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Abstract: The automatic recognition of crop diseases based on visual perception algorithms is one of
the important research directions in the current prevention and control of crop diseases. However,
there are two issues to be addressed in corn disease identification: (1) A lack of multicategory corn dis-
ease image datasets that can be used for disease recognition model training. (2) The existing methods
for identifying corn diseases have difficulty satisfying the dual requirements of disease recognition
speed and accuracy in actual corn planting scenarios. Therefore, a corn diseases recognition system
based on pretrained VGG16 is investigated and devised, termed as VGNet, which consists of batch
normalization (BN), global average pooling (GAP) and L2 normalization. The performance of the
proposed method is improved by using transfer learning for the task of corn disease classification.
Experiment results show that the Adam optimizer is more suitable for crop disease recognition
than the stochastic gradient descent (SGD) algorithm. When the learning rate is 0.001, the model
performance reaches a highest accuracy of 98.3% and a lowest loss of 0.035. After data augmentation,
the precision of nine corn diseases is between 98.1% and 100%, and the recall value ranges from 98.6%
to 100%. What is more, the designed lightweight VGNet only occupies 79.5 MB of space, and the
testing time for 230 images is 75.21 s, which demonstrates better transferability and accuracy in crop
disease image recognition.

Keywords: VGNet; corn diseases; leaf detection; lightweight; transfer learning; agriculture

1. Introduction

Crop diseases can cause irreversible damage to crop growth and are considered one of
the main limiting factors for crop cultivation, and spraying pesticides is the main measure
to address crop diseases. Appropriate pesticide category selection and dosage regulation
can ensure effective crop disease resolution and avoid pesticide residues’ ecological impact.
Therefore, accurately identifying the types and degrees of crop diseases is a prerequisite
for achieving precise agricultural spraying [1–8]. In traditional methods, professionals
mainly detect and identify crop diseases based on their naked eyes and experience, but
it is time-consuming, laborious, and subjective. With the development of deep learning
(DL) and visual perception technology, visual feature learning methods based on deep
learning have become the mainstream of crop disease recognition, which realizes automatic
recognition of crop diseases by extracting and learning the pest and disease features of crop
images [9,10].

Deep learning is a branch of machine learning that mainly utilizes deep artificial neural
networks to extract multilayer visual features and fuse multigranularity features of input
images, thereby achieving high-level semantic learning of images [11]. Unlike traditional
machine learning methods, deep learning methods require significant computational re-
sources, because deep artificial neural network models optimize model parameters through
a large number of parameter calculations in the high-level semantic learning of images.
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With the rapid development of high-performance computing and image processing units,
deep learning methods have been successfully applied in various fields, which has turned
out to be very excellent in discovering intricate structures in high-dimensional data and is
therefore applicable to many domains of science, engineering [12–14], industries[15–17],
bioinformatics [18–20], and agriculture [21–26]. Concretely, deep learning has provided
many significant works in the field of plant stress phenotyping and image analysis for
detection [27–30], recognition [31–34], classification [35–38], quantification [39], and pre-
diction [40] in agriculture to tackle the challenges of agricultural production [41]. And the
convolutional neural network (CNN)-based approaches are arguably the most commonly
used [42].

Ferentinos developed a plant diseases detection model with a best performance of 99.5%
using 87,848 images under controlled conditions [43]. Liang et al. designed a deep plant
diseases diagnosis and severity estimation network (PD2-SE-Net) model to identify plant
species, diseases, and their severities with a final accuracy of 99% [44]. They utilized the
artificial intelligence (AI) Challenger [45] images for experiment data. The approach they
proposed reached an accuracy of 99.4%. Zhong et al. proposed an apple diseases classification
method based on dense networks with 121 layers (DenseNet-121) and 2462 apple leaf images
from AI Challenger, which achieved an accuracy of 93.71% [46]. He et al. proposed an
approach to detect oilseed rape pests based on SSD with an Inception module, which was
helpful for integrated pest management [47]. Zeng et al. introduced a self-attention mechanism
to a convolutional neural network, and the accuracy of the proposed model reached 98%
using 9244 diseased cucumber images [48].

Deep convolutional neural networks have a strong ability for feature learning and
expression. The above crop disease recognition methods based on CNNs have achieved
good accuracies or success rates. However, the accuracy and robustness of deep learning
models require training on a large amount of image data. There are two issues that need
to be addressed in crop disease identification. On the one hand, there is a lack of diverse
maize disease training datasets, as most of the crop disease images used in the existing
methods are created under controlled or laboratory conditions. On the other hand, the
complexity of existing corp disease models is high, making it difficult to meet the actual
detection needs of field scenarios, and their performance in identifying fine-grained corn
diseases is insufficient. Therefore, we introduced transfer learning and designed VGNet
to solve the above problems. Specifically, we first collected corn disease image data from
real field scenarios, covering nine types of corn diseases, which can be used for parameter
optimization of fine-grained corn disease recognition models. Afterwards, we designed
a relatively simple VGNet model based on the VGG16 model but with relatively high
accuracy in identifying crop diseases, which can meet the disease detection needs of actual
corn planting scenarios.

The reason why the VGG16 model is selected as the backbone network is that the VGG
network is a straight cylinder network structure, and its computing resource consumption
is significantly less than the residual network structure, which can satisfy the dual needs of
speed and accuracy in real-time crop disease detection. In the VGNet method, the structure
of VGG16 is modified by adding the BN, replacing two hidden fully connected layers
with a GAP layer, and adding L2 normalization. Through the comparative experiment
of different training methods, parameters, and datasets, the redesigned VGNet after fine-
tuning achieves an accuracy of 98.3%, which can achieve a 66.8% reduction in testing time
compared with the original VGG16 model. The following summary provides the main
contributions of this paper:

• A lightweight intelligent learning method, termed as VGNet, is proposed for multiple
categories of corn disease detection.

• Fine-grained corn disease images are collected and can be used for the parameter
optimization of corn disease recognition models.

• Evaluation results show that the accuracy of the proposed method in disease detection
reaches 98.3%, which can satisfy the detection requirements of practical scenarios.
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The remainder of this paper is organized as follows. Section 2 describes the materials
and methods. The experiment results of VGNet are detailed in Section 3. In Section 4,
the discussion of VGNet for fine-grained corn disease recognition is given. Finally, the
conclusions are drawn in Section 5. Further research directions are also proposed.

2. Materials and Methods
2.1. Image Samples
2.1.1. Images for Pretraining

In the field of crop disease recognition, many crop disease datasets have appeared,
among which the most commonly used ones are PlantVillage [49] and AI Challenger
datasets. PlantVillage contains open and free datasets with 54,306 annotated images and
26 diseases for 14 crop plants, and it was created by Mohanty et al. under controlled condi-
tions [50]. AI Challenger is provided by the Shanghai Science and Technology Innovation
Center as a new guest competition crop leaf image datasets, with 45,285 marked images,
containing 10 kinds of plants (apple, cherry, grape, orange, peach, strawberry, tomatoes,
peppers, corn, and potato), 27 kinds of diseases, and a total 61 categories. Both of these
datasets are open-source image datasets containing healthy plant leaves and diseased
leaves and have great similarity with the target disease image dataset in this research area.
ImageNet dataset [51] contains a large number of images from all aspects of life, and the
initial training of VGG16 was obtained through the ImageNet dataset, which has achieved
excellent results. These three different large open datasets were used for pretraining the
selected CNN structure. The properties of the three pretrained experimented datasets are
shown in Table 1.

Table 1. Properties of the pretrained experimented datasets.

Dataset Classes Samples Features Type Image Type

ImageNet 1000 14,197,122 coarse-grained RGB
PlantVillage 38 54,306 fine-grained RGB

AI Challenger 61 45,285 fine-grained RGB

2.1.2. Images for Parameter Optimization

In this experiment, the images used for recognition and fine-tuning training were
composed of symptom pictures of nine corn diseases caused by fungus. They were An-
thracnose (ANTH), Tropical Rust (TR), Southern Corn Rust (SCR), Common Rust (CR),
Southern Leaf Blight (SLB), Phaeosphaeria Leaf Blight (PHLB), Diplodia Leaf Streak (DLS),
Physoderma Brown Spot (PHBS), and Northern Leaf Blight (NLB) of corn. The images
were captured using a digital camera (Nikon D750) under natural field conditions at the
Western Corn Farm of Urumqi, Xinjiang, China. In order to make the collected images be
more representative, symptom images were obtained, respectively, in sunny, cloudy, and
windy weather conditions from different times in the morning, noon, and evening with
multiangle shooting. The shooting background was complicated, containing corn stalks,
soil, weeds, and blades covering each other, etc., to reflect the practical growth situation of
corn. There is a total of 1150 images obtained in a 3096 × 3096 pixel spatial resolution. The
sample numbers of various diseases are kept balanced relatively. The quantity distribution
of corn disease images is shown in Figure 1. Some image examples are shown in Figure 2.
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Figure 1. The quantity distribution of maize disease images with complex background.

a b c d
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Figure 2. Some examples of corn disease images with complicated backgrounds from a field:
(a) Northern leaf blight. (b) Common rust. (c) Anthracnose. (d) Diplodia leaf streak. (e) Phaeosphaeria
spot. (f) Physoderma brown spot. (g) Sourthern corn rust. (h) Sourthern corn leaf blight. (i) Tropi-
cal rust.

2.1.3. Data Preprocessing

Data preprocessing includes annotation, cropping, or zooming. Firstly, the CNN
model needs supervised training and learning; so, it is necessary to manually annotate the
disease images acquired in the field. After the images were confirmed by corn pathologists,
the LabelMe tool was used for annotation, and the annotated images were saved as PASCAL
VOC2007 format. Secondly, because the images from the corn field and public dataset
websites have different resolution and sizes, the size of each image is uniformly cropped
and resized to (224, 224, 3) channels.

2.2. Backbone Network
2.2.1. CNN and VGG16 Network

The CNN is one of the classical network algorithms of deep learning. A CNN consists
of input layers, convolutional layer, activation function, pooling layers (sampling layer),
fully connected layers, and classification layers. Several baseline architectures of CNN
have been developed for image recognition, including AlexNet, GoogLeNet, VGGNet,
XceptionNet, and ResNet et al. [52]. VGG Net was first devised by Simonyan and Zisserman
(2015) for the ILSVRC-2014 challenge. It has been proven to have excellent performance
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for image classification. The most significant superiority of VGG Net is the utilization of a
smaller convolution kernel and pooling window in the feature extractor, which can extract
fine-grained features from the input data. Figure 3 shows the basic structure diagram of
VGG16. VGG16 contains thirteen convolutional layers and three fully connected layers
with 4096, 4096, and 1000 dimensions, respectively. There are five maximum pooling
layers between the convolutional layers. During training, the input to VGG16 is a fixed
(224, 224, 3)-channel RGB image. Large receptive fields in VGG16 were substituted with
consecutive layers of 3× 3 convolution filters. The convolutional stride was fixed to 1 pixel.
The padding of the convolution layer input was maintained as 1 pixel and max-pooling
was performed with a stride of 2 over a 2× 2 pixel pooling window. The neuron activation
function used in VGG16 is the rectified linear unit (ReLU) function.

Figure 3. Structure diagram of original VGG16 convolutional neural network.

2.2.2. Proposed Approach and Processes

Figure 4 describes the main process of the VGNet with transfer learning for corn
disease recognition. The whole recognition process includes three parts. Part one is the
pretraining and parameters transfer process of original VGG16 using three different large
datasets, the aim of transfer learning is to shift the general knowledge of image classification
acquired by VGG16 from a large image dataset to the new corn leaf disease recognition
model. Part two is the establishment of VGNet, the remaining part is fine-tuning the
updated VGNet with a new image dataset. After acquiring the new images, they were
preprocessed and divided into training set and test set. The modification of the VGG16
network included adding a batch normalization layer to speed up fine-tuning training,
replacing the two hidden dense layers by a global average pooling layer to reduce feature
dimension, and integrating the L2 regularization algorithm to improve the ability of the
model to extract effective features from complex backgrounds. The last layer of the VGG
Net was changed by a 9-tag softmax classifier instead of the original softmax classifier with
1000 tags. Three large open datasets were used to obtain the model parameters and feature
extraction abilities in the pretraining process, and different training tactics in the parameter
tuning were utilized to optimize the VGNet model. After pretraining, the convolutional
layers and pooling layers remained unchanged. Their parameters were loaded to the newly
designed VGG16 Net and then they were frozen. The VGNet was fine-tuned through the
iteration of loss function to reoptimize the parameters of the remaining fully connected
layer and softmax function. Finally, the test process was executed by the designed model.
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Figure 4. Flowchart of corn disease image recognition method based on transfer learning and VGNet.

2.3. VGNet

As described in Section 2.2.1, the original VGG16 network has 13 convolutional layers,
5 pooling layers, and 3 fully connected layers, and it has 138 million parameters and large
amounts of computation, leading to the consumption of both memory and time. The
model will easily fall into an overfitting state and lower convergence. Thus, we redesigned
VGNet to improve the accuracy and real-time performance of the VGG-based network.
Normalization strategies were also adopted, including adding batch normalization (BN)
processing and the L2 normalization algorithm. The number of our class labels in the
softmax layer of VGNet is 9.

2.3.1. Batch Normalization

For the convolutional neural network, the normalization of datasets is required in
the gradient descent process, which can prevent gradient explosion and accelerate the
convergence of the network. Thus, batch normalization (BN) processing was applied to
normalize the feature map of each sample after the convolutional layers. The mean (µ) and
variance (σ) of the total number of pixels in the feature graph were obtained firstly; then,
the normalization equation was utilized to calculate the sample normalization values, and
the optimal value search data are converted into the standard normal distribution. The BN
layer can effectively solve the problem of the data distribution changes in the middle layer
during the training process of the model. BN can also accelerate convergence, improve
accuracy, and reduce the overfitting phenomenon. The calculation equations of mean (µ)
and variance (σ) of the feature maps are described as Equations (1) and (2).

µ =
1
n

n

∑
i=1

xi. (1)

σ =
1
n

n

∑
i=1

(xi − µ)2. (2)

where xi represent the value of the ith pixel in the image sample. n represents the total
number of pixels in the sample. The normalization equation is shown in Formula (3).
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x̄ =
xi − µ√
σ2 + ε

. (3)

where x represents the normalized pixel value of the ith pixel of the sample. ε is a small
constant value greater than 0 to ensure that the denominator in Equation (3) is greater than
0. According to the batch normalization algorithm in the training process, the average
value and variance of the data estimated based on each batch will be used to replace
the actual average value and variance, and the data will be converted to the standard
normal distribution according to the estimated average value and variance. The data of the
standard normal distribution will be restored by constantly updating the values of xi and u
during the training process. And then they are output by the model.

2.3.2. Replacing Fully Connected Layers by GAP Layer

Although the original VGG16 network structure has 16 weight layers, there is a large
number of parameters in the fully connected layer, which leads to excessive computation
in the training and testing process. Thus, we decided to compress its weight matrix using
a global average pooling (GAP) layer after the last convolutional layer, which outputs a
series of feature maps with a depth the same as the number of classes in the classification
problems. A GAP layer could enhance the relationship between feature map and category.
It has been proven that GAP layers can replace fully connected layers in a conventional
structure and thus reduce the storage required by the large weight matrices of the fully
connected layers [53]. Performing GAP on a feature map involves computing the average
value of all the elements in the feature map.

The principle of GAP is to shrink the parameter space to avoid overfitting and enable
precise adjustment of the dropout ratio, which can be treated as the process of dimension
reduction in a feature matrix. As shown in Figure 5, the output feature maps from CI ,
which is the last convolutional layer, are downsampled into f mGAP, which has a size of
1× 1× size f m after global average pooling. In GAP, the weight matrices of f1, W can be
adjusted as Equation (4) as follows:

W ′ =
j∗size2

f m

∑
l=(j−1)size2

f m+1

Wi,j. (4)

where size f m is the size of the input feature map, i, j is the index of the output neurons
and input feature maps, and W ′ is the modified weight matrix. As shown in Figure 5,
the corresponding weights of each feature map are summed up, and each matrix in W is
modified and reduced to a column vector composed of 1× 1× depth of f mGAP. Thus, the
dimension reduction in the feature matrix is realized. Instead of adding fully connected
layers on top of the feature maps, we take the average of each feature map, and the resulting
vector is fed directly into the softmax layer. One advantage of the GAP layer over the
fully connected layers is that it is more native to the convolution structure by enforcing
correspondences between feature maps and categories. Another advantage is that there
is no parameter to optimize in the GAP layer, thus overfitting is avoided at this layer.
Furthermore, the GAP layer sums out the spatial information, thus it is more robust to
spatial translations of the input.
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Figure 5. Flowchart of matrix dimension reduction by GAP layer feature.

2.3.3. L2 Normalization

The idea of L2 normalization is to add the regularization term (penalty term) to the
loss function, which prevents the model from arbitrarily fitting the complex background
and other noise information in the training set by restricting the most weight value ω in the
model. Suppose the original loss function in the training process is J0(ω, b), the utilization
of L2 normalization is to optimize J0(ω, b) + cλR(ω), and R(ω) is the regularization term
or penalty term, which describes the complexity of the model. Relative equations above
are illustrated in Equations (5)–(7).

J0(ω, b) =
1
m

m

∑
i=1

L(y′(i), y(i)). (5)

R(ω) = ‖W‖2 =
l

∑
j=1

ω2
j . (6)

J(ω, b) =
1
m

m

∑
i=1

L(y′(i), y(i)) +
λ

2m

l

∑
j=1

ω2
j . (7)

where, J0(ω, b) is the original loss function; ω is the weight in the neuronal transmission
process; relatively, ωj stands for the weight of the jth neuron and b represents the bias of
neuronal transmission process; m represents the size of the sample dataset; y′(i) represents
the actual output value; y(i) represents the expected output of a neuron; l is the number of
dense; k is the number of neurons; J0(ω, b) represents the new updated loss function; and λ
is the parameter of L2 normalization. From Equation (9), it can be seen that the realization
of L2 normalization is adding the sum of squares of the weight coefficients to the original
loss function. In this experiment, the λ parameter was set to 0.12.

2.4. Transfer Learning and Fine-Tuning

In the field of deep learning, it is often necessary to train the model with a large
number of datasets. However, in practical application, it is often difficult to obtain a large-
scale dataset in the target field. Therefore, the idea of transfer learning can be adopted,
and the image classification and recognition ability acquired by the deep convolutional
neural network model trained on a large dataset after full training can be used to transfer
the useful knowledge from the source domain to the new target domain. This makes
the utility and inference scope from learned models much wider than an isolated model
specific to individual plant species. Transfer learning also enables rapid progress and
improved performance in modeling subsequent tasks by fine-tuning training. The most
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commonly used transfer learning approach is parameter-based transfer learning, which
uses a model but, after fine-tuning, the partial parameters are based on the new dataset.
This process is often referred to as domain adaption. Thus, in the experiment, VGG16
was pretrained, and the parameters of the convolutional layers and pooling layers were
transferred to the newly designed VGNet. The internal weights of the newly designed
model are automatically updated by fine-tuning training. To obtain a preferable model for
this research, external factors containing training methods, regularization techniques, and
the value of the hyperparameters are considered in the fine-tuning process.

2.4.1. Parameter Fine-Tuning

In deep learning networks, making each network parameter learn automatically and
effectively with the input of training data is the key procedure to let the network training
converge towards the required direction. The learning rate defines the learning progress of
the proposed model and updates the weight parameters to reduce the loss function of the
network. Thus, learning rate is an important parameter in the training algorithm. Some
optimization strategies for network training parameters have been put forward [54], such
as SGD, AdaGrad, AdaDelta, RMSProp, Adam [55], etc. The SGD and Adam optimizer
are the most commonly used in image classification applications. In this experiment, we
compared performance with the fine-tuning training algorithm involving the SGD and
Adam optimizer to obtain better performance of the VGNet model.

2.4.2. Experimental Environment

All of the experiments were performed on Windows 7 (64-bit) operation system. The
RAM of the computer is 16 GB, with Intel(R) Xeon(R) CPU E5-2630 v4 @2.20GHz CPU. The
program platform was Anaconda 3.5.0, CUDA 8.0. CuDNN was the library for CUDA,
developed by NVIDIA, which provided highly tuned implementations of primitives for
deep neural networks. Python 3.5.6 was applied based on TensorFlow environment. The
image dataset of the fine-tuning process was divided into two parts: 80% of image data were
for training and the remaining 20% were for testing. Table 2 presents the hyperparameters
of the fine-tuning training process of VGNet.

Table 2. Specification of hyperparameters in the experiment.

Parameters Setting Values

Initial learning rate (SGD, Adam) 0.001, 0.005, 0.01
Momentum (SGD) 0.9

Small constant τ (Adam) 10−8

Weight decay (SGD, Adam) 0.00005
L2 normalization parameter λ 0.12

Iteration 5000

2.5. Evaluation of Proposed Method

The performances are graphically depicted for each model with accuracy and loss.
An overall loss score and accuracy based on the test dataset are computed and used to
determine the performance of the models. The accuracy is calculated on the testing dataset
in a regular interval with validation frequency of 25 iterations, and it is given as Equation (8).

Acc =
Predicted samples
Disease samples

. (8)

Meanwhile, categorical cross-entropy is used as the loss function, which has softmax
activations in the output layer, which is illustrated as Equation (9)

Loss =
N

∑
i=1

K

∑
j=1

tij ln yij. (9)
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where N represents the number of corn disease images, K is the number of diseases classes,
tij indicates that the ith disease image belongs to the jth disease class, and yij stands for the
output for sample i for disease class j. To evaluate the results of the disease recognition
and classification experiment in the confusion matrix intuitively, Pre (Precision) and Rec
(Recall) are calculated after testing the samples. They are used to measure how accurately
the results for each category are with respect to the corresponding ground-truth data. A
comprehensive evaluation index, the F1 score, is used as the evaluation value of Pre and
Rec. Equations for Pre, Rec, and F1 score are as follows in Equations (10)–(12).

Pre =
TP

TP + FP
. (10)

Rec =
TP

TP + FN
. (11)

F1 =
2PreRec

Pre + Rec
. (12)

where, the TP (true positive) is the amount of positive data that are correctly predicted
as positive. The FP (false positive) represents the amount of negative data points that are
wrongly predicted as positive. The FN (false negative) is the amount of negative data
that are misclassified as negative. Pre (Precision) is used to find the proportion of positive
identifications that are true. Rec is used to determine the proportion of actual positives that
were correctly identified. The F1 score reflects the number of instances that are correctly
classified by the learning models.

3. Results

In this study, an assessment of the appropriateness of VGNet with transfer learning
and fine-tuning training for the task of crop disease recognition was carried out. Our focus
was to pretrain the VGG 16 Network with different public datasets and to fine-tune the
newly designed VGNet model with different a training mechanism and parameters. Large
open datasets like ImageNet, PlantVillage, and AI Challenger were utilized to pretrain
the model; then, the weights and parameters of the convolutional layers and pooling
layers were transferred to the new model and frozen. After updating the structure of
VGNet, the parameters of the GAP layer, the remaining fully connected layers, and the
softmax layer were retrained and fine-tuned by the new dataset obtained from corn fields.
The performance of the proposed method was analyzed after five-fold cross-validation
experiments to acquire convincing results. K-fold cross-validation is a common method
used to test the accuracy of DL algorithms. To perform K-fold cross-validation on the
overall data, the image dataset C is divided into K parts for disjoint subsets. In order to
prevent data leakage, suppose the number of training samples in dataset C is M; then,
the number of samples in each subset is M/K. When training the network model, one
subset is selected each time as the verification set, and the other (K-1) subsets are selected
as the training set, and the classification accuracy of the network model on the selected
verification set can be obtained. After repeating the above process for K times, the average
of classification ac-curacy is obtained as the true classification accuracy of the model. In
our research, the K is set as 5, since the results of 5-fold validation and 10-fold validation
are the same in the previous experimental experience.

3.1. Effects of Fine-Turning Training Mechanism

The following sections analyze the effects on model performance with a different
training mechanism in the fine-tuning VGNet process, including different training methods
and initial learning rates. Table 3 shows the testing loss and accuracy of the different
training mechanism in the fine-tuning process.
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Table 3. Testing loss and accuracy of the method based on SGD or Adam with different learning
ranges.

Optimizer Initial Learning Rate Loss Accuracy (%)

SGD 0.01 0.103 85.6
SGD 0.005 0.089 89.1
SGD 0.001 0.061 93.0

Adam 0.01 0.074 91.3
Adam 0.005 0.058 94.4
Adam 0.001 0.035 98.3

From Table 3, it can be seen that six different experiments were carried out; their final
loss values and accuracies of testing vary with the training methods and initial learning
rate. Figures 6 and 7 show the loss and accuracy curves of two training methods with
initial learning rates of 0.01 and 0.001, respectively. As seen in Figures 6 and 7 and Table 3,
training methods and initial learning rate have great influence on the performance of the
model. By comparing experiment 1, 2, and 3 using the SGD method, it can be found that
the loss value decreases as the learning rate declines, while the accuracy increases with the
fall in learning rate. When the learning rate is set to 0.01, the loss value of the model test is
0.103, and the accuracy is only 85.65%. In this process, the performance is unstable, and
the loss and accuracy shake violently, which can be seen by the green curves in Figure 6.
When the initial learning rate drops to 0.001, the loss value of the model test decreases
to 0.061, and the accuracy is improved to 93.04%. At this time, the testing process has
fewer shocks, and the model can converge at about 4500 iterations, which is described by
green curves in Figure 7. Rows 4, 5, and 6 in Table 3 were fine-tuning-trained with the
Adam optimizer. Their variation in loss value and accuracy are consistent with former
experiments 1, 2, and 3. The reason is that with the aid of transfer learning, all the front
layers of the network obtained good training, and the weight parameters at the initial time
of training are close to the optimal state. If the initial learning rate is not set properly, the
training process will shock and even diverge. If a higher learning rate (0.01) is used in the
fine-tuning training phase, the model is likely to skip the optimal solution, resulting in
larger loss, lower accuracy, or severe oscillation. When the initial learning rate is 0.001, the
model is more stable, and its performances are much better. Therefore, when the transfer
learning mechanism is applied to the training of a convolutional neural network, the initial
learning rate in the fine-tuning training stage needs to be lower than that of the model
trained from scratch.

Figure 6. Comparison of loss and accuracy of two learning methods when the learning rate is 0.01.
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Figure 7. Comparison of loss and accuracy of two learning methods when the learning rate is 0.001.

Compare experiment 3 with experiment 6 in Table 3, where the initial learning rate
was set as 0.001 with the SGD algorithm and Adam optimizer, respectively. At this point,
the final performance of the model was different due to the different training methods. The
loss value of the model trained by the Adam optimizer is lower than that of the model
trained by SGD algorithm. Furthermore, the model trained by the Adam optimizer reaches
convergence first and becomes stable after 3500 iterations, which is illustrated by the red
curve in Figure 7. However, the model trained by the SGD method converges slowly, and
the final loss value after convergence is 0.061, which is higher than the model trained by the
Adam optimizer. Moreover, since the SGD training algorithm adjusts the weight for each
data point, the network performance fluctuates up and down a lot more than the Adam
optimizer during the learning process. The right part of Figure 7 shows the variation in the
accuracy of the two training methods. It can be found that the model retrained by the Adam
optimizer reached an accuracy of 98.26%, while the model retrained by the SGD algorithm
did not perform as well. Apparently, when the model is fine-tuned by the SGD algorithm, it
is always lower than when trained by the Adam optimizer. In general, the Adam optimizer
algorithm has the advantage of faster model convergence than the SGD training algorithm
and is more stable in the testing process. Therefore, the Adam optimizer in the fine-tuning
training stage of the model is more in line with the corn disease recognition model.

3.2. Effects of Transfer Learning on Multiple Datasets

To explore the impact of training mechanisms and different datasets in the pretraining
process, four completely selfsame VGNet models were utilized in the form of learning from
scratch and transfer learning, respectively. The scratched learning model only adopted
the image obtained from corn fields without pretraining. The other three models utilized
three different large open datasets for pretraining and parameter transfer learning. The
experimental results of applying four different learning types and datasets are listed in
Table 4. From Table 4, it can be seen that the accuracy of learning from scratch is the
lowest, reaching an accuracy of 69.57%. Under the condition of transfer learning and
fine-tuning learning, the model pretrained using the PlantVillage dataset has the best
performance, with an accuracy of 98.26%. Since training the VGNet model from scratch
needs more images and time to optimize network parameters, and the training dataset
only has 920 images, it is not enough for a deep convolutional neural network. This leads
to the nonideal classification effect. Pretraining and transfer learning make the VGNet
model acquire the ability of feature extraction and the knowledge of classification; thus,
it is easier to achieve higher accuracy than with the scratched learning model. Therefore,
transfer learning seems to be a better approach than learning from scratch when the dataset
is not big enough. Though the original VGG16 Net is a model with excellent performance
trained on ImageNet, a large public dataset, in general, the filter at the bottom of the model
can acquire different local edge and texture information through training, which has good
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universality for any image. However, the feature gaps between the ImageNet dataset from
source area and the corn disease images in this new area are too large, while the other two
datasets have much more similar features in color, texture, and shape to the corn disease
images. Thus, the accuracies of the models pretrained with PlantVillage and AI Challenger
are higher than the model pretrained with ImageNet. Images from PlantVillage are very
similar to those from AI Challenger, but the number of PlantVillage is bigger than that of
AI Challenger. Thus, the model pretrained with PlantVillage obtains a better learning effect,
and PlantVillage is more suitable for the pretraining in this research. This indicates that in
transfer learning, the source domain and target domain should have a high fitting degree
for better performance.

Table 4. Experiment results of different learning types and datasets for pretraining and fine-tuning.

Learning Types Pretrained Images Accuracy on
Original Images (%)

Accuracy on
Augmented Images

(%)

Learning from
Scratch — 69.6 89.5

Transfer learning ImageNet 93.5 94.6
Transfer learning PlantVillage 98.3 99.4
Transfer learning AI Challenger 97.3 91.3

3.3. Effects of Augmentation

Data augmentation was applied here based on image transformations, such as geomet-
ric transformation, color changing, and noise adding, to generate new training images from
the original ones by applying such random image transformations. The size of the dataset
was enlarged from 1150 to 11,500. The ratio of the training dataset and testing dataset was
also 8:2. The effects of image augmentation for fine-tuning learning are also illustrated
in Table 4. It can be concluded that the effects of image data augmentation on different
training models are different. In the mode of learning from scratch, data augmentation
improves the accuracy by nearly 20%. Because the original dataset is too small, and the
structure of the network structure is deep, the overfitting phenomenon reduces the per-
formance of the network. When the image data are enlarged by data augmentation, the
number and diversity of the data are increased. Thus, data augmentation has a larger role
in avoiding overfitting and increasing accuracy when the model is learning from scratch. In
the transfer learning mode, the accuracy of the fine-tuned model trained with augmentation
is at least 2% higher than that of the model fine-tune-trained by original image data. This is
because the pretraining model has learned a lot of knowledge from the large image dataset,
which weakens the role of data augmentation. Hence, enlarging data plays a slight role in
improving the performance of model classification in transfer learning.

4. Discussion
4.1. Obfuscation Matrix Analysis and Quantitative Statistics

To clearly show the recognition precision and classification results based on the fine-
tuning training of the designed VGNet with augmented datasets, the confusion matrix
drawn on the basis of the model classification results is shown in Figure 8. ANTH, TR, SCR,
CR, SLB, PHLS, DLS, PHBS, and NLB, respectively, represent the abbreviations of nine types
of corn diseases. The values in darker diagonal lines in Figure 8 (left) illustrate the number
of correct classifications for each disease category, while the results of darker diagonal
lines in Figure 8 (right) represent the recognition accuracies of correct classifications. It can
be found that the recognition accuracies of nine corn diseases present some differences.
Relatively, the accuracy of ANTH (Anthracnose) is lower than others; this probably because
the sample number is fewer than other types. And the accuracy of SCR (Southern corn
rust) reaches 100%. On the whole, the accuracies are kept in the range of 98.6% and 100%,
which can be treated as a balanced result.
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Figure 8. Obfuscation matrix analysis of classification based on transfer learning and data aug-
mentation. The left is the obfuscation matrix, and the right is the normalized obfuscation matrix.

After the analysis and statistics of the confounding matrix, each parameter reflecting
the model performance is obtained, as shown in Table 5, which describes the more detailed
original and testing classification information of the proposed VGNet. It can be found
in Table 5 that the precision and recall values of each disease type are different, which is
related to the characteristic types and image numbers of each disease. The precision value
in Table 5 is between 98.1% and 100%. The recall value ranges from 98.6% to 100%. The F1
value ranges from 98.4% to 99.8%, with an average accuracy of 99.4%. This indicates that
the proposed method performs well in the established dataset after transfer learning and
fine-tuning training, which could be applied to the actual detection of crop diseases in the
field environment.

Table 5. Obfuscation matrix statistics for nine types of corn diseases with transfer learning and
augmentation.

Types ANTH TR SCR CR SLB PHLS DLS PHBS NLB

Samples 1070 1150 1300 1420 1500 1200 1160 1280 1420
Positive 214 230 260 284 300 240 232 256 284
Negative 2086 2070 2040 2016 2000 2060 2068 2044 2016

TP 211 229 260 283 299 237 230 255 283
FN 3 1 0 1 1 3 2 1 1
TN 2076 2058 2027 2004 1988 2050 2057 2032 2004
FP 4 1 1 0 2 2 3 0 0

Pre (%) 98.1 99.6 99.6 100.0 99.3 99.2 98.7 100.0 100.0
Rec (%) 98.6 99.6 100.0 99.7 99.7 98.8 99.1 99.6 99.7
F1 (%) 98.4 99.6 99.8 99.8 99.5 99.0 98.9 99.8 99.8

Acc (%) 99.4

4.2. Comparison with State-of-the-Art Methods

To further validate the effect of our method based on fine-tuning training and VGNet,
we compared the proposed method with the traditional machine learning classifiers and
state-of-the-art models (deep learning methods), respectively, under the same experiment
conditions as well as the same dataset. The total number of images was 1150. Traditional
machine learning methods include random forest (RF) classification algorithm, support
vector machine (SVM), and BP neural network. AlexNet, ResNet50, Inception v3, and the
original VGG16 Net are the selected deep convolutional neural networks for the compara-
tive experiment. For conventional machine learning methods, we preprocessed the corn
disease images, including image enhancement, segmentation, and feature extraction. After
removing background information, the disease spots with clear boundaries were obtained.
Then color histogram feature in HSV color space and the matrix characteristics in RGB color
space were extracted, respectively. The gray-level co-occurrence matrix was used for texture
features and a seven-hue invariant matrix was used for shape feature extraction. Then,
the extracted features were fused as input vectors of the BP, SVM, and RF classifiers. The



Agriculture 2023, 13, 1606 15 of 19

learning experiments of AlexNet, ResNet50, Inception v3, the original VGG16, and VGNet
models adopt the method of transfer learning and fine-tuning mechanism. The experiment
parameters were consistent with the proposed method. After training, the models were
test tested and identification results were output. The accuracies obtained from different
traditional machine learning classifiers and deep learning methods are shown in Figure 9.
It can be seen in Figure 9 that the accuracies of traditional methods are generally lower
than 87%. In addition, conventional classifiers often require tedious preprocesses involving
image enhancement, segmentation, and extraction of features manually. In deep learning
methods, the accuracies are greater than 92%, and they vary because of the different deep
structures and abilities of feature extraction. The accuracy of AlexNet is the lowest among
the five deep architectures, because the structure of AlexNet is shallower than others, which
leads to the insufficient ability to extract the features of corn disease images. The accuracy
of the original VGG16 Net is 94.78%, the ResNet50 is 95.22%, and Inception v3 achieves an
accuracy of 96.96%. Experimental results indicate that deep learning methods are superior
to conventional machine learning. It can also be seen that our model reaches a highest
accuracy of 98.26%, which is improved by 3.48% compared with the original VGG16 Net.
The addition of BN, a GAP layer, and L2 normalization makes the VGG16 Net more robust
with higher accuracy. The improvement of our method based on the classical VGG16 Net
has the capability to learn more complex features, as more convolutional layers are in the
stack with smaller filter sizes compared with other deep learning models.

Figure 9. Comparison of accuracy between different models based on the same dataset.

Table 6 shows the comparative parameters and testing time of different deep learning
methods. From Table 6, we can see that the original VGG16 Net has the most parameters
and the longest testing time. AlexNet has eight weight layers and 58.3 million parameters;
the testing time of AlexNet is the shortest, only 50.14 s for 230 images. However, the
accuracy of AlexNet is the lowest (Figure 9). The parameters and testing time of ResNet50
and Inception v3 are slightly different. Our VGNet has 14 weight layers and 22.9 million
parameters after replacing huge hidden fully connected layers by a GAP layer, and it
only occupies 79.5 MB of memory space. The testing time of our model is only 75.21 s
for 230 images, which improves by 151.11 s compared with the original VGG16 Net. In
addition, the loss value of the designed VGNet is only 0.035, which is significantly smaller
than other models, such as VGG16 and ResNet50. The proposed method can achieve real-
time detection of corn diseases. In general, our proposed method has the best recognition
effect after transfer learning and fine-tuning. The utilization of the GAP layer realized
the feature dimension reduction. The parameters of the network were greatly reduced, as
well as the calculation amount. This means the network regularization in the structure to
prevent overfitting. The connections between each category in the feature map are more
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intuitive (compared with the fully connected layers), and it is easier for the feature map to
be converted into classification probability. Thus, the proposed VGNet is lightweight and
robust, which could obtain the best performance among the state-of-the-art models.

Table 6. Comparison of the classic convolutional neural networks and corresponding parameters.

Methods Network
Layers

Parameters
(Millions) Weights (MB) Times (s) Loss Value

AlexNet 8 60.9 224 50.14 0.912
ResNet50 50 25.5 102 88.78 0.587

InceptionV3 46 24.7 96 86.02 0.271
VGG16 16 138 533 226.32 0.196
VGNet 14 22.9 79.5 75.21 0.035

Actually, our method utilizes 1150 corn disease images from field conditions, and
the recognition accuracy reaches 98.3%, which is better than the models learning from
scratch. After data augmentation, the accuracy of the model improves slightly by 1.2%.
The dataset in this research is small compared with many deep convolutional models.
Actually, Ferentinos et al. collected 87,848 images of plant diseases to train a convolutional
neural network model, whose performance finally reached 99.5% accuracy [43]. In our
experiment, when the dataset is enlarged to 11,500, the accuracy of VGNet increases to
99.4%. Compared with the study of Ferentinos, our success rate is only 0.1% lower than
that of the model using 86,000 images. Thus, transfer learning seems to be an ideal method
for the CNN model to achieve better performance. With the aid of the parameters transfer
of the pretrained model, a more accurate model can be generated when fine-tuning several
layers for disease image classification.

Three types of open large datasets, including ImageNet, PlantVillage, and AI Chal-
lenger, were used, and the results show that the models pretrained with PlantVillage or
AI Challenger were better than that pretrained ones with ImageNet. The similarity of the
training data to the experimental data results in easier transferability. The SGD algorithm
and Adam optimizer are compared and analyzed in the fine-tuning phase. The experiments
prove that the Adam optimizer for training the VGG16 Net is more accurate and more
stable than the SGD algorithm. The initial learning rate is also an important parameter in
model training. In regard to the pretrained model, smaller learning rates for convolutional
nets are common, as network parameters should not be changed dramatically.

4.3. Feature Visualization

The ability of automatic feature extraction is an important factor to reflect the perfor-
mance of the model. To examine the effect of feature extraction on the proposed model, fea-
ture map visualization was carried out. Figure 10 illustrates the original input image and the
feature maps derived from the pooling layer of the model. From the right of Figure 10, we
find that the disease spots were abstracted high-dimensional features; the VGNet obviously
had high-quality feature extraction, which was beneficial for recognition and classification.

Figure 10. Obfuscation matrix analysis of classification based on transfer learning and data augmen-
tation. The left is the original image; the middle is the grey feature map; and the right is the color
feature map.
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5. Conclusions

Data diversity and representativeness are the key elements to ensure the generalization
of the model. In this paper, we devised a VGNet which takes VGG16 as the backbone and
adds batch normalization, as well as replacing two fully connected layers with a GPA layer
and adding L2 normalization. The parameters of the convolutional layers and pooling
layers are transferred to the newly designed VGNet; then, the fine-tuning learning for
VGNet is studied to enhance the ability of recognizing corn disease images from real field
conditions.

Data augmentation has greater promotion of model learning from scratch than on
pretrained model, because the parameters of pretrained models are trained enough by open
large datasets. Compared with traditional machine learning methods and state-of-the-art
deep learning methods, the proposed VGNet has a stronger ability to identify a hierarchy of
features of corn diseases. The accuracy of VGNet is improved by 3.5% compared with the
original VGG16 Net, and the testing time for 230 images is reduced by 66.8%, with balanced
precision, recall, and F1 indexes. The parameters and memory occupation of the proposed
VGNet are reduced by 83.4% and 85.1%, respectively. The comparative experiments and
performance analysis illustrated the wide adaptability of the proposed method. In addition,
the proposed method could provide baseline architecture for other types of phenotypic
information recognition or interpretation with much fewer parameters and computation
time. In future work, we will focus on collecting multiple crop disease images from real
scenes and developing fine-grained disease detection methods that can be used for multiple
categories of crops.
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