of biochar, it can offer a sustainable way towards suitable feedstock
for the circular economy paradigm. The application of biochar as an enrichment of soil
can offset the CO2 emission of land by 12% annually. Moreover, along with performing a
critical role in improving soil health and crop productivity, it has the ability to minimize
1/8 of annual CO2 emissions [82]. This mitigation strategy could possibly reverse the net
global warming and can significantly aid in carbon-negative technology development for
the sustainable future of human civilization.

Biochar affects the rate of native soil organic matter by significantly varying the stocks
of non-pyrogenic soil carbon [88]. The ways by which biochar can impact the soil organic
matter includes reducing in the amounts of detritus in soil in comparison to adding biomass
to soil directly [61], increasing in the yields of plants’ biomass [89] and altering the rates of
stabilization, humification and soil organic matter [90]. Biochar is also reported to have
an impact on the improvement of crop yields via nutrient provision, alterations in the
pH of soil, enhancing the cation exchange capacity (CEC) of soil, improving the efficiency
of fertilizer use and enhancing the water holding capacity in the drainage of clayey or
sandy soils (Figure 3) (Supplementary Table S2). Biochar application has also been reported
as improving the microbe-mediated chemical reactions and enzymatic activity of soil
(Figure 3C) [91]. Soil applications of biochar also have the potential to minimize soil runoff
and erosion. A systematic meta-analysis revealed the mitigation of soil erosion by 16% and
runoff by 25% upon biochar-based soil amendment. This effect was found to be stronger in
tropical zones over subtropical [92].

Moreover, biochar also plays an important role in the mitigation of climate change
impacts through several other secondary mechanisms, such as it playing a role in the
reduction in nitrous oxides and methane emissions in soil. Pyrolysis of biomass to biochar
can avoid processes such as decomposition and combustion of biomass, which contribute
to the emission of NOx and methane in atmosphere. According to a recent study, the
application of biochar could lower emissions by 50–80% in an acid savanna oxisol and by
70–80% in slightly acidic to neutral soil. Another study estimated the annual soil nitrous
oxide emissions avoided by the application of biochar as a reduction factor RN of 25%. A
study from China, which is a significant GHG emitter, revealed the potential of biochar to
offset the total CH4 and N2O emissions from China’s crop land via pyrolysis of waste to
biochar [93]. Biochar application, in combination with dicyandiamide, has been reported
to reduce the cumulative N2O emissions by 69–70% and CO2 emissions by 30–43%. This
reduction in emissions was found to be associated with damage to bacterial network
complexity [94]. Similarly, a few studies have reported on the reduced methane emissions
of soil via the application of biochar [79]. However, further research input is required to
estimate the associated reduced fraction of nitrous oxide or methane emissions in various
soil conditions.

In summary, biochar has a high potential to mitigate climate change’s impact on soil,
agriculture, and ultimately, on crop yields. Biochar possesses more potential benefits over
hazards in comparison to other soil management and mitigation technologies. However, a
careful analysis is required for the production of biochar at large scale, as it could attract
companies, industries and money makers to stock carbon in a stable form for trade, thereby
resulting in further food insecurities. With the advent of research in this field, there is also
a dire need for careful policy making, designs, protocols, project monitoring and advice
for agriculture extensions to maximize the output and to avoid any negative outcomes
associated with poor irrigation practices and implications.
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Figure 3. Potential role of biochar in soil amendments and crop productivity via various mechanisms;
(A): increase in crop productivity via biochar-induced root zone amendment of crop [80], (B): biochar
effect on climate under cultivated field by inducing positive effects on increasing soil organic carbon,
soil inorganic carbon and water retention and decreasing emissions and evapotranspiration [81],
(C): mechanism of biochar-associated improvement of soil nitrogen [91], (D): overall role of biochar
in improving soil properties and crop productivity.

4.2. Biostimulants

More recently, biostimulants have been reported as one among various significant and
potential mitigation strategies in assisting plants to develop resistance against several environ-
mental abiotic stresses resulting from rapidly changing climatic conditions [95]. Various recent
studies have shown the tremendous potential of biostimulants in agriculture by providing
aid to plants against climate change-induced stresses such as salinity, drought, temperature,
etc. [96]. Biostimulants are one of the emerging biological strategies with potential to mitigate
climate-induced biotic and abiotic stresses in plants, without compromising on soil health,
plants’ growth and the environment. Biostimulants are microbes, organic compounds or
amalgamations of the two that could help in the regulation of plant growth and certain be-
haviors via alterations at the molecular, biochemical, physiological and anatomical levels [97].
Biostimulants can act as a promising mitigation strategy in recent crop production scenarios,
as they are reported to function through various modes of action due to their diverse nature
and the varying composition of these bioactive compounds [98]. Biostimulants can be broadly
categorized into various classes such as botanical extracts including seaweed/algae extracts,
amino acids, protein hydrolysates, vitamins, antioxidants, cell-free microbial products, anti-
transpiration agents, chitin and fulvic and humic acid, along with their derivatives [99,100].
The application of biostimulants in very small amounts could have the potential to induce
resistance against stresses, and this quality of biostimulants makes this class different from
applications of fertilizers and manures to soil. Studies have also revealed their ability to con-
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tribute towards the maintenance of the ecological balance in agro-ecosystems by reducing the
use of chemical fertilizers, pesticides and heavy metals in agricultural practices [101]. Based
upon the immense potential of biostimulants, the European Commission has planned to
substitute 30% of chemical fertilizers with organic-based inputs by the end of 2050 [95]. Along
with their tremendous ability of augmentation in the levels of production, biostimulants have
also been reported for their role in reducing greenhouse gas emissions by decreasing fertilizer
consumption in the agricultural sector [102]. A recent study reported that extracts of seaweed
can significantly reduce the release of greenhouse gases by supplementing synthetic fertilizer
input in sugarcane cultivation, and observed a potential offset of 260 kg CO2 equivalent/Mg
cane production/ha from 5% foliar application of seaweed extract [103]. Biostimulant-induced
responses differs among plant species, depending on morphological modifications to gene
expression, their mode of application and phyto-hormone responses [104]. Table 1 highlights
recent studies that demonstrated the extraordinary potential of biostimulants for mitigation of
adverse abiotic stresses such as salinity, drought and heat or cold stress, induced by changes
in climatic conditions, without compromising crop quality, productivity and production.

In summary, the use of biostimulants is an emerging mitigation green strategy that has
tremendous ability to counter water scarcity or drought and soil and water salinity-associated
stresses in plants, but is also a safe practice to maximize the productivity and nutritional
values of crops. However, the biostimulants-associated mode of action have been frequently
characterized in model studies only, and its understanding is limited under field conditions.
There is significant room for research into the applications of biostimulants in cropping systems
under field conditions to understand the impact of external factors on practical applications of
biostimulants in agriculture.

Table 1. Role of biostimulants in mitigation of climate change impact and improving crops yield.

Sr.
No. Biostimulant Crop Effect of Treatment on Crop Ref.

1 Trichoderma album and Bacillus megaterium Onion

Overall better yield, enhanced levels of potassium by 105.7%, Proline by
34%, calcium by 37% and total free amino acids by 144% after treatment with
T. album
Pretreatment with T. album and B. megaterium both enhanced total
carbohydrates, antioxidants, activity of superoxide dismutase, catalase,
ascorbate peroxidase, glutathione-S-transferase, ascorbic acid and flavonoids

[105]

2 Silicate Compound and antagonistic
bacteria Bacillus sp. Banana

Treatment resulted in enhanced physiological growth performance of
bananas, significantly resisted against Fusarium wilt disease in bananas
resulting from pathogenic causative agent Fusarium cubense; the incidence of
Fusarium wilt decreased by 56.25%

[106]

3 Natural organic matter-based
Biostimulant

Tomatoes
Avocados

Plants resisted drought stress and resulted in enhanced growth of plant roots
(36%) and shoots (27%)
Plants developed drought and salt resistance, resulting in 45% increase in
yield

[107]

4 Ascophyllum nodosum Watermelon In response to salt stress, the treatment of plants with a biostimulant
provoked a positive phenotypic response [108]

5 Menadione sodium bisulfite
encapsulated chitosan nanoparticles Tomatoes Treatment of plants with a biostimulant increased their tolerance against

drought stress and delayed the need for retreatment by 1 week [109]

6 Ascophyllum nodosum and zeolite Spinach Combined use of biostimulants resulted in significant improvement in water
storage capacity of plants [110]

7 Yucca schidigera extracts Broccoli Treatment of plants with a biostimulant resulted in strong effect of plants
against drought and salt stress, also promoted germination and early vigor [111]

8 Chondrus crispus extracts Tomatoes Treatment resulted in drought tolerance in plants along with enhanced shoot
height and biomass [112]

9 Ascophyllum nodosum Tomatoes Plants developed drought resistance by 40% in comparison to control [113]

10 Mixture of Ruinex, Penergetic, Azofix Wheat
Humus content increased, nitrogen and carbon content of soil increased,
results over three years show that biostimulants resulted in promotion of
mobile humic substance and mobile humic acid release.

[114]

11 Pseudomonas fluorescens, Stenotrophomonas
rhizopus, Agrobacterium rubi Strawberry

Treatment resulted in seven-fold increase in plant growth and fruit
production; plants also developed resistance against angular leaf spot
disease caused by Xanthomonas fragariae

[115]

12 Amino acids Savory Treatment resulted in enhanced dry matter yield, essential oil content,
carvacrol, gamma-terpinene, alpha-terpinene and p-cymene [116]
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5. Concluding Remarks

The uncertain climate scenario negatively impacts agriculture and is a serious cause
of concern for global food security. The mitigation strategies to offset the climate-induced
deleterious impact on agricultural productivity, such as biochar and biostimulants, have
potential to significantly minimize the unfavorable impact without compromising environ-
mental sustainability. Further planning and application of these mitigation strategies in
an interdisciplinary approach can save the future of agroecosystems and can be used as
biological tools to overcome the unpredicted impacts of climate change on agriculture. In
particular, policy making towards large-scale production and health hazards due to the
release of black carbon particles in air during biochar formation requires attention and
needs work. Similarly, field-scale studies are required to understand the mode of action of
biostimulants for their practical application in agriculture.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agriculture13081508/s1, TableS1: Physiological and biochemical
responses of plants upon abiotic stresses; Table S2: Effect of Biochar on crops and soil properties.
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