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Abstract: In recent years, agricultural remote sensing technology has made great progress. The
availability of sensors capable of detecting electromagnetic energy and/or heat emitted by targets
improves the pre-harvest process and therefore becomes an indispensable tool in the post-harvest
phase. Therefore, we outline how remote sensing tools can support a range of agricultural pro-
cesses from field to storage through crop yield estimation, grain quality monitoring, storage unit
identification and characterization, and production process planning. The use of sensors in the field
and post-harvest processes allows for accurate real-time monitoring of operations and grain quality,
enabling decision-making supported by computer tools such as the Internet of Things (IoT) and
artificial intelligence algorithms. This way, grain producers can get ahead, track and reduce losses,
and maintain grain quality from field to consumer.

Keywords: grain production; grain post-harvest; agricultural monitoring; prediction of agricultural results

1. Introduction

As the world’s population increases, there is a need to increase food production, which
poses a challenge to society [1]. Increased food production must be achieved through
sustainable management of the entire production system [2]. Agricultural intensification
is necessary due to limited production areas. To achieve this, new technologies and
management practices must be introduced in agriculture to reduce the side effects of
increased use of fertilizers, pesticides, and other inputs.

Advances in data collection and processing technologies have been successfully used
around the world to support decision-making in various agricultural processes. These
advancements include harvest sensors, which are capable of estimating grain yields before
harvest [3–5], weed occurrence, weed nutritional status [6], plants [7], top-dressing nitro-
gen [8], water stress [9], and grain protein content [10,11]. Such applications help improve
grain yield, quality and input use efficiency as well as reduce nutrient losses and negative
environmental impacts [12,13].

After harvest, storage capacity must be 20% higher than yield to avoid product losses
and improve logistics and quality [14]. However, in some countries, in addition to poor
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quality control of grains stored in structures, there is also the problem of insufficient
storage capacity, especially in terms of crucial factors such as grain moisture content
and the temperature and relative humidity of intergranular air, which are necessary for
food preservation.

Using sensors and Internet of Things (IoT) applications, grain quality can be monitored
and predicted throughout the grain storage period. Therefore, precision agriculture tools
such as remote sensing can help monitor pre- and post-harvest processes by leveraging a
range of advanced information, communication, analysis, and data processing technologies
such as big data analytics, digital platforms, processing clouds, and artificial intelligence.
These technologies allow for the extraction of a wealth of information about data collected
during decision-making [15,16].

2. Review Methodology
2.1. Search Strategy

For this review, precise examination and evaluation standards were established. The
most significant research question that directed our review was as follows: How do far-
flung sensing, PC vision, and their integration contribute to tracking grain properties at the
manufacturing and post-harvest stages? We evaluated manuscripts addressing advances in
far-flung sensing and relevant equipment used for tracking the complete grain production
chain, from the field to the post-harvest process. To this end, we conducted a scientific
literature search of the “CAPES Journal Portal” as well as the Science Direct, Scopus, and
Web of Science databases. We selected articles published in journals from 2002 to 2023 that
provided primary studies associated with the following topics: sensors in agriculture;
agricultural yield forecasting techniques; equipment for far-flung tracking of post-harvest
grains; and artificial intelligence in agriculture. The database search used a mixture of
the following terms: (ALL = ((remote sensor OR tracking)) AND production AND post-
harvest)). No restrictions on language or type of publication were applied at this stage
(Figure 1A,B).
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2.2. Eligibility Criteria and Selection Process

References were selected independently and in parallel by two co-authors regarding
inclusion/exclusion criteria. Manuscripts that did not meet the inclusion criteria were
excluded from the posterior analysis. Additionally, manuscripts were selected if they met
all of the following criteria: a) the abstract described a study related to any remote sensing
or monitoring (grain, production, and post-harvest); b) at least one of the remote sensing
or monitoring techniques were related to any production or post-harvest stage. After the
screening process, data were extracted from papers tables or text.

2.3. Studies Evaluation Synthesis and Results

The selected manuscripts were categorized according to publication year, author’s
geographic region, and publication journal to provide information on the development of
research on a particular topic. Furthermore, the remote sensing or monitoring technolo-
gies featured in each analyzed manuscript were identified in conjunction with production
management or control of post-harvest grain operations. To identify the techniques, tech-
nologies, and applications of remote sensing and computational technologies in the grain
production and post-harvest stages, we extracted the data and organized it in a spreadsheet
with the following fields: spatiotemporal resolutions of satellite sensors (satellite, sensor,
temporal resolution, precision agriculture application, references); vegetation indices and
sensors (vegetation indices, equation, types of sensors, applications, references); remote
sensing techniques used for monitoring grains in the post-harvest stages (sensing method,
post-harvest stage, references); prediction of results based on easy-to-measure parameters,
such as soil and weather attributes sensing and monitoring techniques, combined with
predictive algorithms (applied technique, the objective of the application, references).

The references were chosen openly and in parallel by two co-authors concurring to the
inclusion/exclusion criteria. Unique duplicates that did not meet the consolidation criteria
were denied from empower examination. Unique duplicates were chosen that met all of
the taking after criteria: (a) the hypothetical delineated a think approximately related to
any more distant identifying or watching (grain, era and post-harvest); (b) at smallest one
of the more distant recognizing or watching methodologies was related to many arrange of
era or post-harvest. After the screening handle, the data was removed from the tables or
works of the articles.
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3. Remote Sensing Applied on the Agriculture
3.1. Remote Sensing Techniques, Applications, and Sensors

Figure 2 and Table 1 presents a summary of remote sensing techniques available, their
characteristics, applications, and sensor types.
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Figure 2. Remote sensing techniques, their characteristics, applications, and sensors.

Table 1. Spatiotemporal resolutions of satellite sensors with high resolution (<30 m) and temporal
sensors used for precision agriculture.

Satellite (Active Years) Sensor (Spatial
Resolution)

Temporal
Resolution (Days)

Precision Agriculture
Application References

Kompsat-3A
(2015–current)

MS V NIR (2.2 m);
SWIR (5.5 m) 1.4 Disease detection and

phenotyping
Bajwa et al. [17] and

Zhang et al. [18]

Wordview-3
(2014–current) SS (1.24 m) <1 Weed management and crop

residues mapping
Caturegli et al. [19] and

Hively et al. [20]

RapidEye
(2008–current) MS (6.5 m) 1–5.5

Weed control, estimation of
leaf area index, estimation of

forest area, and biomass

Dong et al. [3],
Halperin et al. [21], and

Coffer et al. [22]

GeoEye-1
(2008–current) MS (1.65 m) 2.1–8.3

Management of nutrients and
canopy mortality caused

by insects

Dennison et al. [19] and
Caturegli et al. [23]

Lidar (1995) VIS (10 cm) N/A Mapping of leaf mass variation Chlus et al. [24]

Spot-1
(1986–1990)—Spot-2
(1990–2009)—Spot-5

(2002)

MS (20 m); MS
(2.5–10 m) 1–2.6

Mapping of environmental
indicators, Mapping of weeds,

and Monitoring of
agricultural practices

Pasqualini et al. [25],
Hajj at al. [26], and
Johansen et al. [27]

Sentinel-1 (2014–
current)—Sentinel-2

(2015–current)

SAR (5–40 m)—MS
(10 m); NIR (20 m);

SWIR (60 m)
1–3

Phenology, Effect of lodging on
wheat, Detection of abiotic and

biotic stress, and
Estimated productivity

Segarra et al. [5],
Gómez el al. [28],

Chauhan et al. [29], and
Meroni et al. [30]



Agriculture 2024, 14, 161 5 of 28

Crop biomass and grain yield forecast usually require higher spatial resolution (1–3 m)
compared, for example, with the application for variable fertilizer and seed rate technol-
ogy [31]. Besides, weed mapping and variable herbicide rate technology require higher
spatial resolution than identifying only the ridges (for example, 5–50 cm) [32]. Aerial
platforms, such as UAVs (Unmanned Aerial Vehicles), provide images with a higher spatial
resolution (<3 m) compared to satellites. Thus, UAVs offer better flexibility in providing
images with higher spatial and temporal resolution according to the target to be sensed.
Xie et al. [33] assessed the classification and crop monitoring over an agricultural area
with corn, soybean, and winter wheat from multi-year polarimetric observables from
RADARSAT-2 using machine learning. The authors found that multitemporal polarimetric
synthetic aperture radar (PolSAR) can estimate plant growth with a root mean squared
error (RMSE) around 40–50 cm over the cycle. Random Forest (RF) approach proved to be
more accurate in crop classification. Cheng et al. [34], when assessing multispectral infor-
mation to predict winter wheat yield, found contrasts between the multi and hiperspectral
approaches. On the other hand, the predictions achieved using hyperspectral information
was more accurate. These findings highlight the potential of the shortwave infrared groups
to supplant the unmistakable and close infrared groups in yield predictions.

3.2. Vegetation Sensors in Agriculture and Applications

Figure 3 and Table 2 present a summary of the application of crop sensors.

Table 2. Vegetation indices and sensors currently used in agriculture.

Vegetation Indices Equation Types of Sensors Applications References

Normalized
difference vegetation

index (NDVI)

ρNIR−ρred
ρNIR+ρred

Passive: multispectral
(MCA-6 Tetracam,

Mapir); Active:
Greenseeker crop circle

Estimation of grain yield,
biomass, phenotyping,
nutrient management,

diseases, and
pest identification

Raun et al. [35],
Genc et al. [36],

Maimaitijiang et al. [37],
Schaefer and Lambd [38],

Calera et al. [39], and
Peng et al. [40]

Normalized
difference red edge

(NDRE)

ρNIR−ρrededge
ρNIR+ρrededge

Passive: multispectral
(Micansense RedEdge
Mx); Active: Nsensor

(RapidSCAN)

Biomass, productivity, N
status, grain yield, diseases,
water stress, and leaf area

index estimation

Aranguren et al. [10], and
Zhou et al. [11],

Amaral et al. [41],
Jorge et al. [42],

Pourazar et al. [43]

Green NDVI
(GNDVI)

ρNIR−ρgreen
ρNIR+ρgreen

Passive: multispectral;
(MCA-6 Tetracam,

Parrot Sequoia)

Diseases, invasive plants,
and water stress

Zhou et al. (2018) [44],
and Baron et al. [45]

Red edge normalized
difference vegetation

index (RENDVI)

ρNIR−ρrededge
ρNIR+ρrededge

Passive: multispectral
(Micansense RedEdge
Mx); Active: Nsensor

(RapidSCAN)

Yield, diseases, and N
status

Shaver et al. [46],
Martínez et al. [47], and

Pourazar et al. [43]

Red edge DVI
(REDVI) NIR − REDEDGE

Passive: multispectral
(Micansense RedEdge
Mx); Active: Nsensor

(RapidSCAN)

Rice yield Kanke et al. [48]

Shortwave Infrared
Water Stress Index

(SIWSI)

858.5 nm−1640 nm
858.5 nm+1640 nm

Passive: thermal
(Micansense Altum),

hyperspectral
(Cubert GmbH)

Leaf moisture content Fensholt and
Sandholt [49]
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Figure 3. Application of vegetation sensors in agriculture.

The most advantage of red edge vegetation indices is that they are less affected by
plant canopy structures. Hence, they are more promising for the development of models
for assessing leaf range record and grain efficiency. Eitel et al. [50] found that the use of
the red edge improved the ability to estimate changes in chlorophyll content (r2 > 0.73,
RMSE < 1.69) compared to devices that did not use (r2 = 0.57, RMSE = 2.11). Vegetation
indices based on the red edge such as Red Edge Normalized Difference Vegetation Index
(RENDVI), Normalized Difference Vegetation Index (NDRE), and Red Edge Difference
Vegetation Index (REDVI) frequently have a better relationship with plant nutrients uptake
and biomass production under dense canopy conditions than NDVI, such as those present
during the advance corn growth stages [51].

The measurement of reflectance or emissivity in the near and medium infrared bands
is particularly useful in the development of indices that help to understand intrinsic
characteristics of the plant, such as water, pigments, sugar, carbohydrates, and protein
content. The radiation reflected or emitted in thermal infrared bands is related to the
temperature of the plant and this with the rate of transpiration of the plant. Thus, the
indices obtained from these thermal reflectance data can be used to understand the level of
the plant’s water stress and other biotic stresses, such as diseases [52,53]. In this context,
vegetation indices based on infrared reflectance, and thermal emissions, such as crop water
stress index (CWSI) and short-wave infrared water stress index (SIWSI) are particularly
useful. These indices have been successfully used for a broad range of objectives in
agriculture including plant stress due to excess or water deficit, soil moisture, plant diseases,
and crop yield forecast [54].

The early season assessment of crop yield at regional, State, and National scales
is key information for agricultural planning and public policy. The applications of this
information in post-harvest are growing allowing redesign of the whole organization
strategy for the flow of the production, from the crops to the food processing and production
industries decreasing loss and keeping the quality. However, the crop yield forecast in many
countries is based on conventional data collection procedures through plot scale or human
perception [53–56]. These techniques are often subjective, expensive, time-consuming,
and are subject to bias due to incomplete or wrong observations, leading to an inaccurate
assessment of crop yield [57].
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The accurate evaluation of the crop performance on large scale has been becoming a re-
ality after the progress in remote sensing technology by modern satellites and UAV-coupled
sensors. The approaches based on remote sensing by satellite or UAV provide repeated
measurements at different spatial, temporal, and spectral scales that allow estimating
various canopy parameters, such as vegetation cover, leaf area index, and absorbed fraction
of photo-synthetically active radiation, which can be used in crop yield models [58].

According to Peng et al. [40], the remote sensing crop yield forecast is carried out in
two ways. The first approach uses biophysical parameters of vegetation as a leaf area index
(LAI) obtained by remote detection and the data is used in specific models to estimate
crop yield. The second process uses statistical relationships such as regression or empirical
relationships between parameters and harvest indices derived from remote sensors (such
as NDVI and NDRE vegetation index), in addition to the harvest yield observed in a
cultivated area. Maresma et al. [59] presented a regression-based approach to assess the
relationship between corn yield, biomass, and spectral indices measured at corn crop
stage V12. Related to other studies, they also found that red NDVI-based indices and
the wide dynamic range vegetation index (WDRVI) had a higher correlation with grain
yields obtained in a range of fertilizer rate input. Kumar et al. [60] correlated the NDVI
values of different satellites to estimate the crop yield in wheat and found coefficients of
determination above 0.90. Rao et al. [61] evaluated the Normalized Difference Vegetation
Index (NDVI) to estimate sugarcane yield and reported a strong relationship between
yield and NDVI (R = 0.84). Alongside, Rahman and Robson, Rahman and Robson [62]
reported that the green normalized difference vegetation index (GNDVI) derived from the
Landsat 30 m resolution had a significant correlation (R2 = 0.69) with crop yield. Ali and
Imran [62] used the red edge extracted from hyperspectral images to predict the leaf area
index (R2 = 0.93) and the chlorophyll content (R2 = 0.90) to estimate yield (R2 = 0.91) of
Kinnow tangerines.

Reliable estimate of crop yield based on the canopy reflectance throughout the dif-
ferent growth stages can be a challenging task, especially during the initial stages of crop
growth due to the interference of the bare soil surface [63]. To overcome this limitation,
Zhen et al. [64] used other vegetation indices modified to minimize the soil interference in
the estimative of leaf area index (LAI) and, consequently, crop yield. Recently, vegetation
indices based on red-edge have shown satisfactory efficiency for estimating the yield of
different crops.

3.3. Advantages and Disadvantages of the Remote Sensing

The advantage of remote sensing as a whole, compared to other conventional data
collection methodologies, is the fast and non-destructive sample collection. For example, it
is possible to have information on several variables, such as nitrogen content, plant mass,
disease severity, among others. At the satellite orbital level, the advantages are even greater,
as it makes it possible to sample large and larger areas with repeatability depending on
the time span in which the satellite is visited, that is, every so often the satellite images the
area, enabling a high sampling rate at a lower cost and time when compared to traditional
sampling in the field, even in conditions where there is a need to pay for the satellite.

The disadvantages of sampling via an orbital satellite sensor are that it is collected
when clouds are present at certain periods of the year, depending on the region, making
sampling and sample quality unfeasible. Another disadvantage is obtaining images via
free satellites, for example Landsat and Sentinel. It is worth noting that the aim is always
to collect images with the highest spatial resolution, with the greatest possible number of
pixels, to achieve the desirable detail of the target for analysis. This is especially important
for smaller areas and objects, such as fruit plots or cities. However, it makes no difference
for larger areas where target detailing is not the main objective. Image collection via
drone is an alternative to the disadvantages mentioned above, as it is possible to fly below
the clouds without their interference in image collection. On the other hand, the main
disadvantage of using a drone is the high initial cost and the need for training to operate
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the drone and process images. Even so, drones make it possible to collect samples with the
possibility of repeating them daily or on different days.

Among the main advantages of using vegetation indices are the future diagnosis of
elements that do not yet have scientific support, for example, a plant attacked by insect
pests that ends up changing its physiology, which could probably be detected by some
spectral response, mainly by hyperspectral sensors, being an area still new and very little
studied. There is still a large scope for development in the application of sensors.

4. Using Remote Sensing on the Post-Harvest Grain Monitoring
4.1. Post-Harvest Grain Monitoring

Although the feasibility of using remote sensing techniques in agriculture has been
demonstrated since the 1980s, the operational use of remote sensing data has recently been
intensified and used operationally for a variety of agricultural applications [65], among
them post-harvest of grains. The use of sensors can assist in monitoring quality and
reducing losses [66]. Temperature sensors can be used next to the grains as an indirect
indicator of the quality of the product during transport, drying, and storage. Obtaining
real-time information about the conditions of the grains helps in making decisions on the
post-harvest stages. Table 3 presents studies that used remote sensing techniques applied
to the monitoring post-harvest grain quality.

Table 3. Studies on the remote sensing techniques used for monitoring grains in the post-harvest stages.

Sensing Method Post-Harvest Stage Reference

Sensor package—CO2 sensor, temperature sensor, and relative humidity sensor Grain transport Danao et al. [67]
Multispectral vision sensor Grain cleanness Wallays et al. [68]
Microwave moisture sensor Grain drying Lewis et al. [69]
Moisture content sensor Grain drying Li et al. [70]
Online Moisture Detector Based on V/F Conversion Grain drying Liu et al. [71]
CO2 sensor Grain storage Neethirajan et al. [72]
CO2 sensor Grain storage Ubhi and Sadaka [73]
The wireless network of the temperature sensor, humidity sensor, and light sensor Grain storage Onibonoje et al. [74]
Internet of Thighs (IoT)—microcontroller and various sensors Grain storage Kodali et al. [75]
Internet of Thighs (IoT)—temperature sensor, humidity sensor, and CO2 sensor Grain storage Sindwani et al. [76]
Cyber-Physical System (CPS)—temperature and humidity sensor Grain storage Parvin et al. [77]
Compact microwave device—insect activity sensor Grain storage Lewis et al. [69]
Wireless Phosphine Sensors Grain storage Brabec et al. [78]
Temperature sensor, humidity sensor, and CO2 sensor Grain storage Kumar et al. [79]

Electromagnetic imaging Grain storage Asefi et al. [80], Gilmore et al. [81],
Asefi et al. [82], Gilmore et al. [83]

4.2. Grain Monitoring in Transport

For monitoring grains during transport from the field to the storage units and from
the storage units to the industry, Danao et al. [67] studied the development of a probe
to monitor temperature, relative humidity, carbon dioxide (CO2) levels, and logistical
information during the transportation of soybeans. According to Nunes et al. [84], taking
into consideration that grain transportation can be carried out over long separations which
the grain mass amid transportation frequently features a tall dampness substance, there
may be dangers of warm and dampness exchange, causing the grain mass to warm up
and driving to quantitative and subjective misfortunes. Nunes et al. [84] approved a
method with a test framework for real-time observing of temperature, relative stickiness
and carbon dioxide within the mass of corn grains amid transportation and capacity, in
arrange to identify early misfortunes of dry matter and anticipate conceivable changes
within the physical quality of the grains. The hardware comprised of a microcontroller,
system hardware, advanced sensors for identifying temperature and relative mugginess
and a non-destructive infrared sensor for measuring CO2 concentration. Real-time checking
frameworks decided changes within the physical quality of the grains early and palatably,
as affirmed by the physical investigations of electrical conductivity and germination. Real-
time observing gear and the application of Machine Learning were viable in foreseeing dry
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matter misfortune, due to the tall balance dampness substance and breath of the grain mass
inside 2 h. All the machine learning models, but the back vector machine, gotten palatable
comes about, in a comparative way to the different straight relapse investigation. Figure 4
appears an outline of a test for checking these parameters amid grain transportation.
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The grain monitoring probe was designed to be placed inside vehicles responsible
for transporting grain, allowing parameters to be monitored during product movement.
The probes were constructed with four vertically spaced chambers in the grain mass
and an optional fifth chamber for the overhead space above the grain mass within the
loading portion of the transport vehicle. These probes are useful for better understanding
conditions during soybean transportation, which can lead to better management of grain
handling and transportation operations to minimize soybean quality loss in the post-
harvest period [67,82]. In addition to monitoring temperature and other parameters during
transport, this type of grain mass sensing contributes to decision-making in the storage
unit. When the product arrives at the destination, the operators know in advance its main
characteristics, making the industrialization processes more efficient.
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When batches of grain are unloaded in the storage units, the grains are submitted to
cleaning. For this, Wallays et al. [68] used a hyperspectral waveband selection for the online
verification of grain cleaning. Seeking online monitoring of the percentage of impurities
next to the grains, these authors developed a multispectral vision sensor able to create a
virtual image with maximum contrast between the grains and the impurities, allowing
each pixel to be classified individually. The selected bands were 465–475 nm, 522–532 nm,
676–705 nm, 849–858 nm, and 906–945 nm, which allowed discriminating between clean
and impure grains.

4.3. Advantages and Disadvantages of the Grain Monitoring in the Transport

Thus, it can be stated that monitoring intergranular variables, such as temperature,
relative humidity and CO2 concentration in real time in the grain mass during transport,
especially over long distances, has as its main advantage the possibility of monitoring
possible changes that occur due to the increase in the metabolic activity of the grains and
consequently the respiratory intensity of the grain mass, avoiding possible losses of dry
matter and nutritional quality of the grains. Furthermore, monitoring the transport of
grains from crops to storage units or from units to industry helps to segregate batches and
their destinations in the following processes for better grain conservation, consequently
increasing the value of the product. Often the qualitative changes that occur in the later
stages of post-harvest are due to errors and lack of control that occurred in the previous
stages. Thus, monitoring grain mass contributes to the batch traceability process, conse-
quently bringing greater control over post-harvest grain losses. Disadvantages include the
initial costs of equipment and sensors, as well as training and operational adaptations for
installing and handling monitoring technologies.

4.4. Grain Monitoring during Drying

The cleaned grains are then taken to the drying stage. This step also requires con-
stant monitoring. Figure 5 illustrates a system for monitoring the grains during drying.
Lewis et al. [69] developed a grain drying system with monitoring of the moisture content
reduction using a microwave sensor operating at 5.8 GHz. Lewis et al. [69] reported that it
was possible to determine the moisture content in real-time and with a calibration standard
error lower than 0.54% when compared to the reference method conducted in the oven.
In the same way, Li et al. [70] developed an online device for measuring the moisture
content of the grains during the drying process. The sensor developed by Li et al. [69]
determines the moisture content of a single grain at a time, through the application of a
direct current. The generated electrical circuit measures the electrical resistance of the grain,
which employing mathematical equations designed for each species allows reaching the
moisture content of the product. The results presented by Li et al. [85] showed that the
device has an excellent performance in grains with varied moisture content (10–35% w.b)
and temperature (−20–50 ºC), with an absolute measurement error within 0.5%. The data
obtained with the device are adequate to characterize the uniformity of the drying pro-
cess of the grains. The drying monitoring sensor based on the electrical resistance of the
grains improves the accuracy and reliability of the measurement and can be useful in other
intelligent equipment for drying the grains.

Liu et al. [71] developed an online detector of the moisture content of the grains during
the drying process that acts based on the voltage-frequency conversion. The sensor also
consists of detecting the electrical resistance values of the grain, which is based on the
voltage-frequency conversion, followed by moisture content and frequency conversion,
and the non-linear correction as a function of temperature. The operating mechanism of
this detector is remarkably like that described by Li et al. [85] and presented satisfactory
results for application in monitoring grain drying. The industry needs good precision when
reducing the moisture content in the drying process. Grains with high moisture content
tend to deteriorate more quickly during storage, while excessively dried grains result in
lower economic yield due to the reduction in total mass.



Agriculture 2024, 14, 161 11 of 28

Agriculture 2024, 14, x FOR PEER REVIEW  12  of  30 
 

 

 

Figure 5. Illustration of a grain monitoring system during drying. 

Liu et al. [71] developed an online detector of the moisture content of the grains dur-

ing the drying process that acts based on the voltage-frequency conversion. The sensor 

also consists of detecting the electrical resistance values of the grain, which is based on the 

voltage-frequency conversion, followed by moisture content and frequency conversion, 

and the non-linear correction as a function of temperature. The operating mechanism of 

this detector is remarkably like that described by Li et al. [85] and presented satisfactory 

results  for application  in monitoring grain drying. The  industry needs good precision 

when  reducing  the moisture content  in  the drying process. Grains with high moisture 

content tend to deteriorate more quickly during storage, while excessively dried grains 

result in lower economic yield due to the reduction in total mass. 

4.5. Advantages and Disadvantages of Monitoring Grains during Drying 

Thus, monitoring the temperature and relative humidity of the dryer’s inlet air, dry-

ing and exhaust air in real time, allow for the evaluation of the dryers’ performance, for 

better drying efficiency with lower energy costs. Meanwhile, monitoring grain mass is a 

response to drying for the effects of moisture removal. Drying at high temperatures has 

the advantage of high drying speed and flow of batches of grains. On the other hand, it 

causes greater stress to the grains due to the high temperature, which can cause physical 

damage and consequently nutritional changes. Therefore, real-time monitoring of the of 

Figure 5. Illustration of a grain monitoring system during drying.

4.5. Advantages and Disadvantages of Monitoring Grains during Drying

Thus, monitoring the temperature and relative humidity of the dryer’s inlet air, drying
and exhaust air in real time, allow for the evaluation of the dryers’ performance, for
better drying efficiency with lower energy costs. Meanwhile, monitoring grain mass is a
response to drying for the effects of moisture removal. Drying at high temperatures has
the advantage of high drying speed and flow of batches of grains. On the other hand, it
causes greater stress to the grains due to the high temperature, which can cause physical
damage and consequently nutritional changes. Therefore, real-time monitoring of the of
grain mass temperature can be a parameter for determining the intensity of drying in the
stages of water removal from the grains. For drying at low temperatures, the monitoring of
temperature and relative humidity variables is associated with the equilibrium moisture
conditions of the grains. In this case, drying occurs in fixed layers from bottom to top inside
the dryers, with a drying front in the grain mass, which at the same time remains stored in
the same space. In this system, the drying air will need to be sufficiently heated at ambient
conditions and dehydrated to remove moisture from the grains through the hygroscopic
process (difference in vapor pressure between the grain and the drying air) and at the same
time, the moisture from the grains at the end of the drying process must stabilize within
a safe range for storage (between 12 and 14% w.b.), depending on the region. Real-time
monitoring will provide greater control of the process and grain quality. The disadvantages
are the costs of dryer instrumentation and the need for more qualified personnel to handle
the equipment, as well as sensitivity and knowledge about the differences between the
types of grains during drying.
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4.6. Grain Monitoring in the Storage

As most grains are delivered at given times of the year and are still required by
businesses all through the year, an expansive portion of the dried grains are put away.
Figure 6 shows a framework for observing grain amid capacity and its advance over a long
time. To protect put away grain, it is fundamental to keep the mass with a secure water
substance of between 11 and 14% and an intergranular temperature underneath 22 ◦C
(depending on the locale). This requires that air circulation and thermometry are working
appropriately, checking the conditions of the discuss entering the capacity storehouse
and the intergranular discuss. As well as observing the temperature, measuring the
intergranular relative stickiness is vital for deciding the harmony dampness substance of
the put away item and foreseeing respiratory issues. Given that grains are great warm
insulin which the temperature of the grain mass is measured by sensors interior the silos,
the thermometry framework frequently falls flat to distinguish item warming problems.
Therefore, observing the whole CO2 concentration interior the capacity storehouse could
be a great pointer of item breath and air circulation control. At levels above 600 ppm CO2,
there is a chance of the item disintegrating. The combination of these factors indirectly
characterizes the quality of the grain and makes it possible to anticipate conceivable dangers
of the item weakening (Figure 6).
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The warming of put away grain favors the advancement of creepy crawly bothers.
Agreeing to Badgujar et al. [86] the checking of creepy crawly bothers in put away items
could be a common hone for the post-harvest administration of put away cereals and
cereal-based items, which makes a difference to ensure the quality of the item from gather
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to the conclusion customer. Be that as it may, current inspecting and observing strategies
can be time-consuming, labor-intensive, costly and require encounter in recognizing creepy
crawlies. Hence, Badgujar et al. [86] created a computerized image-based distinguishing
proof framework for common creepy crawly species put away on create utilizing profound
learning strategies. Top-down pictures of common grown-up creepy crawly species of
Rhyzopertha dominica, Cryptolestes ferrugineus, Tribolium castaneum, Sitophilus oryzae and
Oryzaephilus surinamensis were obtained and analyzed. State-of-the-art convolutional neural
organize (CNN) models based on profound learning (ResNet-50, MobileNet-v2, DarkNet-
53 and EfficientNet-b0) were prepared with an exchange learning approach to classify the
creepy crawly species. All the models were able to accurately recognize the creepy crawly
species with at slightest 96% precision and with few classification mistakes. One issue with
prepared CNNs was that they didn’t clarify the thinking behind the classification and were
alluded to as “dark boxes”. Subsequently, visualization strategies called Gradient-weighted
Course Actuation Mapping (Grad-CAM) were executed to misuse the dark box network.
Grad-CAM employments warm maps to highlight the most image highlights on which
the organize has centered in order to create creepy crawly species expectations. Grad-
CAM confirms the network’s expectation conjointly makes a difference to make strides the
network’s execution. This think about contributed to the in general objective of creating
a camera-based framework to screen creepy crawlies in put away grain. The framework
created would engage distribution centers and other food offices as an apparatus to rapidly
and precisely recognize creepy crawly species in put away item situations and may well be
actualized as part of a real-time checking framework.

Neethirajan et al. [72] created a CO2 sensor to remotely screen the quality of stored
grain. The sensor was created employing a conductive polyaniline boronic acid polymer
as the electrically conductive region of the sensor. The created sensor measured CO2
levels within the 380–2400 ppm, recognized at diverse temperatures (between 25 and
55 ◦C), which needs water from the air to operate, permitting CO2 to be recognized
between 20 and 70% relative stickiness. Amid grain capacity, variables such as temperature
and relative stickiness, grain dampness substance, CO2 and creepy crawly concentration
must be observed and controlled, continuously looking for the leading conditions for
grain preservation.

Respiration rate over the time was analyzed by Ubhi and Sadaka [73] using CO2
concentration sensors. The authors reported that the farther detecting method employing a
weight sensor was found to be solid and touchy for measuring the respiration rate of grains
within the parameters tried. As of late, Onibonoje et al. [74] considered a remote sensor
organize framework to screen natural components (temperature, relative humidity and
light) that influence grain capacity. The sensors were conveyed in settled areas flawlessly
disseminated in a grain capacity storehouse. Onibonoje et al. [74] detailed that the remote
sensor organize framework created makes a difference to guarantee nourishment security.
As said prior, programmed capacity procedures are broadly utilized in capacity units to
distinguish grain weakening by checking the temperature and relative stickiness of the
discuss, the dampness substance of the grain and the CO2 concentration. Depending on
the measure of the storehouse, one or more cables containing an arrangement of sensors
are hung vertically. On each cable, the sensors are as a rule 1.2 m separated. The number
of cables in a storehouse depends on variables such as the estimate of the storehouse
(primarily its breadth), the climatic conditions of the locale and the species of grain to be
put away. One of the most points of interest of this framework is the real-time observing of
capacity parameters [80,86]. The commonplace dividing between sensors (1.2 m) within
the cable comes about in moo spatial determination.

Asefi et al. [80] evaluated a recent substitute for this monitoring technique [80]. These
authors used electromagnetic imaging to monitor grain kept in silos. Global sensitivity,
the utilization of inexpensive electromagnetic radiation, the capacity to produce images
with high spatial resolution and without disturbing or interacting with grain are just a
few benefits of using electromagnetic images [80]. Similar to this, but on a larger scale,
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Asefi et al. [80] and Gilmore et al. [81] also investigated the monitoring of grain storage
conditions. Gilmore et al. [81] reported that the electromagnetic imaging system demon-
strated the ability to identify a 25% moisture-containing deteriorating region in the grain
mass in addition to a 15% moisture-containing grain mass. Therefore, it is economically
feasible to monitor stored grain using systems based on electromagnetic imaging [81]. The
temperature rise in the grain mass caused by insects near the grain can also be detected
using this sensing technique. Using photos, this technology can keep an eye on even the
smallest changes to the storage environment [82]. An inexpensive, low-power single board
computer called the Jetson Nano, a manual focus camera, and a trained deep learning
model made up the fundamental insect detection system created by Mendoza et al. [87].
Using a real-time visual feed, the model was validated. The authors claim that effective
insect control depends on the timely detection, classification, and monitoring of insect pests
in grain warehouses and food facilities. The insect’s image is taken by the camera and sent
to a Jetson Nano for processing. A deep learning model that has been trained to identify
the types and abundance of insects is used by the Jetson Nano. The detection results are
shown on a monitor under three different lighting conditions: white LED light, yellow LED
light, and no lighting condition. The system was tested with various stored grain insect
pests and was able to detect and classify adult warehouse insects with an acceptable level
of accuracy by comparing accuracy based on light sources and F1 scores. The outcomes
show that the system is an automated insect detection solution that is both efficient and
reasonably priced.

Gilmore et al. [81] demonstrated a breakthrough in the application of electromagnetic
imaging technology. A three-dimensional electromagnetic imaging system for measuring
grain moisture content during storage was developed by these authors. Data from the
three-point sensors built into the compartment was compared with the outcomes of the 3D
image. The electromagnetic imaging system can track the loss of moisture during drying
and storage, according to Gilmore et al. [83]. They also mentioned that the method could
indicate when the grains had reached safe storage temperatures.

External factors such as the presence of insects, in addition to climate factors, such
as temperature and relative humidity, and intrinsic grain characteristics such as moisture
content and respiration rate, can lower grain quality standards [88,89]. In order to prevent,
control, and monitor the presence of insects near grain, it is necessary. Consequently, a
small gadget was developed by Reimer et al. [90] to track insect activity in grain samples.
The sensor’s foundation is an active microwave cavity, as the authors have shown. Since the
presence of insects is a drawback for industries looking for optimal grain storage conditions,
the sensor created by Reimer et al. [90] may be used to track the population density of
insects in stored grain. The presence of insects must be detected using these sensors.

Fumigation, or the process of applying phosphine to the grain, is one of the primary
methods used for this. Upon observing the use of this method, Brabec et al. [78] assessed
wireless phosphine sensors to track the gas used to fumigate grain that was kept in storage.
The automated fumigation data, according to the authors, gave a thorough picture of the
procedure. Those in charge of fumigation can use this information to more effectively assess
the process and guarantee effective insect control. Wireless phosphine sensors, according to
Brabec et al. [78], offer a practical way to keep an eye on fumigation treatments, giving more
information on variations in phosphine concentration during treatments. Internet-based
systems facilitate easy access to data for both active fumigation and treatment outcome
summaries [78]. As a result, sensor-assisted hermetic vacuum storage has become a viable
substitute for traditional methods [79]. Kumar et al. [79] used hermetic storage, eliminating
the oxygen in the storage cell and detecting the grains using temperature, relative humidity,
pressure, and CO2 sensors in place of chemical agents to control insects in stored grains.
According to Kumar et al. [79], the CO2 sensor can show whether the grains are free of
insects. Thus, to indicate the quality of grain stored in an airtight system, a decision support
system based on multiple sensors—such as temperature and relative humidity—in addition
to the CO2 sensor can be helpful. Furthermore, the authors noted that the management
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of phosphine fumigation may benefit from hermetic storage if the aforementioned factors
are detected.

4.7. Advantages and Disadvantages of Grain Monitoring in Storage

Storage is considered the last stage within the post-harvest processes, and its main
objective is to preserve the grain mass for as long as possible, up to a year, for example.
At this stage, losses occur due to storage conditions, but also due to the effects that the
grains suffered in previous stages. Thus, at this stage it is very important to maintain the
grains with favorable intergranular temperature and relative humidity conditions to reduce
metabolic activity and respiration of the grain mass. Therefore, monitoring the ambient
and intergranular air automatically is a great advantage for applying the aeration operation
to the grain mass, mainly to prevent the stored product from breathing. Traditionally,
grains stored in silos are monitored by measuring temperature (thermometry) through
thermocouple sensors installed equidistant (for example, 3 in 3 m) in the grain mass and
more recently by digital sensors.

Although measuring the intergranular temperature is an acceptable method for evalu-
ating the heating and consequently the indirect deterioration of the grains, it is not very
efficient, because the sensor installed in the grain mass makes the punctual measurement of
the temperature, i.e., The changes that occur between the sensors are not easily detectable,
especially since the grains are good thermal insulators, and it may be too late to control
deterioration. Recently, there have been some advances with the addition of monitor-
ing intergranular relative humidity together with temperature, bringing the advantage
of enabling the real-time determination of the hygroscopic equilibrium humidity of the
grains, through mathematical models. With this, it is possible to predict the appropriate air
conditions to carry out aeration or cooling of the grain mass without increasing changes in
the safe storage water content, avoiding both quantitative and qualitative losses. Currently,
research has been evolving towards real-time monitoring and measurement of CO2 in
stored grain mass. Determining the concentration of CO2 inside the silo makes it possible
to measure the real intensity of the total respiration of the grain mass, unlike measuring the
temperature. Scientifically proven, in the atmosphere under normal conditions we have a
concentration of approximately 420 ppm of CO2. Inside the silo, an acceptable atmosphere
of up to 600 ppm of CO2 is considered, without changes to the product’s respiration. Be-
tween 600 and 1000 ppm initial conditions for grain deterioration. Above 1000 ppm alert
conditions and above 5000 ppm the product is already highly deteriorated. In this context,
the great advantage is that monitoring intergranular temperature and relative humidity
will determine the hygroscopic equilibrium humidity of the air with the stored grains to
verify whether aeration is being carried out well, without changing the water content of the
grain mass. However, the CO2 measurement will guide whether or not to activate aeration.

5. Artificial Intelligence Applied on the Grain Production

Table 4 presents studies on the prediction of results based on easy-to-measure pa-
rameters using agricultural sensing and monitoring techniques combined with predictive
algorithms. Tan et al. [91] evaluated the prediction of the protein content in wheat grains
using satellite images and partial least-square algorithm. Tan et al. [91] reported that the
NDVI, SIPI, PSRI, and EVI parameters were sensitive to predicting the protein content
of the grains based on the partial least square algorithm and broadband sensor images
(HJ-CCD). Also, the authors reported that the prediction accuracy was over 90%.A forecast
of corn grain yield and nitrogen (N) loss in the soil was studied by Shahhosseini et al. [92],
through learning algorithms. These authors evaluated the potential of four machine learn-
ing algorithms (LASSO Regression, Ridge Regression, random forests, Extreme Gradient
Boosting, and their ensembles) as meta-models for a cultivation systems simulator to inform
the development of decision support tools projected with the information available at the
time of planting. The simulated data set included more than three million data, including
genotype, environment, and management scenarios. The XGBoost was the most accurate
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model for forecasting corn yields and the random forests predicted the loss of N at the time
of planting with higher precision.

Silva et al. [93] identified which vegetation indices can be used to predict soybean
grain yield using UAV and remote multispectral sensors. The processing of the vegetation
index models was conducted based on the image reflectance factor data performed in
the field. A decision tree algorithm was generated considering soybean grain yield as a
dependent variable. Silva et al. [93] reported that the SAVI and NDVI indices stood out for
their productivity forecast, where the regions with the highest values of these indices can
indicate the highest yield observed in the field, providing an advantage in management at
the property level.

Table 4. Studies on prediction of results based on easy-to-measure parameters using agricultural
sensing and monitoring techniques combined with predictive algorithms.

Applied Technique Application Reference

Satellite images and partial least square algorithm Predicting grain protein content Tan et al. [91]
Machine learning algorithms Maize yield and nitrate loss prediction Shahhosseini et al. [92]
UAV-multispectral and vegetation indices Soybean grain yield prediction Silva et al. [93]
Multi-Source Data and Machine Learning Prediction of Winter Wheat Yield Han et al. [94]
Multi-temporal UAV-based RGB and multispectral images Grain yield prediction of rice Wan et al. [95]
Active mounted sensor Predicting Rice Grain Yield Zhang et al. [96]
Simple regression or a crop model and Landsat images Predicting wheat grain yield Gaso et al. [97]
Sequential assimilation Predicting wheat productivity Guo et al. [98]
Multiple classifications and prediction models Grain loss prediction Li and Mao [85]
Predictive algorithms Evaluating maize and soybean grain dry-down in the field Martinez-Feria et al. [99]
Neural-network-based model predictive Grain drying Li and Chen [100]
GA-SVM-IMPC controller Grain drying Dai et al. [101]
Decision Tree Algorithm Analysis of Grain Storage Loss Liu et al. [102]
Predicting insect populations Grain Storage Nyabako et al. [103]

The prediction of wheat yield based on data from multiple sources and machine
learning was studied by Han et al. [94]. The authors developed a modeling framework
to integrate climate data, remote sensing data, and soil data to predict wheat production
based on the Google Earth Engine (GEE) platform. The findings revelead that the models
can accurately predict grain yield up to 1 to 2 months before harvest dates, with an error
lower than 10%. Support vector machine (SVM), Gaussian process regression (GPR), and
random forests (RF) represent the three best methods for predicting yields among the eight
typical machine learning models evaluated in this study [94].

Wan et al. [95] presented a method of forecasting the yield of rice grains using UAV-
based multi-temporal RGB and multispectral images and model transfer. A UAV platform
with RGB and multispectral cameras was used to collect high spatial resolution images of
the rice crop under different nitrogen treatments over two years. The vegetation indices,
canopy height, and canopy cover were extracted from UAV-based images, which were then
used to develop random forest forecasting models for grain production.

Wan et al. [95] reported that the normalized difference yellowing index (NDYI) was
the most useful index for monitoring changes in the leaf’s chlorophyll content, as well
as the leaf’s green throughout the growth period. The vegetation indices provided a
comparable forecast of grain yield to above-ground biomass measured in the field and
to the chlorophyll content in the leaves. The fusion of the multi-temporal normalized
difference vegetation index (NDVI), NDYI, canopy height, and canopy cover achieved
the best grain yield prediction with a relative mean square error between 2.75 and 3.56%.
Also, the authors reported that the initial growth stage of the plant is ideal for predicting
grain yield.

Zhang et al. [96] also studied the initial stages of plant growth intermediates. These
authors studied the forecast of rice grain yield based on the dynamic changes in vegetation
indices. Spectral reflectance data were collected several times during the initial stages of
growth intermediates using a mounted active sensor. Data were then used to calculate
the ideal vegetation indices (normalized difference red edge index, NDRE; normalized
difference vegetation index, NDVI; ratio vegetation index, RVI; red edge ratio vegetation
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index, RERVI), which were used to develop a dynamic change model and a grain yield
forecasting model at the station. Zhang et al. [96] reported that the NDRE index was more
stable than other indexes (NDVI, RVI, RERVI), with a lower standard deviation. Besides,
this index was used to create a high-precision model.

The grain yield prediction is the main response to the farmer at the field level. However,
prediction models are also used and applied in the post-harvest stages. Li and Mao [85]
evaluated a method for predicting grain loss based on the integration of several models.
Losses can occur at different stages, such as harvest time, degree of pests, mode of harvest,
degree of mold in the harvest, mode of drying, mode of transport, technical level, whether
to plant crops in the next season, threshing mode, level of education, economic income,
the climate in the harvest, quality of the equipment, the abundance of human resources,
awareness of grain savings, way of packaging, the situation of the land, way of cleaning
grains, time of planting, operating attitude, the average distance between harvest and
drying area, the average distance between drying area and storage area, harvest maturity,
and intercropping with other crops. Li and Mao [85] studied the k-nearest neighbor’s
algorithm (kNN), soft max regression, decision tree, and XG Boost algorithms models. The
method of transport in the field had the greatest impact on loss, followed by the degree
of pests and the mode of harvest. Therefore, transportation, pest control, and changing
harvesting methods must be improved to reduce grain loss in the early post-harvest
stages [85].

The correct time to harvest is a crucial factor to avoid the loss of grains still in the
field. Thus, Martinez-Feria et al. [99] studied corn and soybean drying in the field using
predictive algorithms and genotype and environment analysis. The algorithms used were
guided by changes in the moisture content of grain balance (function of relative humidity
and air temperature) and require three input parameters: moisture content at physiological
maturity, a drying coefficient, and a power constant.

Martinez-Feria et al. [99] reported that the evaluation of the variance components and
treatment effects revealed that genotypes, climatic years, and planting dates had little influ-
ence on the post-maturation drying coefficient, but significantly influenced the moisture
content of the grains in the physiological maturity. Thus, the precise implementation of the
algorithms in all environments would require estimating the moisture content of the initial
grain, through modeling approaches or field measurements.

6. Internet of Things (IoT) and Artificial Intelligence Applied on the Grain Post-Harvest

Still regarding grain conservation during the post-harvest stages, the Internet of
Things (IoT) can help improve methods for monitoring and traceability of food products.
Kodali et al. [75] described a system that consists of a microcontroller and several sensors
that can collect information such as temperature, humidity, CO2, and food quality and send
that information to the operator in charge while responding appropriately to ensure that
products are kept in optimal storage conditions. The monitoring device also moderates
the temperature levels and moisture content of the beans using fans and cooling units
controlled by the IoT system. Any mold and/or insect infestation, for example, is notified to
the manager so that arrangements can be made [75]. Sindwani et al. [76] also indicated the
use of a real-time monitoring system based on the IoT system, observing storage parameters
such as air temperature, relative humidity, and CO2 concentration. These authors used a
hardware device that contains two sensors and a battery for the power supply. The sensors
are utilized to detect the parameters of temperature, relative humidity, and CO2. The online
portal was created to analyze and collect data in real-time from the sensors. This portal can
be easily integrated with the digital portal already present in most storage units.

Besides, Parvin et al. [77] studied an intelligent system based on a sensor optimized for
the efficient monitoring of stored grains. These authors used a cyber-physical system (CPSs),
which is like the Internet of Things (IoT) but provides intelligent mechanisms with greater
coordination and control between physical communication and computational elements. A
typical CPS application would be to monitor a particular aspect using many wireless sensor
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networks and communicate the processed information to a central node. According to
Parvin et al. [77], the monitoring function can be performed through continuous detection
of various parameters, such as temperature and humidity of the interstitial air within the
grain storage environment by a wireless sensor network and by the efficient collection,
processing, and display of data.

Once the data is collected, the management and control unit are used to predict
the distribution of the temperature and moisture content of the grains, as well as the
temperature and humidity of the interstitial air in storage. This will help to effectively
reduce the temperature and moisture content of the beans to ensure their quality. When
the temperature and relative humidity in the storage compartment are higher than the
predefined limit values, the coordinating sensor node sends the command to the control
sensor node via the serial port. The control node then performs the necessary actions, such
as turning on the cooling or aeration fan to reduce the temperature and relative humidity
and thus maintain the quality and safety of the stored grains [77].

In a full-scale silo, Duan et al. [104] assessed temperature sensors to measure grain
mass temperature data over a 423-day period in addition to meteorological data. The study
used machine learning algorithms, support vector regression (SVR) and adaptive boosting
(AdaBoost) to evaluate meteorological data and predict the average grain mass temperature.
The SVR model would use different kernel functions, and the AdaBoost model would
select the right base estimator and number of estimators. Pearson’s correlation coefficient
was used to examine the relationship between a sizable body of historical grain mass tem-
perature data and the corresponding weather forecast data. Strong correlations between
a few meteorological factors were discovered. Principal component analysis (PCA) was
used to reduce the dimensionality of the data in order to remove unnecessary information.
The forecast models were then compared both before and after PCA dimensionality reduc-
tion. The outcomes demonstrated that the suggested strategies are capable of achieving
high accuracy, with the Adboost method achieving the best performance following PCA
dimensionality reduction.

An adaptive neighborhood clustering algorithm (ANCA)-based three-dimensional
(3D) temperature visualization technique was assessed by Li et al. [105]. There are four
calculation modules in the ANCA-based visualization method. In order to model the
temperature field, discrete grain temperature data from sensors is first gathered and inter-
polated using backpropagation (BP) neural networks. After that, a fresh ANCA is used to
combine spatiotemporal information and categorize the interpolation data. Next, the bound-
ary points of each cluster are determined using the Quickhull algorithm. Ultimately, the
polyhedra ascertained from the boundary points are constructed into a three-dimensional
model of the grain mass temperature and rendered in various colors. According to the
experimental results, ANCA performs significantly better in terms of compactness (about
95.7% of the cases tested) and separation (about 91.3% of the cases tested) than the DBSCAN
and MeanShift algorithms. Furthermore, the temperature visualization method in the grain
mass using the ANCA-based approach exhibits improved visual effects and reduced ren-
dering times. In order to help grain warehouse managers maintain grain quality during
storage, this research developed an effective 3D visualization technique that enabled them
to get real-time information about the field temperature of bulk grain.

In order to address these issues, this study suggested a multi-output spatiotemporal
model that combines Transformer and Graph Convolution Neural Networks (GCN). GCN
records the topological data of the sensor network in the silo as well as the spatial corre-
lations between the sensors. Transformer describes temporal dependencies and records
both short- and long-term temporal resources. The suggested model was constructed
using a dataset and its performance was assessed and contrasted with that of the four
other models. The suggested model performs better than the others in terms of MAE
and RMSE, according to the findings. Furthermore, a three-dimensional interpolation
based on the forecast results allowed for a continuous temperature field of the entire silo,
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making the temperature conditions accessible at all locations, as well as the discrete areas
detected [106].

Evaluation of the primary factors leading to the control of insects in stored grain was
conducted by Abdelsamea et al. [107]. In order to assess the significance of the parameters
and predict how well the solution would work to heat insect pests to death, several
machine learning models were used. Through 10-fold cross-validation, the effectiveness
of the machine learning models was confirmed. Random Forest model achieved an F1
score of 99.5%, recall of 99.01%, precision of 100%, and accuracy of 99.5%. The optimal
environmental factors and parameters that significantly impact rice weevil disinfestation
were found by a machine learning approach using SHAP values as an explainable post-hoc
model. A flexible model for determining the optimal lethal temperature to eradicate insects
from grains kept in clear plastic bags was identified by machine learning. The model
can predict whether specific set of parameters will work well for using thermal control to
treat insects.

Sitophilus oryzae and Sitophilus zeamais are the two primary insect pests that infest
stored grain globally, according to Yang et al. [108]. Because of their similar appearances,
it can be difficult to identify the two pests quickly and accurately. In visible light, adult
S. zeamais are both brighter and darker than adult S. oryzae. The high efficiency of the
convolutional neural network (CNN) in object recognition makes it suitable for effective
differentiation. A multilayer convolutional structure (MCS) feature extractor was suggested
by the authors to extract insect features from each layer of the CNN architecture. In the
context of wheat, a regional proposal network is used to pinpoint the location of a possible
pest. Combining softmax and soft L1 loss functions, as well as adding deeper layer
variables to the classification and bounding box regression subnetworks, increases both the
robustness of bounding box regression and the accuracy of classification. With an average
detection speed of 0.182 ± 0.005 s per test, the proposed multilayer convolutional structure
network (MCSNet) achieves an average accuracy of 87.89 ± 2.36% in laboratory test. After
field testing, the accuracy of the model was determined to be 90.35 ± 3.12%. S. oryzae had
an average accuracy higher than S. zeamais under all test conditions. In tests performed in
the lab and field, the proposed MCSNet model proved to be a quick and precise technique
for identifying sibling groups from visible light images.

The stages of grain drying and storage also involve predictive outcomes (Table 4). Li
and Chen [97] investigated a predictive control scheme based on a neural network for grain
dryers in an effort to increase the precision of the moisture content of grains discharged
from grain dryers as well as the level of automation and intelligence in the grain drying
process. For a real grain dryer system, a mathematical model based on the theory of grain
drying is constructed. This model allows for the quick simulation of an adequate number
of input and output time series of the grain dryer under various conditions. Instead of
using the mathematical model as a predictive model, a non-linear autoregressive neural
network is trained using the data series as a training set.

Instantaneous input-output feedback is introduced by a nonlinear neural network
autoregressive model with exogenous input (NARX), which is based on the static neural
network, in a study by Li and Chen [100]. The dynamic input-output characteristic of the
grain dryer is suggested to be represented instead of the mathematical model based on
equations. A model predictive control (MPC) controller with a particle swarm optimization
(PSO) algorithm was created to achieve accurate closed-loop control using this NARX
neural network as the predictive model. Li and Chen [100] tested sufficient simulations
under various conditions to the PSO-MPC control scheme’s performance and found that
the error in grain moisture content is less than 1% (w.b).

Using a machine learning technique, Nyabako et al. [103] recently predicted the insect
population and the resulting damage to grain mass. Information from storage units was
gathered, and it was then correlated with the local weather at each site to analyze the
data. Using parameter selection algorithms and decision tree learning algorithms, models
were created from this input data to forecast insect infestation and the potential harm to
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grain that is stored. More than 96% of the variation in germination rates was explained by
the mathematical models proposed by Jian et al. [109] to predict the germination rates of
stored canola. The temperature distribution and moisture content of soybeans stored in
bag silos were predicted by Barreto et al. [110] as a result of seasonal climate variation. The
authors found a temperature differential between the lower, middle, and upper layers and
suggested a limit of 3% for the reference CO2 concentration in grains that were stored. Al-
though Taher et al.’s model [111] sought to forecast soybean loss during storage by tracking
CO2 concentration over the course of the storage period and achieved a 73% correlation.

In order to predict the physical and physiological quality of stored soybean seeds,
André et al. [112] examined the performance of machine learning algorithms based on
variables monitored during seed conditioning (temperature and packaging) and storage
time. Artificial Neural Network (ANN), Random Forest (RF), Multiple Linear Regression,
and the REPTree and M5P decision tree algorithms were used to analyze the data. The
combination of the input variables temperature and storage time for the RF and REPTree
algorithms performed better than linear regression in predicting the quality of seeds,
providing higher accuracy rates. Among the most significant findings, the authors verified
that T + P + ST, T + ST, P + ST, and ST had the highest mean r and the lowest mean MAE
for predicting apparent specific mass. However, Person’s correlations for these inputs
were 0.63 and the MAE varied from 9.59 to 10.47. The inputs T + P + ST and T + ST
performed better for germination prediction (r = 0.65 and r = 0.67, respectively) using the
ANN, REPTree, M5P, and RF models. For this reason, the use of computational intelligence
algorithms is an excellent resource for predicting soybean seed quality using data from
easy-to-measure variables.

In order to classify commercial rice samples based on dimensionless morphometric
parameters and color parameters extracted using CV algorithms from digital images
obtained from a smartphone camera, Aznan et al. [113] studied the application of computer
vision (CV) and machine learning (ML). Nine morphocolorimetric parameters were used
to create an ANN model that classified rice samples into 15 commercial rice varieties. To
further simulate the real-world application models in various scenarios, they were also
implemented and assessed on an alternative imaging system. The findings demonstrated
that, with an overall accuracy of 90.7% (Model 2), the best classification accuracy was
achieved using the Bayesian Regularization (BR) neural network with ten hidden neurons,
which provided 91.6% (MSE ≤ 0.01) and 88.5% (MSE = 0.01) for the training and testing
steps, respectively. Additionally, the implementation classified rice samples with high
accuracy (93.9%).

The adoption by the industry of fast, reliable and precise techniques, such as those
described here, can make it possible to include various morpho-colorimetric properties
of rice in consumer perception studies. Physical classification is the method used by rice
unloading, delivery, storage, and processing units to commercially characterize the quality
of the grains, according to Carneiro et al. [114]. Traditional method is often used for
this stage, which is time-consuming and labor-intensive and produces subjective results
because the evaluation is visual. Grain quality can be characterized using non-destructive
technologies and computer intelligence, which can speed up, improve accuracy, and reduce
reliance on the process. Thus, the purpose of this study was to categorize any flaws and
to describe and forecast the quality of processed brown rice grains. To do this, samples
were taken from the top and bottom of four drying silos, each of which could hold up to
40,000 bags.

The grain samples were subjected to dry aeration until their moisture content (w.b.)
reached 12%, which had previous moisture contents of 16%, 17%, 18%, and 19%. For
this, machine learning algorithm models (multilayer perceptron ANN, M5P, REPTree and
Random Tree decision tree algorithms, and Random Forest) and near-infrared spectroscopy
technology were employed. A strong negative correlation (r = 0.98) was verified between
observed and predicted values of moisture content and whole grain yield. Conversely,
a robust positive correlation (r = 0.97) was noted between the moisture content and the
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physical defects categorized within the different physicochemical components analyzed.
These findings demonstrate how useful near-infrared spectroscopy technology is. With
a mean absolute error of 0.017, a coefficient of determination of 0.92, and a Pearson’s
correlation coefficient of 0.96, the Random Tree model is the recommended due to its
successful prediction of the grain quality results. The findings demonstrate that a great
non-destructive substitute for physical sorting of whole and defective rice grains in terms
of assessing their physical and chemical qualities is the combination of near-infrared
spectroscopy technology and machine learning models. Because of this, it is advised to use
NIR for monitoring. Additionally, the Internet of Things (IoT) and artificial intelligence can
be used to apply predictive algorithms that enable the prediction of deterioration, which
helps to maintain grain quality.

7. Conclusions and Proposal for Monitoring from Production Grain to Post-Harvest

The information gathered in this review contributes positively to the entire grain pro-
duction chain, from the application of remote sensing in the field to the post-harvest stages
(Figure 7). The remote sensing associated with the techniques of monitoring and prediction
of results helps in a precise way the management of agricultural properties, increasing the
chances of hits at the time of taking decisions [107,108]. The present work reviewed grain
storage strategies focusing on different environmental factors and measurable variables,
and how current sensor and computational technologies improve the indirect predictive
monitoring of grain quality. Several scientific studies showed how preventative monitoring
techniques helped reduce losses on the post-harvest stages of grain production.
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New paths for the technological advancement of grain quality monitoring in storage
and transportation are being opened up by the growth of the IoT paradigm and the
increasing application of AI approaches in the widest range of agricultural sectors. These
advances support post-harvest grain deterioration prevention strategies. Using the most
recent advances in remote sensing, monitoring, IoT, and AI technologies, a scheme has been
developed to monitor and predict grain quality from production to post-harvest (Figure 8).
This scheme is based on the systematic review and focuses on various environmental
factors and measurable variables. Based on novel studies [107,108,115–130], Figure 8 was
created in order to calculate the equilibrium moisture content and dry matter loss of the
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grain mass during transportation, drying, and storage as well as to predict the physical
and physicochemical changes in the grains, we suggested that technology and devices be
developed to obtain intergranular temperature, relative humidity, and CO2 concentration
in real time (Figure 8).

Agriculture 2024, 14, x FOR PEER REVIEW  24  of  30 
 

 

been developed to monitor and predict grain quality from production to post-harvest (Fig-

ure 8). This scheme is based on the systematic review and focuses on various environmen-

tal factors and measurable variables. Based on novel studies [107,108,115–130], Figure 8 

was created in order to calculate the equilibrium moisture content and dry matter loss of 

the grain mass during transportation, drying, and storage as well as to predict the physical 

and physicochemical changes in the grains, we suggested that technology and devices be 

developed to obtain intergranular temperature, relative humidity, and CO2 concentration 

in real time (Figure 8). 

 
Figure 8. Illustration of the whole grain production system managed by the producer through the
latest technologies of remote sensing, monitoring, internet of things, and artificial intelligence.

Author Contributions: Writing (Original draft), D.M.R.; Conceptualization, writing (Review and
Editing), and supervision, P.C.C.; Writing (Original draft), N.d.S.T.; Writing (Original draft), M.F.;
Visualization, P.G.; Writing (Review and Editing), T.J.C.A.; Visualization, P.E.T.; Visualization, L.P.R.T.;
Writing (Original draft), F.H.R.B.; Writing (Review and Editing), J.L.T.C. All authors have read and
agreed to the published version of the manuscript.



Agriculture 2024, 14, 161 23 of 28

Funding: This research was funded by CAPES (Coordination for the Improvement of Higher
Education Personnel)—Financial Code 001, CNPq (National Council for Scientific Technological
Development)—Financial Code 001, and FAPERGS-RS (Research Support Foundation of the State of
Rio Grande do Sul)—Financial Code 001 for funding in the research projects, laboratories for carrying
out the experiments.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank UFSM (Federal University of Santa Maria)-
Laboratory of Post-harvest (LAPOS)-Research Group at Post-harvest Innovation: Technology, Quality
and Sustainability for their contributions in the research project.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. FAO. The Future of Food and Agriculture—Trends and Challenges; Food and Agriculture Organization of the United Nations: Rome,

Italy, 2019.
2. Gomiero, T.; Pimentel, D.; Paoletti, M.G. Environmental impact of different agricultural management practices: Conventional vs.

Organic agriculture. Crit. Rev. Plant Sci. 2011, 30, 95–124. [CrossRef]
3. Dong, T.; Liu, J.; Shang, J.; Qian, B.; Ma, B.; Kovacs, J.M.; Walters, D.; Jiao, X.; Geng, X.; Shi, Y. Assessment of red edge vegetation

indices for crop leaf area index estimation. Remote Sens. Environ. 2019, 222, 133–143. [CrossRef]
4. Schwalbert, R.A.; Amado, T.; Corassa, G.; Pott, L.P.; Prasad, P.V.V.; Ciampitti, I.A. Satellite-based soybean yield forecast:

Integrating machine learning and weather data for improving crop yield prediction in southern Brazil. Agric. For. Meteorol. 2020,
284, 107886. [CrossRef]

5. Segarra, J.; Buchaillot, M.L.; Araus, J.L.; Kefauver, S.C. Sensor remoto para agricultura de precisão: Recursos e aplicativos
aprimorados do Sentinel-2. Agron. J. 2020, 10, 641. [CrossRef]

6. Pott, L.P.; Amado, T.J.C.; Schwalbert, R.A.; Sebem, E.; Jugulam, M.; Ciampitti, I.A. Pre-planting weed detection based on ground
field spectral data. Pest. Manag. Sci. 2019, 76, 1173–1182. [CrossRef]

7. Hunt, E.R.; Daughtry, C.S.T. What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture?
Intern. J. Remote Sens. 2018, 39, 5345–5376. [CrossRef]

8. Schwalbert, R.A.; Amado, T.; Reimche, G.B.; Gebert, F. Fine-tuning of wheat (Triticum aestivum L.) variable nitrogen rate by
combining crop sensing and management zones approaches in southern Brazil. Prec. Agric. 2019, 20, 56–77. [CrossRef]

9. Vanino, S.; Nino, P.; De Michele, C.; Falanga Bolognesi, S.; D’Urso, G.; Di Bene, C.; Pennelli, B.; Vuolo, F.; Farina, R.; Pulighe, G.
Capability of Sentinel-2 data for estimating maximum evapotranspiration and irrigation requirements for tomato crop in Central
Italy. Remote Sens. Environ. 2018, 215, 452–470. [CrossRef]

10. Aranguren, M.; Castellón, A.; Aizpurua, A. Crop Sensor Based Non-destructive Estimation of Nitrogen Nutritional Status, Yield,
and Grain Protein Content in Wheat. Agriculture 2020, 10, 148. [CrossRef]

11. Zhou, X.; Kono, Y.; Win, A.; Matsui, T.; Tanaka, S.T.T. Predicting within-field variability in grain yield and protein content of
winter wheat using UAV-based multispectral imagery and machine learning approaches. Plant Prod. Sci. 2020, 24, 137–151.
[CrossRef]

12. Bongiovanni, R.; Lowenberg-DeBoer, J. Precision agriculture and sustainability. Precis. Agric. 2004, 5, 359–387. [CrossRef]
13. Aubert, B.A.; Schroeder, A.; Grimaudo, J. IT as enabler of sustainable farming: An empirical analysis of farmers adoption decision

of precision agriculture technology. Decis. Support. Syst. 2012, 54, 510–520. [CrossRef]
14. Duysak, H.; Yigit, E. Machine learning based quantity measurement method for grain silos. Measurement 2020, 152, 107279.

[CrossRef]
15. Berry, J.K.; Delgado, J.A.; Khosla, R.; Pierce, F.J. Precision conservation for environmental sustainability. J. Soil. Water Conserv.

2013, 58, 332–339. Available online: https://www.jswconline.org/content/58/6/332 (accessed on 1 January 2024).
16. Delgado, J.; Short, N.M.; Roberts, D.P.; Vandenberg, B. Big data analysis for sustainable agriculture. Front. Sustain. Food Syst. 2019,

3, 54. [CrossRef]
17. Bajwa, S.G.; Rupe, J.C.; Mason, J. Soybean disease monitoring with leaf reflectance. Remote Sens. 2017, 9, 127. [CrossRef]
18. Zhang, C.; Marzougui, A.; Sankaran, S. High-resolution satellite imagery applications in crop phenotyping: An overview. Comput.

Electron. Agric. 2020, 175, 105584. [CrossRef]
19. Caturegli, L.; Casucci, M.; Lulli, F.; Grossi, N.; Gaetani, M.; Magni, S.; Bonari, E.; Volterrani, M. GeoEye-1 satellite versus

ground-based multispectral data for estimating nitrogen status of turf grasses. Intern. J. Remote Sens. 2015, 36, 2238–2251.
[CrossRef]

20. Hively, W.D.; Lamb, B.T.; Daughtry, C.S.T.; Shermeyer, J.; McCarty, G.W.; Quemada, M. Mapping crop residue and tillage intensity
using world view—3 satellite shortwave infrared residue indices. Remote Sens. 2018, 10, 1657. [CrossRef]

21. Halperin, J.; LeMay, V.; Coops, N.; Verchot, L.; Marshall, P.; Lochhead, K. Canopy cover estimation in miombo woodlands
of Zambia: Comparison of Landsat 8 OLI versus Rapid Eye imagery using parametric, nonparametric, and semi parametric
methods. Remote Sens. Environ. 2016, 179, 170–182. [CrossRef]

https://doi.org/10.1080/07352689.2011.554355
https://doi.org/10.1016/j.rse.2018.12.032
https://doi.org/10.1016/j.agrformet.2019.107886
https://doi.org/10.3390/agronomy10050641
https://doi.org/10.1002/ps.5630
https://doi.org/10.1080/01431161.2017.1410300
https://doi.org/10.1007/s11119-018-9581-6
https://doi.org/10.1016/j.rse.2018.06.035
https://doi.org/10.3390/agriculture10050148
https://doi.org/10.1080/1343943X.2020.1819165
https://doi.org/10.1023/B:PRAG.0000040806.39604.aa
https://doi.org/10.1016/j.dss.2012.07.002
https://doi.org/10.1016/j.measurement.2019.107279
https://www.jswconline.org/content/58/6/332
https://doi.org/10.3389/fsufs.2019.00054
https://doi.org/10.3390/rs9020127
https://doi.org/10.1016/j.compag.2020.105584
https://doi.org/10.1080/01431161.2015.1035409
https://doi.org/10.3390/rs10101657
https://doi.org/10.1016/j.rse.2016.03.028


Agriculture 2024, 14, 161 24 of 28

22. Mahlein, A.K. Plant disease detection by imaging sensors–parallels and specific demands for precision agriculture and plant
phenotyping. Plant Dis. J. 2016, 100, 241–251. [CrossRef] [PubMed]

23. Coffer, M.M.; Schaeffer, A.B.; Zimmerman, C.R.; Hill, V.; Li, J.; Islam, K.A.; Whitman, J.P. Performance across WorldView-2 and
Rapid Eye for reproducible sea grass mapping. Remote Sens. Environ. 2020, 250, 112036. [CrossRef] [PubMed]

24. Dennison, P.E.; Brunelle, A.R.; Carter, V.A. Assessing canopy mortality during a mountain pine beetle outbreak using GeoEye-1
high spatial resolution satellite data. Remote Sens. Environ. 2010, 114, 2431–2435. [CrossRef]

25. Chlus, A.; Kruger, E.L.; Townsend, P.A. Mapping three-dimensional variation in leaf mass per area with imaging spectroscopy
and lidar in a temperate broadleaf forest. Remote Sens. Environ. 2020, 250, 112043. [CrossRef]

26. Pasqualini, V.; Pergent-Martini, C.; Pergent, G.; Agreil, M.; Skoufas, G.; Sourbes, L.; Tsirika, A. Use of SPOT 5 for mapping
seagrasses: An application to Posidonia oceanica. Remote Sens. Environ. 2005, 94, 39–45. [CrossRef]

27. Hajj, M.E.; Bégué, A.; Guillaume, S.; Martiné, J.F. Integrating SPOT-5 time series, crop growth modeling and expert knowledge for
monitoring agricultural practices—The case of sugarcane harvest on Reunion Island. Remote Sens. Environ. 2019, 10, 2052–2061.
[CrossRef]

28. Johansen, K.; Phinn, S.; Witte, C. Mapping of riparian zone attributes using discrete return LiDAR, quick bird and SPOT-5
imagery: Assessing accuracy and costs. Remote Sens. Environ. 2010, 114, 2679–2691. [CrossRef]

29. Gómez, D.; Salvador, P.; Sanz, J.; Casanova, J.L. Potato yield prediction using Machine Learning Techniques and sentinel 2 data.
Remote Sens. 2019, 11, 1745. [CrossRef]

30. Chauhan, S.; Darvishzadeh, R.; Lu, Y.; Boschetti, M.; Nelson, A. Understanding wheat lodging using multi-temporal Sentinel-1
and Sentinel-2 data. Remote Sens. Environ. 2020, 243, 111804. [CrossRef]

31. Meroni, M.; D’Andrimont, R.; Vrieling, A.; Fasbender, D.; Lemoine, G.; Rembold, F.; Seguini, L.; Verhegghen, A. Comparing
land surface phenology of major European crops as derived from SAR and multispectral data of Sentinel-1 and -2. Remote Sens.
Environ. 2021, 253, 112232. [CrossRef]

32. Mulla, D.J. Twenty-five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst.
Eng. 2013, 114, 358–371. [CrossRef]

33. Castaldi, F.F.; Pelosi, F.; Pascucci, S.; Casa, R. Assessing the potential of images from unmanned aerial vehicles (UAV) to support
herbicide patch spraying in maize. Precision Agric. 2017, 18, 76–94. [CrossRef]

34. Xie, Q.; Lai, K.; Wang, J.; Lopez-Sanchez, J.M.; Shang, J.; Liao, C.; Peng, X. Crop monitoring and classification using polarimetric
RADARSAT-2 time-series data across growing season: A case study in southwestern Ontario, Canada. Remote Sens. 2021, 13, 1394.
[CrossRef]

35. Cheng, E.; Zhang, B.; Peng, D.; Zhong, L.; Yu, L.; Liu, Y.; Yang, S. Wheat yield estimation using remote sensing data based on
machine learning approaches. Front. Plant Sci. 2022, 13, 1090970. [CrossRef] [PubMed]

36. Raun, W.R.; Solie, J.B.; Stone, M.L.; Martin, K.L.; Freeman, K.W.; Mullen, R.W.; Zhang, H.; Schepers, J.S.; Johnson, G.V. Optical
sensor-based algorithm for crop nitrogen fertilization. Commun. Soil Sci. Plant Anal. 2005, 36, 2759–2781. [CrossRef]

37. Genc, H.; Genc, L.; Turhan, H.; Smith, S.; Nation, J. Vegetation indices as indicators of damage by the sunn pest (Hemiptera:
Scutelleridae) to field grown wheat. Afr. J. Biotechnol. 2018, 7, 173–180. Available online: https://www.ajol.info/index.php/ajb/
article/view/58347 (accessed on 1 December 2023).

38. Maimaitijiang, M.; Ghulam, A.; Sandoval, J.S.O.; Maimaitiyiming, M. Drivers of land cover and land use changes in St. Louis
metropolitan area over the past 40 years characterized by remote sensing and census population data. Intern. J. Appl. Earth Obs.
Geoinf. 2015, 35, 161–174. [CrossRef]

39. Schaefer, M.T.; Lamb, D.W. A combination of plant NDVI and LiDAR measurements improve the estimation of p of pasture
biomass in tall fescue (Festucaarundinacea var. Fletcher). Remote Sens. 2016, 8, 109. [CrossRef]

40. Calera, A.; Campos, I.; Osann, A.; D’Urso, G.; Menenti, M. Remote sensing for crop water management: From ET modelling to
services for the end users. Sensors 2017, 17, 1104. [CrossRef]

41. Peng, Y.; Li, Y.; Dai, C.; Fang, S.; Gong, Y.; Wu, X.; Zhu, R.; Liu, K. Remote prediction of yield based on LAI estimation in oilseed
rape under different planting methods and nitrogen fertilizer applications. Agric. For. Meteorol. 2019, 271, 116–125. [CrossRef]

42. Amaral, L.R.; Molin, J.P.; Portz, G.; Finazzi, F.B.; Cortinov, L. Comparison of crop canopy reflectance sensors used to identify
sugarcane biomass and nitrogen status. Precis. Agric. 2015, 16, 15–22. [CrossRef]

43. Jorge, J.; Vallbé, M.; Soler, J.A. Detection of irrigation in homogeneities in an olive grove using the NDRE vegetation index
obtained from UAV images. Eur. J. Remote Sens. 2019, 52, 169–177. [CrossRef]

44. Pourazar, H.; Samadzadegan, F.; Javan, F.D. Aerial multispectral imagery for plant disease detection: Radiometric calibration
necessity assessment. Eur. J. Remote Sens. 2019, 52, 17–31. [CrossRef]

45. Zhou, J.; Khot, L.R.; Boydston, R.A.; Miklas, P.N.; Porter, L. Low altitude remote sensing technologies for crop stress monitoring:
A case study on spatial and temporal monitoring of irrigated pinto bean. Precis. Agric. 2018, 19, 555–569. [CrossRef]

46. Baron, J.; Hill, D.J. Monitoring grassland invasion by spotted knapweed (Centaurea maculosa) with RPAS-acquired multispectral
imagery. Remote Sens. Environ. 2020, 249, 112008. [CrossRef]

47. Shaver, T.M.; Kruger, G.R.; Rudnick, D.R. Crop canopy sensor orientation for late season nitrogen determination in corn. J. Plant
Nutr. 2017, 40, 2217–2223. [CrossRef]

48. Martínez-Casasnovas, J.A.; Uribeetxebarría, A.; Escolà, A.; Arnó, J. Sentinel-2 vegetation indices and apparent electrical conduc-
tivity to predict barley (Hordeum vulgare L.) yield. Precis. Agric. 2019, 4, 15–421. [CrossRef]

https://doi.org/10.1094/PDIS-03-15-0340-FE
https://www.ncbi.nlm.nih.gov/pubmed/30694129
https://doi.org/10.1016/j.rse.2020.112036
https://www.ncbi.nlm.nih.gov/pubmed/34334824
https://doi.org/10.1016/j.rse.2010.05.018
https://doi.org/10.1016/j.rse.2020.112043
https://doi.org/10.1016/j.rse.2004.09.010
https://doi.org/10.1016/j.rse.2009.04.009
https://doi.org/10.1016/j.rse.2010.06.004
https://doi.org/10.3390/rs11151745
https://doi.org/10.1016/j.rse.2020.111804
https://doi.org/10.1016/j.rse.2020.112232
https://doi.org/10.1016/j.biosystemseng.2012.08.009
https://doi.org/10.1007/s11119-016-9468-3
https://doi.org/10.3390/rs13071394
https://doi.org/10.3389/fpls.2022.1090970
https://www.ncbi.nlm.nih.gov/pubmed/36618627
https://doi.org/10.1080/00103620500303988
https://www.ajol.info/index.php/ajb/article/view/58347
https://www.ajol.info/index.php/ajb/article/view/58347
https://doi.org/10.1016/j.jag.2014.08.020
https://doi.org/10.3390/rs8020109
https://doi.org/10.3390/s17051104
https://doi.org/10.1016/j.agrformet.2019.02.032
https://doi.org/10.1007/s11119-014-9377-2
https://doi.org/10.1080/22797254.2019.1572459
https://doi.org/10.1080/22797254.2019.1642143
https://doi.org/10.1007/s11119-017-9539-0
https://doi.org/10.1016/j.rse.2020.112008
https://doi.org/10.1080/01904167.2017.1346681
https://doi.org/10.3920/978-90-8686-888-9


Agriculture 2024, 14, 161 25 of 28

49. Kanke, Y.; Tubana, B.; Dalen, M.; Harrell, D. Evaluation of red and red edge reflectance-based vegetation índices for rice biomass
and grain yield prediction models in paddy fields. Precis. Agric. 2016, 17, 507–530. [CrossRef]

50. Fensholt, A.; Sandholt, I. Derivation of a shortwave infrared water stress index from MODIS near- and shortwave infrared data in
a semiarid environment. Remote Sens. Environ. 2003, 87, 111–121. [CrossRef]

51. Eitel, J.U.; Keefe, R.F.; Long, D.S.; Davis, A.S.; Vierling, L.A. Active ground optical remote sensing for improved monitoring of
seedling stress in nurseries. Sensors 2010, 10, 2843–2850. [CrossRef] [PubMed]

52. Li, F.; Miao, Y.; Feng, G.; Yuan, F.; Yue, S.; Gao, X.; Liu, Y.; Liu, B.; Ustin, S.L.; Chen, X. Improving estimation of summer maize
nitrogen status with red edge-based spectral vegetation indices. Fields Crops Res. 2014, 157, 111–123. [CrossRef]

53. Prashar, A.; Jones, H.G. Assessing Drought Responses Using Thermal Infrared Imaging. In Environmental Responses in Plants;
Duque, P., Ed.; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2016. [CrossRef]

54. Khanal, S.; Fulton, J.; Shearer, S. An overview of current and potential applications of thermal remote sensing in precision
agriculture. Comput. Electron. Agric. 2017, 139, 22–32. [CrossRef]

55. Filippi, P.; Jones, E.J.; Wimalathunge, N.S.; Somarathna, P.D.S.N.; Pozza, L.E.; Ugbaje, S.U.; Jephcott, T.G.; Paterson, S.E.; Whelan,
B.M.; Bishop, T.F.A. An approach to forecast grain crop yield using multi-layered, multi-farm data sets and machine learning.
Precis. Agric. 2019, 20, 1015–1029. [CrossRef]

56. Kogan, F. Vegetation health for insuring drought-related yield losses and food security enhancement. In Remote Sensing for Food
Security; Kogan, F., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 163–173. [CrossRef]

57. Kogan, F.; Guo, W.; Yang, W. Drought and food security prediction from NOAA new generation of operational satellites. Geomat.
Nat. Hazards 2019, 10, 651–666. [CrossRef]

58. Lobell, D.B. The use of satellite data for crop yield gap analysis. Fields Crops Res. 2013, 143, 56–64. [CrossRef]
59. Dubey, S.K.; Gavli, A.S.; Yadav, S.K.; Sehgal, S.; Ray, S.S. Remote Sensing-Based Yield Forecasting for Sugarcane (Saccharum

officinarum L.) crop in India. J. Indian. Soc. Remote Sens. 2018, 46, 1823–1833. [CrossRef]
60. Maresma, Á.; Ariza, M.; Martínez, E.; Lloveras, J.; Martínez-Casasnovas, J.A. Analysis of vegetation índices to determine nitrogen

application and yield prediction in maize (Zea mays L.) from a standard UAV service. Remote Sens. 2016, 8, 973. [CrossRef]
61. Kumar, S.; Saxena, S.; Dubey, S.K.; Chaudhary, K.; Sehgal, S.; Ray, S.S. Analysis of wheat crop forecasts, in India, generated using

remote sensing data, under fasal project. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 223–228. [CrossRef]
62. Rao, P.V.K.; Rao, V.V.; Venkataratnam, L. Remote sensing: A technology for assessment of sugarcane crop acreage and yield. Sugar

Tech. 2022, 4, 97–101. [CrossRef]
63. Rahman, M.M.; Robson, A. A novel approach for sugarcane yield prediction using Landsat time series imagery: A case study on

Bundaberg region. Adv. Remote Sens. 2016, 5, 93–102. [CrossRef]
64. Ali, A.; Imran, M.M. Evaluating the potential of red edge position (REP) of hyperspectral remote sensing data for real time

estimation of LAI & chlorophyll content of kinnow mandarin (Citrus reticulata) fruit orchards. Sci. Hortic. 2020, 267, 109326.
[CrossRef]

65. Zhen, Z.; Chen, S.; Qin, W.; Yan, G.; Gastellu-Etchegorry, J.P.; Cao, L.; Murefu, M.; Li, J.; Han, B. Potentials and limits of vegetation
indices with BRDF signatures for soil-noise resistance and estimation of leaf area index. IEEE Trans. Geosci. Remote Sens. 2020, 58,
5092–5108. [CrossRef]

66. Defourny, P.; Bontemps, S.; Bellemans, N.; Cara, C.; Dedieu, G.; Guzzonato, E.; Hagolle, O.; Inglada, J.; Nicola, L.; Rabaute, T.;
et al. Near real-time agriculture monitoring at national scale at parcel resolution: Performance assessment of the Sen2-Agri
automated system in various cropping systems around the world. Remote Sens. Environ. 2019, 221, 551–568. [CrossRef]

67. Coradi, P.C.; Dubal, Í.T.P.; Bilhalva, N.D.S.; Fontoura, C.N.; Teodoro, P.E. Correlation using multivariate analysis and control
of drying and storage conditions of sunflower grains on the quality of the extracted vegetable oil. J. Food Proc. Preserv. 2020,
44, e14961. [CrossRef]

68. Danao, M.G.C.; Zandonadi, R.S.; Gates, R.S. Development of a grain monitoring probe to measure temperature, relative humidity,
carbon dioxide levels and logistical information during handling and transportation of soybeans. Comput. Electron. Agric. 2015,
119, 74–82. [CrossRef]

69. Wallays, C.; Missotten, B.; Baerdemaeker, J.; Saeys, W. Hyperspectral waveband selection for on-line measurement of grain
cleanness. Biosyst. Eng. 2009, 104, 1–7. [CrossRef]

70. Lewis, M.A.; Trabelsi, S.; Nelson, S.O. Development of an eighth-scale grain drying system with real-time microwave monitoring
of moisture content. Appl. Eng. Agric. 2019, 35, 767–774. [CrossRef]

71. Li, C.; Li, B.; Huang, J.; Li, C. Developing an online measurement device based on resistance sensor for measurement of single
grain moisture content in drying process. Sensors 2020, 20, 4102. [CrossRef]

72. Liu, Z.; Wu, Z.; Zhang, Z.; Wu, W.; Li, H. Research on online moisture detector in grain drying process based on V/F conversion.
Math. Prob. Eng. 2015, 1, 565764. [CrossRef]

73. Neethirajan, S.; Freund, M.S.; Jatas, D.S.; Shafai, C.; Thomson, D.J.; White, N.D.G. Development of carbon dioxide (CO2) sensor
for grain quality monitoring. Biosyst. Eng. 2010, 106, 395–404. [CrossRef]

74. Ubhi, G.S.; Sadaka, S. Temporal valuation of corn respiration rates using pressure sensors. J. Stored Prod. Res. 2015, 61, 39–47.
[CrossRef]

75. Onibonoje, M.O.; Nwulu, N.I.; Bokoro, P.N. A wireless sensor network system for monitoring environmental factors affecting
bulk grains storability. J. Food Proc. Eng. 2019, 42, e13256. [CrossRef]

https://doi.org/10.1007/s11119-016-9433-1
https://doi.org/10.1016/j.rse.2003.07.002
https://doi.org/10.3390/s100402843
https://www.ncbi.nlm.nih.gov/pubmed/22319275
https://doi.org/10.1016/j.fcr.2013.12.018
https://doi.org/10.1007/978-1-4939-3356-3_17
https://doi.org/10.1016/j.compag.2017.05.001
https://doi.org/10.1007/s11119-018-09628-4
https://doi.org/10.1007/978-3-319-96256-6_7
https://doi.org/10.1080/19475705.2018.1541257
https://doi.org/10.1016/j.fcr.2012.08.008
https://doi.org/10.1007/s12524-018-0839-2
https://doi.org/10.3390/rs8120973
https://doi.org/10.5194/isprs-archives-XLII-3-W6-223-2019
https://doi.org/10.1007/BF02942689
https://doi.org/10.4236/ars.2016.52008
https://doi.org/10.1016/j.scienta.2020.109326
https://doi.org/10.1109/TGRS.2020.2972297
https://doi.org/10.1016/j.rse.2018.11.007
https://doi.org/10.1111/jfpp.14961
https://doi.org/10.1016/j.compag.2015.10.008
https://doi.org/10.1016/j.biosystemseng.2009.05.011
https://doi.org/10.13031/aea.13130
https://doi.org/10.3390/s20154102
https://doi.org/10.1155/2015/565764
https://doi.org/10.1016/j.biosystemseng.2010.05.002
https://doi.org/10.1016/j.jspr.2015.02.004
https://doi.org/10.1111/jfpe.13256


Agriculture 2024, 14, 161 26 of 28

76. Kodali, R.K.; John, J.; Boppana, L. IoT Monitoring System for Grain Storage. IEEE Intern. Conf. Electron. Comput. Commun. Technol.
2020, 1, 19988645. [CrossRef]

77. Sindwani, A.; Kumar, A.; Gautam, C. Prediction and Monitoring of stored food grains health using IoT Enable Nodes. In
Proceedings of the 2020 IEEE International Conference on Computing, Power and Communication Technologies (GUCON),
Greater Noida, India, 2–4 October 2020; p. 20130982. [CrossRef]

78. Parvin, S.; Gawanmeh, A.; Venkatraman, S. Optimized Sensor Based Smart System for Efficient Monitoring of Grain Storage. In
Proceedings of the 2018 IEEE International Conference on Communications Workshops (ICC Workshops), Kansas City, MO, USA,
20–24 May 2018; p. 17896512. [CrossRef]

79. Brabec, D.; Campbell, J.; Arthur, F.; Casada, M.; Tilley, D.; Bantas, S. Evaluation of wireless phosphine sensors for monitoring
fumigation gas in wheat stored in farm bins. Insects 2019, 10, 121. [CrossRef] [PubMed]

80. Kumar, S.; Mohapatra, D.; Kotwaliwale, N.; Singh, K.K. Efficacy of sensor assisted vacuum hermetic storage against chemical
fumigated wheat. J. Stored Prod. Res. 2020, 88, 101640. [CrossRef]

81. Asefi, M.; Jeffrey, I.; LoVetri, J.; Gilmore, C.; Card, P.; Paliwal, J. Grain bin monitoring via electromagnetic imaging. Comput.
Electron. Agric. 2015, 119, 133–141. [CrossRef]

82. Gilmore, C.; Asefi, M.; Paliwal, J.; LoVetri, J. Industrial scale electromagnetic grain bin monitoring. Comput. Electron. Agric. 2017,
136, 210–220. [CrossRef]

83. Asefi, M.; Gilmore, C.; Jeffrey, I.; LoVetri, J.; Paliwal, J. Detection and continuous monitoring of localized high-moisture regions in
full-scale grain storage bin using electromagnetic imaging. Biosyst. Eng. 2017, 163, 37–49. [CrossRef]

84. Gilmore, C.; Asefi, M.; Nemez, K.; Paliwal, J.; LoVetri, J. Three dimensional radio-frequency electromagnetic imaging of an in-bin
grain conditioning process. Comput. Electron. Agric. 2019, 167, 105059. [CrossRef]

85. Nunes, C.F.; Coradi, P.C.; Jaques, L.B.A.; Teodoro, L.P.R.; Teodoro, P.E. Sensor-cable-probe and sampler for early detection and
prediction of dry matter loss and real-time corn grain quality in transport and storage. Sci. Rep. 2023, 13, 5686. [CrossRef]

86. Li, B.; Mao, B. A grain loss prediction method based on integration of multiple classification models. Concurr. Comput. Pr. Exp.
2020, 34, e6116. [CrossRef]

87. Badgujar, C.M.; Armstrong, P.R.; Gerken, A.R.; Pordesimo, L.O.; Campbell, J.F. Real-time stored product insect detection and
identification using deep learning: System integration and extensibility to mobile platforms. J. Stored Prod. Res. 2023, 104, 102196.
[CrossRef]

88. Mendoza, Q.A.; Pordesimo, L.; Neilsen, M.; Armstrong, P.; Campbell, J.; Mendoza, P.T. Application of Machine Learning for
Insect Monitoring in Grain Facilities. AI 2023, 4, 348–360. [CrossRef]

89. Coradi, P.C.; Oliveira, M.B.; de Oliveira, L.C.; Souza, G.A.C.; Elias, M.C.; Brackmann, A.; Teodoro, P.E. Technological and
sustainable strategies for reducing losses and maintaining the quality of soybean grains in real production scale storage units. J.
Stored Prod. Res. 2020, 87, 101624. [CrossRef]

90. Lima, R.E.; Coradi, P.C.; Nunes, M.T.; Bellochio, S.D.C.; Timm, N.S.; Nunes, C.F.; Teodoro, P.; Campabadal, C. Mathematical
modeling and multivariate analysis applied earliest soybean harvest associated drying and storage conditions and influences on
physicochemical grain quality. Sci. Rep. 2021, 11, 23287. [CrossRef] [PubMed]

91. Reimer, A.; Wiebe, K.; Rao, J.; Yao, B.; Gui, Y.; Jian, F.; Jayas, D.; Hu, C.M. A compact microwave device for monitoring insect
activity in grain samples. Biosyst. Eng. 2018, 175, 27–35. [CrossRef]

92. Tan, C.; Zhou, X.; Zhang, P.; Wang, Z.; Wang, D.; Guo, W.; Yun, F. Predicting grain protein content of field grown winter wheat
with satellite images and partial least square algorithm. PLoS ONE 2020, 15, e0228500. [CrossRef]

93. Shahhosseini, M.; Martinez-Feria, R.A.; Hu, G.; Archontoulis, S.V. Maize yield and nitrate loss prediction with machine learning
algorithms. Environ. Res. Lett. 2019, 14, 124026. Available online: https://iopscience.iop.org/article/10.1088/1748-9326/ab5268
(accessed on 20 October 2023). [CrossRef]

94. Silva, E.E.; Baio, F.H.R.; Teodoro, L.P.R.; Junior, C.A.S.; Borges, R.S.; Teodoro, P.A. UAV-multispectral and vegetation indices in
soybean grain yield prediction based on in situ observation. Remote Sens. Appl. Soci. Environ. 2020, 18, 100318. [CrossRef]

95. Han, J.; Zhang, Z.; Cao, J.; Luo, Y.; Zhang, L.; Li, Z.; Zhang, J. Prediction of Winter Wheat Yield Based on Multi-Source Data and
Machine Learning in China. Remote Sens. 2020, 12, 236. [CrossRef]

96. Wan, L.; Cen, H.; Zhu, J.; Zhang, J.; Zhu, Y.; Sun, D.; Du, X.; Zhai, L.; Weng, H.; Li, Y.; et al. Grain yield prediction of rice using
multi-temporal UAV-based RGB and multispectral images and model transfer—A case study of small farmlands in the South of
China. Agric. For. Meteorol. 2020, 291, 108096. [CrossRef]

97. Zhang, K.; Ge, X.; Shen, P.; Li, W.; Liu, X.; Cao, Q.; Zhu, Y.; Cao, W.; Tian, Y. Predicting rice grain yield based on dynamic changes
in vegetation indexes during early to mid-growth stages. Remote Sens. 2019, 11, 387. [CrossRef]

98. Gaso, D.V.; Berger, A.G.; Ciganda, V.S. Predicting wheat grain yield and spatial variability at field scale using a simple regression
or a crop model in conjunction with Landsat images. Comput. Electron. Agric. 2019, 159, 75–83. [CrossRef]

99. Guo, C.; Tang, Y.; Lu, J.; Zhu, Y.; Cao, W.; Cheng, T.; Zhang, L.; Tian, Y. Predicting wheat productivity: Integrating time series of
vegetation indices into crop modeling via sequential assimilation. Agric. For. Meteorol. 2019, 272, 69–80. [CrossRef]

100. Martinez-Feria, R.A.; Licht, M.A.; Ordóñez, R.A.; Hatfield, J.L.; Coulter, J.A.; Archontoulis, S.V. Evaluating maize and soybean
grain dry-down in the field with predictive algorithms and genotype-by-environment analysis. Sci. Rep. 2019, 9, 7167. [CrossRef]

101. Li, H.; Chen, S. A neural-network-based model predictive control scheme for grain dryers. Dry. Technol. 2019, 38, 1079–1091.
[CrossRef]

https://doi.org/10.1109/conecct50063.2020.9198549
https://doi.org/10.1109/GUCON48875.2020.9231104
https://doi.org/10.1109/ICCW.2018.8403537
https://doi.org/10.3390/insects10050121
https://www.ncbi.nlm.nih.gov/pubmed/31035623
https://doi.org/10.1016/j.jspr.2020.101640
https://doi.org/10.1016/j.compag.2015.10.016
https://doi.org/10.1016/j.compag.2017.03.005
https://doi.org/10.1016/j.biosystemseng.2017.08.015
https://doi.org/10.1016/j.compag.2019.105059
https://doi.org/10.1038/s41598-023-32684-4
https://doi.org/10.1002/cpe.6116
https://doi.org/10.1016/j.jspr.2023.102196
https://doi.org/10.3390/ai4010017
https://doi.org/10.1016/j.jspr.2020.101624
https://doi.org/10.1038/s41598-021-02724-y
https://www.ncbi.nlm.nih.gov/pubmed/34857813
https://doi.org/10.1016/j.biosystemseng.2018.08.010
https://doi.org/10.1371/journal.pone.0228500
https://iopscience.iop.org/article/10.1088/1748-9326/ab5268
https://doi.org/10.1088/1748-9326/ab5268
https://doi.org/10.1016/j.rsase.2020.100318
https://doi.org/10.3390/rs12020236
https://doi.org/10.1016/j.agrformet.2020.108096
https://doi.org/10.3390/rs11040387
https://doi.org/10.1016/j.compag.2019.02.026
https://doi.org/10.1016/j.agrformet.2019.01.023
https://doi.org/10.1038/s41598-019-43653-1
https://doi.org/10.1080/07373937.2019.1611598


Agriculture 2024, 14, 161 27 of 28

102. Dai, A.; Zhou, X.; Liu, X.; Liu, J.; Zhang, C. Intelligent control of a grain drying system using a GA-SVM-IMPC controller. Dry.
Technol. 2018, 36, 1413–1435. [CrossRef]

103. Liu, X.; Li, B.; Shen, D.; Cao, J.; Mao, B. Analysis of grain storage loss based on decision tree algorithm. Procedia Comput. Sci. 2017,
122, 130–137. [CrossRef]

104. Nyabako, T.; Mvumi, B.M.; Stathers, T.; Mlambo, S.; Mubayiwa, M. Predicting Prostephanus truncatus (Horn) (Coleoptera:
Bostrichidae) populations and associated grain damage in smallholder farmers’ maize stores: A machine learning approach. J.
Stored Prod. Res. 2020, 87, 01592. [CrossRef]

105. Duan, S.; Yang, W.; Wang, X.; Mao, S.; Zhang, Y. Forecasting of grain pile temperature from meteorological factors using machine
learning. IEEE Access 2019, 7, 130721–130733. [CrossRef]

106. Li, J.; Su, Z.; Li, Y.; Zhao, H.; Chen, X. Online temperature-monitoring technology for grain storage: A three-dimensional
visualization method based on an adaptive neighborhood clustering algorithm. J. Sci. Food Agric. 2023, 103, 6553–6565. [CrossRef]
[PubMed]

107. Qu, Z.; Zhang, Y.; Hong, C.; Zhang, C.; Dai, Z.; Zhao, Y.; Gu, Z. Temperature forecasting of grain in storage: A multi-output and
spatiotemporal approach based on deep learning. Comput. Electron. Agric. 2023, 208, 107785. [CrossRef]

108. Abdelsamea, M.M.; Gaber, M.M.; Ali, A.; Kyriakou, M.; Fawki, S. A logarithmically amortising temperature effect for supervised
learning of wheat solar disinfestation of rice weevil Sitophilus oryzae (Coleoptera: Curculionidae) using plastic bags. Sci. Rep.
2023, 13, 2655. [CrossRef] [PubMed]

109. Yang, H.; Zhao, H.; Zhang, D.; Cao, Y.; Teng, S.W.; Pang, S.; Li, Y. Auto-identification of two Sitophilus sibling species on stored
wheat using deep convolutional neural network. Pest. Manag. Sci. 2022, 78, 1925–1937. [CrossRef] [PubMed]

110. Jian, F.; Chelladurai, V.; Jayas, D.S.; Demianyk, N.D.G. White, Interstitial concentrations of carbon dioxide and oxygen in stored
canola, soybean, and wheat seeds under various conditions. J. Stored Prod. Res. 2014, 57, 63–72. [CrossRef]

111. Barreto, A.A.; Abalone, R.; Gastón, A.; Ochandio, D.; Cardoso, L.; Bartosik, R. Validation of a heat, moisture and gas concentration
transfer model for soybean (Glycine max) grains stored in plastic bags (silo bags). Biosyst. Eng. 2017, 158, 23–37. [CrossRef]

112. Taheri, S.; Brodie, G.; Gupta, D. Optimised ANN and SVR models for online prediction of moisture content and temperature of
lentil seeds in a microwave fluidized bed dryer. Comput. Electron. Agric. 2021, 182, 106003. [CrossRef]

113. André, G.S.; Coradi, P.C.; Teodoro, L.P.R.; Teodoro, P.E. Predicting the quality of soybean seeds stored in different environments
and packaging using machine learning. Sci. Rep. 2022, 12, 8793. [CrossRef]

114. Aznan, A.; Gonzalez Viejo, C.; Pang, A.; Fuentes, S. Rapid detection of fraudulent rice using low-cost digital sensing devices and
machine learning. Sensors 2022, 22, 8655. [CrossRef]

115. Carneiro, L.C.; Coradi, P.C.; Rodrigues, D.M.; Lima, R.E.; Teodoro, L.P.R.; Santos de Moraes, R.; dos Santos Bilhalva, N.
Characterizing and Predicting the Quality of Milled Rice Grains Using Machine Learning Models. AgriEngineering 2023, 5,
1196–1215. [CrossRef]

116. Abdipour, M.; Ramazani, S.H.R.; Younessi-Hmazekhanlu, M.; Niazian, M. Modeling oil content of sesame (Sesamum indicum L.)
using Artificial Neural Network and Multiple Linear Regression Approaches. JAOCS 2018, 95, 283–297. [CrossRef]

117. Patrício, D.I.; Rieder, R. Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review.
Comput. Electron. Agric. 2018, 153, 69–81. [CrossRef]

118. Lutz, E.; Coradi, P.C. Applications of new technologies for monitoring and predicting grains quality stored: Sensors, Internet of
Things, and Artificial Intelligence. Measurement 2021, 188, 110609. [CrossRef]

119. Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020,
237, 111402. [CrossRef]

120. Khanal, S.; Kc, K.; Fulton, J.P.; Shearer, S.; Ozkan, E. Remote Sensing in Agriculture-Accomplishments, Limitations, and
Opportunities. Remote Sens. 2020, 12, 3783. [CrossRef]

121. Jaques, L.B.A.; Coradi, P.C.; Lutz, É.; Teodoro, P.E.; Jaeger, D.V.; Teixeira, A.L. Nondestructive technology for real-time monitoring
and prediction of soybean quality using Machine Learning for a bulk transport simulation. IEEE Sens. J. 2022, 23, 3028–3040.
[CrossRef]

122. Lutz, É.; Coradi, P.C.; Jaques, L.B.A.; de Oliveira Carneiro, L.; Teodoro, L.P.R.; Teodoro, P.E.; de Souza, G.A.C. Real-time
equilibrium moisture content monitoring to predict grain quality of corn stored in silo and raffia bags. J. Food Proc. Eng. 2022, 45,
e14076. [CrossRef]

123. Jaques, L.B.A.; Coradi, P.C.; Müller, A.; Rodrigues, H.E.; Teodoro, L.P.R.; Teodoro, P.E.; Steinhaus, J.I. Portable-mechanical-sampler
system for real-time monitoring and predicting soybean quality in the bulk transport. IEEE Trans. Instrum. Meas. 2022, 71,
2517412. [CrossRef]

124. Dubal, Í.T.P.; Coradi, P.C.; dos Santos Bilhalva, N.; Biduski, B.; Lutz, É.; Mallmann, C.A.; Flores, E.M.M. Monitoring of carbon
dioxide and equilibrium moisture content for early detection of physicochemical and morphological changes in soybeans stored
in vertical silos. Food Chem. 2024, 436, 137721. [CrossRef]

125. Jaques, L.B.A.; Coradi, P.C.; Rodrigues, H.E.; Dubal, Í.T.P.; Padia, C.L.; Lima, R.E.; Souza, G.A.C. Post-harvesting of soybean
seeds–engineering, processes technologies, and seed quality: A review. Intern. Agroph. 2022, 36, 59–81. [CrossRef]

126. Santana, D.C.; Teodoro, L.P.R.; Baio, F.H.R.; dos Santos, R.G.; Coradi, P.C.; Biduski, B.; Shiratsuchi, L.S. Classification of soybean
genotypes for industrial traits using UAV multispectral imagery and machine learning. Rem. Sens. Appl. Soci. Environ. 2023, 29,
100919. [CrossRef]

https://doi.org/10.1080/07373937.2017.1407938
https://doi.org/10.1016/j.procs.2017.11.351
https://doi.org/10.1016/j.jspr.2020.101592
https://doi.org/10.1109/ACCESS.2019.2940266
https://doi.org/10.1002/jsfa.12735
https://www.ncbi.nlm.nih.gov/pubmed/37229574
https://doi.org/10.1016/j.compag.2023.107785
https://doi.org/10.1038/s41598-023-29594-w
https://www.ncbi.nlm.nih.gov/pubmed/36788329
https://doi.org/10.1002/ps.6810
https://www.ncbi.nlm.nih.gov/pubmed/35080793
https://doi.org/10.1016/j.jspr.2013.12.002
https://doi.org/10.1016/j.biosystemseng.2017.03.009
https://doi.org/10.1016/j.compag.2021.106003
https://doi.org/10.1038/s41598-022-12863-5
https://doi.org/10.3390/s22228655
https://doi.org/10.3390/agriengineering5030076
https://doi.org/10.1002/aocs.12027
https://doi.org/10.1016/j.compag.2018.08.001
https://doi.org/10.1016/j.measurement.2021.110609
https://doi.org/10.1016/j.rse.2019.111402
https://doi.org/10.3390/rs12223783
https://doi.org/10.1109/JSEN.2022.3226168
https://doi.org/10.1111/jfpe.14076
https://doi.org/10.1109/TIM.2022.3204078
https://doi.org/10.1016/j.foodchem.2023.137721
https://doi.org/10.31545/intagr/147422
https://doi.org/10.1016/j.rsase.2023.100919


Agriculture 2024, 14, 161 28 of 28

127. Bilhalva, N.; Coradi, P.C.; Biduski, B.; Mallmann, C.A.; Anschau, K.F.; Müller, E.I. Early detection of quality alterations in corn
grains stored in vertical prototype silos using real-time monitoring of carbon dioxide and equilibrium moisture content. Food
Bioprod. Proc. 2023, 140, 242–258. [CrossRef]

128. Coradi, P.C.; Maldaner, V.; Lutz, É.; da Silva Daí, P.V.; Teodoro, P.E. Influences of drying temperature and storage conditions for
preserving the quality of maize postharvest on laboratory and field scales. Sci. Rep. 2020, 10, 22006. [CrossRef]

129. Coradi, P.C.; Lutz, É.; dos Santos Bilhalva, N.; Jaques, L.B.A.; Leal, M.M.; Teodoro, L.P.R. Prototype wireless sensor network and
Internet of Things platform for real-time monitoring of intergranular equilibrium moisture content and predict the quality corn
stored in silos bags. Exp. Syst. Appl. 2022, 208, 118242. [CrossRef]

130. Coradi, P.C.; Lemes, Â.F.C.; Müller, A.; Jaques, L.B.A.; Dubal, Í.T.P.; Bilhalva, N.D.S.; Teodoro, P.E.; Steinhaus, J.I.; Maier, D.E.
Silo–dryer–aerator in fixed and thick layer conceptualized for high quality of grains applied in different social scales post-harvest:
Modeling and validation. Dry. Technol. 2021, 40, 1369–1394. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.fbp.2023.06.008
https://doi.org/10.1038/s41598-020-78914-x
https://doi.org/10.1016/j.eswa.2022.118242
https://doi.org/10.1080/07373937.2020.1870040

	Introduction 
	Review Methodology 
	Search Strategy 
	Eligibility Criteria and Selection Process 
	Studies Evaluation Synthesis and Results 

	Remote Sensing Applied on the Agriculture 
	Remote Sensing Techniques, Applications, and Sensors 
	Vegetation Sensors in Agriculture and Applications 
	Advantages and Disadvantages of the Remote Sensing 

	Using Remote Sensing on the Post-Harvest Grain Monitoring 
	Post-Harvest Grain Monitoring 
	Grain Monitoring in Transport 
	Advantages and Disadvantages of the Grain Monitoring in the Transport 
	Grain Monitoring during Drying 
	Advantages and Disadvantages of Monitoring Grains during Drying 
	Grain Monitoring in the Storage 
	Advantages and Disadvantages of Grain Monitoring in Storage 

	Artificial Intelligence Applied on the Grain Production 
	Internet of Things (IoT) and Artificial Intelligence Applied on the Grain Post-Harvest 
	Conclusions and Proposal for Monitoring from Production Grain to Post-Harvest 
	References

