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Abstract: This review explores the use of machine learning (ML) techniques for detecting pests and
diseases in crops, which is a significant challenge in agriculture, leading to substantial yield losses
worldwide. This study focuses on the integration of ML models, particularly Convolutional Neural
Networks (CNNs), which have shown promise in accurately identifying and classifying plant diseases
from images. By analyzing studies published from 2019 to 2024, this work summarizes the common
methodologies involving stages of data acquisition, preprocessing, segmentation, feature extraction,
and prediction to develop robust ML models. The findings indicate that the incorporation of advanced
image processing and ML algorithms significantly enhances disease detection capabilities, leading to
the early and precise diagnosis of crop ailments. This can not only improve crop yield and quality
but also reduce the dependency on chemical pesticides, contributing to more sustainable agricultural
practices. Future research should focus on enhancing the robustness of these models to varying
environmental conditions and expanding the datasets to include a wider variety of crops and diseases.
CNN-based models, particularly specialized architectures like ResNet, are the most widely used
in the studies reviewed, making up 42.36% of all models, with ResNet alone contributing 7.65%.
This highlights ResNet’s appeal for tasks that demand deep architectures and sophisticated feature
extraction. Additionally, SVM models account for 9.41% of the models examined. The prominence of
both ResNet and MobileNet reflects a trend toward architectures with residual connections for deeper
networks, alongside efficiency-focused designs like MobileNet, which are well-suited for mobile and
edge applications.

Keywords: plant disease; plague; image processing; data augmentation; machine learning; deep
learning

1. Introduction

The agricultural industry is consistently under pressure to meet the demands of a
growing population. However, despite recent technological advancements that have led to
increased crop productivity, the approach has degraded the environment, and significant
losses due to pests, pathogens, and weeds have been recorded [1]. As much as 40% of global
agricultural production is lost each year due to pests that affect various crops, according
to the Food and Agriculture Organization of the United Nations (FAO) [2]. One of the
significant challenges facing the agricultural sector is the early detection of plant pests and
diseases. Pests and diseases can cause crop destruction, as many countries depend heavily
on agricultural productivity [3]. The correct identification and classification of plant pests
and diseases is one of the most challenging tasks in the agricultural industry. Insect damage
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significantly affects agricultural yield, and the classification of insects is challenging due to
their complex structure and complex species connections [4,5].

Historically, the detection of diseases in plants has been based on farmers’ experiences
or guidelines. Each plant disease progresses through multiple developmental phases, and in
the event a disease or pest affects a crop, farmers must remain informed of the situation [6].
Therefore, the identification and detection of diseases and pests in crops or plants have
become imperative given their natural susceptibility to various fungal or bacterial diseases
in the field. Failing to predict the problem early can result in significant disasters, impacting
both the quantity and quality of production. Moreover, disease identification techniques
are time consuming and necessitate the careful selection of insecticides [7]. Despite the
widespread use of pesticides, several diseases and pests continue to cause yield losses [8],
and the use of pesticides often leads to a reduction in the quality of the product.

Therefore, ongoing efforts are being made to find solutions to improve and address
agricultural issues, and machine learning is emerging as a promising option for identifying
pests and diseases in crops. However, there are various challenges in image processing,
which is a critical step for the effective functioning of such intelligent models. Issues such as
the presence of shadows, noise, or changes in lighting conditions in captured crop images
can lead to misclassification in disease prediction [9] and other problems. Conventional
methods may not be practical due to the diverse diseases that occur in the same locations,
and the same disease might have different manifestations due to the various types and
local conditions. Consequently, image-based disease detection has become a significant
area of research in the fields of informatics and agriculture. In recent years, the research
community has shown substantial interest in the identification and categorization of plant
diseases using digital images [10]. The development of computer-aided diagnostic systems
for agricultural applications utilizing RGB images is not only a field of study but also a
crucial and rapidly expanding one. The impact of feature sets on the classification of plants
using machine learning methods and rules has been extensively studied for agricultural
purposes. The accuracy assessment of machine-learning-based classification techniques
demonstrates an effective performance in identifying plant diseases.

In recent years, there have been significant advancements in the field of plant dis-
ease detection through the application of machine learning (ML) and deep learning (DL)
techniques. Studies by [11,12] have emphasized the existing research gaps and challenges
within DL techniques. Specifically, the work of [13] focuses on Convolutional Neural
Networks (CNNs) to detect leaf diseases, addressing issues such as data representation
and overfitting. Moreover, ref. [14] explores DL strategies and CNN models, while ref. [15]
investigates segmentation and ML classifiers achieving high accuracy despite complex back-
grounds. In addition, ref. [16] reviews AI techniques for pest identification, underscoring
the importance of accuracy in evaluating performance.

Therefore, this systematic review aims to answer the following research question:
what are the recent advances and outcomes in the use of machine learning techniques for
detecting diseases and pests in plants or leaves over the last two years? To address this,
current research on the application of machine learning in plant pest and disease detection
through image analysis was explored and summarized. By examining studies published
from 2019 to 2024, this review seeks to provide a comprehensive and updated overview of
methodologies, advancements, and best practices in the field, offering valuable insights into
how machine learning can tackle the challenges of pest and disease detection in agriculture.

The main contributions of this review work include the following:

• Identifying the trend of the main image processing techniques used for the classifica-
tion of diseases and pest-related plants.

• Exploring different image preprocessing strategies, such as data augmentation, to
build datasets.

• Presenting the main features considered in the image segmentation to model classifi-
cation models for diseases and pest-related plants.
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The rest of this document is structured as follows. Section 2 outlines the methodology
used for the systematic analysis, Section 3 presents the obtained results, Section 4 discusses
the results, and Section 5 provides the conclusions.

This review’s unique contribution lies in its integration of preprocessing, augmen-
tation, and hybrid modeling approaches into a cohesive framework. A trend toward
lightweight architectures, such as MobileNet, for resource-constrained environments
and hybrid models, such as CNN-SVM, for datasets with limited variability was ob-
served, reflecting current advances and suggesting practical applications in real-world
agricultural settings.

2. Materials and Methods

This section describes our systematic approach to evaluating the effectiveness of
machine learning techniques in detecting crop pests and diseases. We explain our method-
ology, including the selection criteria for relevant research articles, the search strategy and
databases used, and the analytical methods employed to synthesize data from selected
studies. This guide offers transparency and the reproducibility of our research process for
other researchers to replicate.

2.1. Research Question

What are the recent advances and outcomes in the last two years regarding the use of
machine learning techniques to detect diseases and pests in plants or leaves?

2.2. Methodology

The period from 2019 to 2024 was selected for this study to capture the latest advances
in the field of plant disease detection and pest management using deep learning and
image processing techniques. This time frame covers the latest technological innovations
and methodologies that have been developed, allowing us to incorporate cutting-edge
approaches and ensure that our research is in line with the current state of the art.

To complete this systematic review, we conducted a search for relevant articles follow-
ing the exclusion and inclusion criteria listed below.

Inclusion criteria:

• Articles that employ machine learning techniques for pest detection in plants or leaves.
• Articles that employ machine learning techniques for the detection of disease in plants

or leaves.
• Articles written in English.
• Articles published from 2019 to 2024.

Exclusion criteria:

• Articles not available in English as this language is required to ensure understanding
of the content and proper analysis.

• Articles published before 2019 to focus on recent advancements and relevance.
• Articles that use non-image data as this review specifically targets image-based meth-

ods in plant disease and pest detection.
• Articles that use irrelevant data types that fall outside the scope of close-up, image-

based detection such as satellite images.
• Documents other than peer-reviewed journal articles, including theses, conference

proceedings, and reports to maintain a consistent level of academic rigor.
• Articles behind a high-cost paywall to ensure that all selected studies were readily

accessible for comprehensive review.

We applied these inclusion and exclusion criteria to ensure the quality and relevance
of the studies in the Scopus database, which was selected as the sole source for articles in
this review due to its comprehensive coverage and high indexing standards, particularly in
the fields of science and technology. Coupled with this, its robust indexing ensures that
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only reputable and rigorously reviewed studies are included, which helps maintain the
reliability and accuracy of our findings [17].

The following search formula was created:

TITLE-ABS-KEY (“machine learning” AND (“plants” OR “leaves” ) AND “im-
ages” AND “disease” AND “detection”) AND PUBYEAR > 2019 AND PUBYEAR
< 2024 AND NOT (“classify”) AND ( LIMIT-TO (DOCTYPE, “ar”))

Initial Search

In August 2024, we conducted the literature search using the Scopus database and
found a total of 447 articles. After removing duplicate entries, we were left with 438 articles.
We then screened each article based on their titles and abstracts, resulting in 121 articles
not meeting the required standards. This left us with 317 articles for further analysis. We
proceeded with a full-text review to ensure that they met the predefined inclusion and
exclusion criteria. Two independent reviewers evaluated each article to minimize bias,
leading to the exclusion of 69 articles that focused on crops analyzed using sensors not
intended for image analysis in this review. Furthermore, 24 articles were not available on
Scopus or were only accessible through paid services with prohibitively high costs, limiting
their accessibility. Furthermore, 46 articles were excluded because they analyzed irrelevant
image types, such as satellite images. As a result, the systematic review included a total of
178 articles. Data extraction focused on collecting key information, such as the machine
learning models used, performance metrics, and dataset sources. We used a predefined
data extraction form to ensure consistency across the studies. Figure 1 provides a detailed
description of these steps.
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Figure 1. PRISMA flow diagram illustrating the process of identifying, screening, and selecting
articles from various databases, culminating in the inclusion of articles for the review.

3. Results

In this section, we present the findings of our systematic review of the literature
on machine learning applications in crop pest and disease detection. We gathered data
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from selected studies and synthesized the information, focusing on the types of machine
learning models used, their performance metrics, and the specific crops and diseases
they target. We also discuss the sources of the datasets and the various machine learning
algorithms, including deep learning models such as CNNs and their effectiveness in
diagnosing plant health issues. In addition, the results highlight the common challenges
faced by current technologies and the innovative solutions proposed by researchers to
overcome these obstacles.

3.1. Observe Methodology in Analyzed Papers

While reviewing the papers for this systematic review, it became apparent that the
methodology commonly employed includes traditional preprocessing steps, such as seg-
mentation and feature extraction, which are essential for preparing data before they are
fed into machine learning models. Traditionally, these steps involve manually segmenting
images to isolate regions of interest and extracting specific features that are most relevant
to the task at hand. This process ensures that the data are in the optimal state for model
training, which leads to improved accuracy and reliability.

However, with the advent of deep learning models, particularly CNNs, the approach
to segmentation and feature extraction has evolved. CNNs inherently perform these
tasks as part of their architecture, where the convolutional layers automatically learn to
identify and extract features from raw input data. This automation reduces the need
for manual intervention and allows for the discovery of complex patterns that might
not be easily captured using traditional methods. With the integration of traditional
preprocessing techniques into CNNs, the models can learn effectively even with fewer
data. This allows for the efficient utilization of the available data and enhances the learning
capabilities of the CNNs. The constructed methodology consisted of five main stages:
data acquisition, preprocessing, segmentation, feature extraction, and prediction. These
stages were consistently applied across various domains and applications, highlighting
their importance in the research landscape.

Figure 2 captures the essential steps of the core methodology used throughout the
reviewed literature, providing an overview of the research process and highlighting the
systematic approach adopted by researchers.

 

 

 

 

  Data 
acquisition Preprocessing      Segmentation 

Feature 
extraction 

Prediction/results 

Figure 2. Flow diagram depicting the stages of data processing in the reviewed literature, including
data acquisition, preprocessing, segmentation, feature extraction, and prediction/results. Each step is
crucial for thorough data analysis and interpretation in various research domains.

Data acquisition: In this stage, researchers collect data from various sources that are
relevant to their respective fields of study, including repositories, experimental setups,
and real-world scenarios. This stage requires meticulous planning to ensure the qual-
ity, relevance, and integrity of the collected data, which serves as the foundation for
subsequent analysis.

Preprocessing: After collecting data, the preprocessing step refines and prepares the
raw data for further analysis. This phase involves techniques such as noise reduction, data
cleaning, normalization, and outlier removal to handle inconsistencies and improve the
quality of the dataset, allowing for more robust and reliable analysis in subsequent stages.

Segmentation: Researchers applied segmentation algorithms to partition the prepro-
cessed data into meaningful segments or regions of interest. This process facilitates the
isolation of relevant features within the data for subsequent analysis and interpretation.
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Feature extraction: During feature extraction, the researchers aimed to identify and
extract discriminative features from the segmented data. This stage involved the appli-
cation of various algorithms and techniques to characterize the salient aspects of the
dataset, such as the texture, shape, color, or spectral properties, for subsequent analysis
and decision making.

Prediction/results: The final stage of prediction included the use of machine learning
algorithms, statistical models, or predictive analytics techniques to infer insights or make
informed predictions based on the extracted features. The researchers used the extracted
features as input variables to train and evaluate predictive models, enabling tasks such as
classification, regression, anomaly detection, or forecasting.

3.2. Distribution of Dataset Sources

The datasets utilized in the analyzed works were sourced from a variety of repositories
and platforms summarized below and illustrated in Figure 3. Some of the reviewed papers
used combinations of multiple datasets. Analyzing the frequency with which they were
used provides insight into the strengths and weaknesses of each model.

Plant Village [18]: Fifty-five papers used the Plant Village repository. This repository
serves as a comprehensive resource for plant disease images, providing researchers with
access to a diverse collection of annotated data.

Self-created: A substantial portion of the authors, comprising thirty entries, used
self-created datasets. The researchers collected and curated their datasets through ex-
perimental setups, field observations, or data collection efforts tailored to their specific
research objectives.

Other: Twenty-two of them were from other miscellaneous datasets not explicitly
mentioned above. These sources include proprietary datasets, datasets obtained from
collaborators or institutions, or datasets sourced from other specialized repositories.

Kaggle: six of them used a dataset from the Kaggle repository, an online platform well
known to provide a wide variety of datasets [19].

UCI (University of California, Irvine) Machine Learning repository [20]: Five used the
UCI Machine Learning repository, a famous repository for machine learning datasets.
These datasets are often utilized for benchmarking and experimentation in machine
learning research.

Google Repository: two of them used a dataset from the Google repository, indicating
the utilization of publicly available datasets or images accessible through Google’s platforms.

Mendeley: six of them used a dataset from the Mendeley repository, which provides a
platform for collaboration and ensures data accessibility [21].

The distribution of data sources provides information on the diversity and breadth
of the data used in this analysis. The following graph visualizes the distribution of
dataset sources.

3.3. Analyzed Crops

The research papers cover an extensive range of plant species, including common
agricultural staples such as apples, corn, grapes, potatoes, and tomatoes. In addition, it
explores more specialized crops like cassava and groundnut. The breadth of plant species
under investigation is extensive. In addition, the articles explore various fruits, such as
peaches and strawberries, showcasing the diversity of botanical specimens examined in
the literature. The analysis also extends to trees such as pine and American elm, as well as
ornamental plants such as sunflowers and barbary wolfberries, contributing to the diverse
array of botanical topics explored in the research papers. The distribution of the different
plants found in this review is illustrated in Figure 4.
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Figure 3. Distribution of dataset sources utilized in this study, illustrating the number of entries from
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Figure 4. Frequency of plant species mentioned in the analyzed papers for leaf analysis. The chart lists
the species in descending order of citation frequency, indicating the research focus on various plants.

3.4. Crop Diseases

The articles analyzed covered a diverse range of plant diseases and pests affecting a
wide range of crops and plant species. Diseases such as Powdery mildew, Downy mildew,
Black root, early blight, Common rust, and Leaf Spot disease were frequently discussed,
indicating their importance in agricultural research and plant pathology. In addition,
various leaf diseases were common topics of investigation. Figure 5 shows the frequency of
the diseases found in our analysis, and Figure 6 illustrates the relationships between plant
species and their associated diseases. In this diagram, the central nodes represent the plant
diseases, while each node at the end of a connection represents a specific plant species. The
size of the disease nodes correlates with the number of plant species affected, indicating
the prevalence and spread of these diseases among different plant species.
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Figure 5. Frequency of occurrence of plant diseases and pests in analyzed articles. The chart shows
the prevalence of various plant diseases and pests as mentioned in the analyzed literature. Notably,
diseases such as Yellow Mosaic, Leaf Curl, Bacterial Leaf Spot, and Powdery mildew were commonly
cited, highlighting their value in agricultural research and plant pathology.
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Figure 6. Network diagram illustrating the relationships between plant species and their associated
diseases. In this diagram, each node at the end of a connection represents a specific plant species,
while the nodes at the center represent various plant diseases. The lines connecting the plant species
to the central nodes depict the susceptibility of each plant to the associated diseases. The size of the
disease nodes correlates with the number of plant species they affect, indicating the prevalence and
spread of these diseases across different plant species.

3.5. Deep Learning Models

This section categorizes and describes different architectures and their adaptations
for the detection of pests and diseases in crops. It highlights CNN architectures such as
Inception, MobileNet, and ResNet, among others. We explore how these models have been
applied, the specific advances they have made to the field, and their performance metrics.

3.5.1. CNN and Variants (InceptionV3, MobileNet, ResNet, and Others)

Table 1 shows a list of works that highlight the model used along with its reported metrics.
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Table 1. Overview of CNN architectures and their performance metrics in disease detection for
various plant species. The table includes details on precision, recall, F1 score, and accuracy for
each model.

Author Model Name Precision Recall F1 Accuracy

[22] ResNet-9 99.67 99.33 99.33 99.25
[23] 3D CNN 95.18 94.86 94.97 99.04
[24] VGG16 m 94.32 89.26 91.72 91.93
[25] R-CNN with VGG-16 RF 99.94 99.64 99.91 97.30
[26] GoogLeNet-RESNET 94.00 95.00 95.00 99.08
[27] NN 93.00 78.00 77.00 98.00
[28] CNN 92.30 90.10 91.20 93.50
[29] CNN and VGGNet-16 87.60 70.00 - 100.00
[30] ResNet-50 98.00 98.00 98.00 98.25
[31] CNN 89.00 98.00 93.00 92.50
[32] CNN 88.00 82.00 85.00 87.90
[33] YOLOv5 98.30 97.80 96.00 -
[34] EfficientNet B0 88.00 87.00 93.00 98.85
[35] DeepLabV3+ResNet50 75.70 72.20 74.20 99.70
[36] AdaBoostSVM 95.00 94.90 94.00 98.80
[37] WD2CNN 98.83 97.82 98.41 98.72
[38] EffiNet-TS 99.00 99.00 98.89 99.00
[39] DCDM + CNN 93.38 97.98 98.17 98.78
[40] RDTNet 99.55 99.53 99.54 99.53
[41] RSODL-PDDC 97.58 97.57 97.57 98.78
[42] DnCNN 85.00 83.00 96.83 97.91
[43] MobileNet 84.00 79.00 75.80 -
[44] ResNet 50s 99.50 - 99.70 99.75
[45] MResNet - 99.47 - 99.62
[46] EfficientNet - 97.00 - 89.00
[47] Modified CNN 99.81 - 71.53 -
[48] Inception-ResNet-V2 98.96 98.38 - 99.10
[49] EfficientNetv2-S - - 92.88 -
[50] GPR-CNN 99.10 98.29 99.13 99.17
[51] CNN - - - -
[52] DLPDS 100 100 99.70 99.95
[53] CNN 96.81 96.86 96.78 96.86
[54] CNN 99.27 99.44 99.28 97.59
[55] ResNeXt 99.40 99.20 99.20 98.92
[56] LC3Net 89.12 89.00 89.00 92.29
[57] RFBDB-GAN 73.20 69.60 71.40 -
[58] AISDLT 99.62 99.53 99.57 98.00
[59] CNN with ResNet50 95.83 91.67 88.93 94.67
[60] CNN 96.60 96.50 - 96.00
[61] CRUNet 92.27 92.37 92.32 92.48
[62] StrawberryTalk 95.00 100 - 92.37
[63] IRNN-TL 93.71 - - 96.70
[64] TeenyNet 97.44 97.47 97.42 98.94
[65] DCNN - - 97.00 98.92
[66] DCNN 95.49 95.47 95.41 95.04
[67] DCNN 87.20 68.00 76.40 -
[68] MobileNetv2-YOLOv3 91.32 - 93.24 -
[69] Yolov3, VIs and NDTIs - 91.81 - 94.77
[70] CAE and CNN 98.00 98.72 98.36 98.38
[71] dCNN 99.82 99.82 99.82 99.81

Models such as ResNet-9 and 3D CNN stand out with high metrics results. ResNet-9’s
residual connections allow for deeper networks and better feature reuse, ensuring a robust
model. In contrast, 3D CNN offers the advantage of processing 3D structures, which could
benefit projects that require spatial analysis. The R-CNN with VGG-16 RF, though its
complexity, could pose challenges in terms of computational power. In general, ResNet-9
and GoogLeNet-ResNet offer a balance between complexity and precision, making them
versatile for most plant disease detection tasks.
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Table 2 continues the list of works that describe the model used along with the
accuracy reported. The table provides details on various approaches, ranging from CNNs
to combined mechanisms and classifiers.

Table 2. Summary of models utilized for crop disease detection and classification, featuring model
names along with their reported accuracy.

Author Model Name Accuracy

[72–84] CNN
99.53, 99.24, 99.00, 99.00, 98.75,
98.01, 96.46, 94.00, 93.00, 91.25,
89.00, 70.00, 99.00

[85] CNN with HCF 99.93
[86] CNN and SVM 97.20
[87] CNN with RF 98.63
[88] CNN with NCA 99.50
[89] CNN with S-CNN 98.60
[90] E-CNN 98.17
[91] HCO-CNN 98.06
[92] MSA-CNN 98.44
[93] PDDCNN 99.75
[94] ResNet50 94.29
[95] Yolov4 95.00
[96] CCA-YOLO 90.15
[97] DLMC-Net 99.50
[98] K-means and ANN 97.90
[99] Yellow-Rust-Xception 97.90
[100] ML with ELM, SVM, and KNN 96.67
[101] SE-VRNet 99.00
[102] CNN 97.04
[103] CenterNet 73.30
[104] YOLOv5 93.00
[105] RiceNet 99.03
[106] SegNet 99.24
[107] Few-shot-learning-based 93.19
[108] WeedDet 94.10
[109] BoVW 70.08
[110] Conv-3 DCNN 98.00
[111] LTriTP 97.80
[112] M-Net 71.00
[113] MobileNetV2 97.70
[114] MobileNetV3 93.23
[115] ANN 99.67
[116] PeachNet 94.00
[117] VirLeafNet 91.23
[118] 1D-ResNet 91.00
[119] Inception V3 95.60
[120] CoDet 96.00
[121] DV-PSO-Net 94.72
[122] FCDCNN 98.00
[123] Sentinel-2 88.26
[124] DbneAlexNet 94.70
[125] VGG16 93.00
[126] PMF+FA and ResNet50 90.12
[127] Gabor CapsNet 98.13
[128] ResNet-101 99.00
[129] Unet 96.09
[130] MDSCIRNet 99.33
[131] YOLOv5 92.00
[132] DCNN with Confusion Matrix 93.00
[133] ODCNN 99.22
[134] DCNN 96.46

Ref. [135] reports a precision of 97.81 in their Android app with the machine learning
model that helps to identify mango disease. On the other hand, the works from [136–138]
exhibit metrics not mentioned in the present review, such as R and R2, among others.

Models like EfficientNet B0 and DeepLabV3+ResNet50 deliver a balanced performance
with less memory use, making them ideal for edge devices with limited resources. YOLOv5,
though slightly less accurate, excels in real-time detection, crucial for time-sensitive tasks
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such as crop monitoring. Table 2 shows how different CNN variants suit varying needs for
precision, speed, or resource efficiency.

3.5.2. Hybrid Models (CNN with SVM and Others Combinations)

The development and evaluation of hybrid machine learning models in disease detec-
tion in agriculture involve the integration of CNN with other machine learning techniques
such as an SVM and long short-term memory networks (LSTM). Table 3 provides an
overview of various hybrid models and their performance metrics.

Table 3. Hybrid Convolutional Neural Network models combined with other machine learning
techniques showcasing precision, recall, F1 score, and accuracy metrics.

Author Model Name Precision Recall F1 Score Accuracy

[139] I-LDD 93.34 93.19 93.06 93.22
[140] RDODL-APDC 95.83 95.85 95.82 95.80
[141] K-Means and SVM 99.50 99.50 - 99.05
[142] PWDNet 85.90 94.10 - 93.20
[143] CNN-LSTM - 95.11 - 95.11
[144] HXTL-COKELM - 94.10 98.50 98.90
[145] DCGAN - - - 96.90
[146] ConLSTM-U-Net - - - 85.00
[147] MobileNetv2 + SVM - - - 99.00
[148] LeIAP 96.82 96.82 96.82 95.00
[149] FA-SVM 92.00 90.73 - 91.30
[150] ANN with HOG - - 99.00 99.24
[151] MSSOA - - - 91.00
[152] RF with 3D-CNN - - - 87.00
[153] KNN, ANN 98.00 88.00 97.00 99.00
[154] ResNet with SVM - - - 97.86
[155] SVM - - - 80.00
[156] RCNN + SVM - - - 77.00
[157] SVM, PLS-DA, and ResNet18 90.16 - - -
[158] ResNet-50 + SVM 80.38 73.02 74.32 90.60
[159] CNN + SVM 85.71 85.71 84.86 95.39
[160] CNN-RF 96.00 93.00 93.00 98.00
[161] CNN+SVM - - - 95.02
[162] Bat-BCDPBM 100 98.18 98.84 98.60
[163] GLCM with RF 98.77 98.48 98.62 98.62
[164] SMbRF 98.76 99.52 98.12 99.29
[165] CNN, SVM, DT, NB, and RF combination - - - 99.20
[166] SVM, KNN, and NB - - - 82.00
[167] KNN - - - 98.00

Ref. [168] proposed an SVM optimized by a genetic algorithm and particle swarm
optimization that reported an R2 of 0.98 and an MSE of 0.2, and ref. [169] presented an SVM
with a polynomial kernel function and PCA with a recognition rate of 97 3%. Ref. [170]
presents a table that provides a mean ranking of their proposed model in different datasets
of plant diseases but does not provide any metric value observed in this review.

Hybrid models that combine CNNs with other classifiers, such as an SVM, generally
perform well in both precision and recall, with the I-LDD model achieving a solid balance
between metrics. Hybrid models, such as CNN-LSTM, integrate temporal learning capa-
bilities, making them well-suited for analyzing disease progression over time. Although
slightly more complex than standalone CNN models, hybrid approaches offer a flexible al-
ternative that could be tailored to specific use cases, such as long-term disease management
in crops.

3.6. Machine Learning Models

In this section, we explore the application of traditional machine learning models in
the field of agriculture, specifically focusing on the detection and management of diseases
in various crops. Unlike deep learning models, these traditional approaches often employ
statistical, geometrical, or rule-based techniques to process and analyze data. The models
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vary widely in complexity and application, from basic logistic regression to ensemble
methods that integrate multiple learning algorithms for improved prediction accuracy.
Table 4 summarizes some of these traditional models, presenting their precision, recall, F1
score, and overall accuracy in specific agricultural applications.

Table 4. Traditional machine learning models and their performance metrics in agricultural disease
detection, showcasing a range of approaches from simple regression to complex ensemble models.

Author Model Name Precision Recall F1 Accuracy

[171] Mask R-CNN 89.00 91.00 87.00 83.00
[62] IoT-based 95.00 100.00 - 96.88
[172] RF, SVM, and KNN - - - 90.70
[173] SSAFS - - - 83.38
[174] CNN - - - 85.00
[175] LR 85.35 85.00 85.15 85.00
[176] VOCs - - - 94.00
[177] SVM - - - 99.90
[178] LDA 93.00 - - -
[179] SVM - - - 95.23
[180] C-SVM and Fine-KNN - - - 98.00
[181] PLS-LDA - - - 85.00
[182] grained-GAN - - 96.27 -
[183] SVM and KNN - - - 100
[184] ML with fused HOG 89.00 89.00 89.00 89.11
[185] DNN with CSA and k-means 95.92 96.41 - 96.96
[186] SVM - - - 98.38
[141] SVM 99.50 99.50 - 99.05
[187] XGBoost + KNN 95.00 98.00 - 98.77
[171] RF 95.00 92.00 92.00 97.00
[188] SVM 90.60 91.50 85.30 90.20
[189] BEiT 98.00 97.00 97.00 98.20
[190] SLIC - - - 99.38
[139] I-LDD with ELM 93.34 93.19 93.06 93.22
[191] SVM - - - 91.25
[111] LTriTP with T-HOG 97.98 97.77 97.83 97.80
[192] EKNN - - - 99.86
[193] RM-SVM - - - 95.60

The remaining authors who do not appear in this section’s tables are ref. [194], who
reported a precision of 95.80 in their unbiased teacher v2 semi-supervised object detection
DCNN model; ref. [195], who exhibited an R2 > 0.7 in their Botrytis risk algorithm; and
ref. [196], whose machine-learning-based model reduced nonphotochemical quenching
and increased quantum PSII yield (ΦPSII) compared to the leaf areas nearby.

Traditional machine learning models, as shown in Table 4, provide simplicity and ease
of implementation. Models such as Random Forest and SVMs continue to hold their ground,
especially when dealing with smaller datasets or less complex tasks. For projects with
limited resources or smaller datasets, Random Forest offers a straightforward yet effective
solution. However, the accuracy of Mask R-CNN and LDA suggests that traditional models
are gradually being outpaced by CNN and hybrid architectures in terms of performance.

3.7. Preprocessing

Our analysis found a wide range of preprocessing techniques applied to different
types of data, such as images, spectral images, and fluorescence kinetics curves. This
diversity suggests that researchers and practitioners use various methods to prepare their
data for analysis or further processing. Some preprocessing combinations involve advanced
techniques, such as segmentation algorithms, feature extraction methods, and background
removal using sophisticated models such as Mask RCNN or RetinaNet. This indicates a
level of sophistication and specialization in data preprocessing to address specific chal-
lenges or requirements. The diversity of preprocessing techniques implies that researchers
are actively experimenting with different methods and potentially exploring innovative



Agriculture 2024, 14, 2188 14 of 30

approaches to prepare their data. This experimentation could lead to the development of
novel preprocessing pipelines optimized for specific applications or domains.

Figure 7 shows the distribution of the preprocessing techniques identified in the
reviewed literature. Among the various methods used, resizing appears to be the most
frequently utilized technique, followed by noise reduction. Additionally, normalization
and image enhancement are equally mentioned, and other preprocessing methods are
mentioned, although with lesser frequency.

64

23

19

19

13

11

7

7

6
5

4 4 4 3

Techniques sort
by frecuency

image resizing
noise reduction
color space conversion
normalization
image enhancement
segmentation
data annotation
filtering
rotation/flipping
background removal
smoothing
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Figure 7. Distribution of preprocessing techniques used in the literature. The pie chart illustrates the
frequency of various preprocessing methods, such as resizing, noise reduction, color space conversion,
normalization, enhancement, segmentation, and others, such as annotation filtering and rotation or
flipping and more, with the number of papers employing each technique.

3.8. Data Augmentation

Data augmentation plays a vital role in machine learning, particularly in the domain of
image processing. Data augmentation methods increase the diversity of data available for
training models by artificially enhancing training datasets through various transformations,
thereby improving their robustness and ability to generalize from limited input. Standard
techniques include rotating, flipping, and custom-made, as well as more complex modifica-
tions, such as synthetic image creation or adding noise. These strategies are designed to
simulate real-world variations and introduce more scenarios for the model to learn from.

In our analysis, rotation and flipping images are the most common data augmentation
techniques. Zooming, resizing, and brightness enhancement are frequently mentioned, as
well as scaling and noise addition, followed by inversion and color improvement. Figure 8
shows the frequency of the different augmentation techniques found in the review.
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Figure 8. Frequency of various data augmentation techniques used in literature. The bar chart quan-
tifies the implementation of techniques such as geometric transformations, blurring, and synthetic
image generation.

Other data augmentation techniques, such as bootstrap resampling, image inversion,
gamma correction neural style transfer, generative adversarial network, position augmen-
tation, balance mix-up, label shuffling, synthetic backgrounds, conditional generative
adversarial networks, and principal component analysis, were also mentioned.

3.9. Features

In classic machine learning methods, the selection and use of features critically influ-
ence the performance of the models.

The noticeable frequency of various characteristics reveals valuable information on
the predominant characteristics considered in the research landscape (see Figure 9). Color
was found to be the most analyzed feature, followed by texture. Shape descriptors were
also prevalent, highlighting the importance of geometric characteristics in characterizing
the data. Further investigation revealed specific feature extraction techniques utilized
within the analyzed literature. High-level features obtained through CNNs and spectral
information were also widely mentioned. The Gray-Level Co-Occurrence Matrix (GLCM)
is also relevant in capturing spatial dependencies within images. Similarly, local binary
patterns (LBPs) and energy, which describe local changes in the quality of images, were
also observed. Our analysis revealed a subset of features that, although mentioned less
frequently, possess unique characteristics with significant practical implications. These
features include standard deviation local binary patterns (LBPs), correlation homogeneity,
bounding boxes, and edges. They stress their relevance in specialized applications such
as remote sensing and environmental monitoring, making research more applicable
and impactful.

Furthermore, our comparison between singular and multi-mentioned features re-
vealed intriguing patterns. Features such as color, texture, and shape consistently stood out
in both categories, affirming their universal significance in machine learning.
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Figure 9. Distribution of frequently mentioned features in the literature. The chart categorizes and
quantifies the occurrence of different features such as color, texture, and shape, highlighting their
significance and prevalence in feature extraction when used with machine learning methods.

3.10. Comparative of Related Works

This review builds upon previous studies by providing a comprehensive and up-
to-date perspective on the use of machine learning for plant disease and pest detection.
Furthermore, the period 2019 to 2024 serves as a continuation of previous work reported
in the state of the art, building on and complementing earlier reviews. Table 5 helps
to contextualize the scope and contributions of our review within the broader research
landscape, showing how our study addresses gaps and complements previous works.

Table 5. Comparison of this work against state-of-the-art reviews.

Work Plants Datasets Diseases Model
Name

Metrics Data
Augmentation

Preprocessing Extracted
Features

Model
Proposing

Period
Search

Doutoum and Tugrul [13] X X X X X X 2006–2022
Mekha and Parthasarathy [16] X X 2009–2021
Mohan et al. [12] X X X X 2011–2022
Bondre and Patil [14] X X X X X 2012–2022
Kini et al. [15] X X X X 2015–2021
Jackulin and Murugavalli [11] X X 2020–2022
Our work X X X X X X X X X 2019–2024

This systematic review not only addresses this recent period but also includes a thor-
ough analysis of various critical aspects such as plant datasets, diseases, model names,
metrics, data augmentation, preprocessing techniques, extracted features, and model propo-
sitions. By focusing on these elements, we aim to provide a comprehensive and up-to-date
analysis that leverages the latest tools and datasets available. This holistic approach
improves the relevance and impact of our findings in the fast-evolving field of agricul-
tural technology while ensuring a more contemporary analysis of recent methodologies
and datasets.

Previous reviews, like [13,16], have focused on various aspects of plant disease detec-
tion using machine learning and deep learning techniques. This review, on the other hand,
explicitly addresses recent advancements from 2019 to 2024, providing a more up-to-date
analysis and including newer methodologies and datasets, as well as [11,15], who address
only preprocessing or augmentation techniques in limited contexts. Furthermore, we
highlight the integration of data augmentation and preprocessing techniques and detail
exclusion criteria, inclusion criteria, and focus on hybrid model development, which earlier
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reviews have not thoroughly explored or were less emphasized in earlier works. This
makes this work relevant for addressing challenges such as handling unstructured image
datasets and improving model generalizability. Table 6 shows a summary of reported work
related to plant disease detection.

Table 6. Comparison of plant disease detection studies.

Author Techniques Used Diseases Covered Papers Reviewed Performance Metrics Challenges Addressed

[11] ML and DL techniques for
plant disease detection Various 60 Various metrics Research gaps in DL

techniques

[12] ML and DL techniques Various 64 Performance metrics Research gaps and
challenges

[13] CNN for leaf disease
detection Leaf diseases 256 CNN performance

Data representation,
labeling, collection,
overfitting, dataset
inadequacy

[16] AI techniques for pest
identification Pest infestations 17 Accuracy values

[14] DL strategies, CNN models Various 80 CNN performance Handling unstructured
images, dataset needs

[15] Segmentation, ML
classifiers, DNNs Various 36 Accuracy Complex backgrounds,

data inadequacy

Our work ML and DL techniques for
plant disease detection Various 82 Various metrics Handling unstructured

images, dataset needs

In contrast with [12], who reviewed 64 papers, or [15], who reviewed 36, this review
considers a broader range of studies, enabling a deeper understanding of the trends and ad-
vancements in plant disease detection using machine learning and deep learning techniques
and addressing challenges that were only partially explored in prior works, such as data
representation [13] and data inadequacies [15]. Our study provides specific solutions to
these challenges, such as incorporating data augmentation techniques (including rotation,
scaling, and noise addition) to tackle dataset variability besides exploring hybrid models,
like CNN-SVM combinations, to improve robustness and address issues related to unstruc-
tured images. With these methodological advances, a more comprehensive approach was
ensured to overcome challenges in plant disease detection.

4. Discussion

This section interprets the results, discusses common models for pest and disease detec-
tion in crops, reviews related work, and compares the current study with previous reviews.

This systematic review delves into the application of deep learning methods and data
augmentation techniques in plant disease detection. Deep learning, mainly through CNNs,
has been an effective tool for identifying and classifying plant diseases from image data.
Our review highlights the effectiveness of various CNN architectures, including Inception,
MobileNet, and ResNet, which have been adapted to address the complexities of disease
detection in crops. These models demonstrate high accuracy and precision in detecting
a variety of plant diseases, making them essential in modern agricultural practices. Al-
though these models have advanced significantly, challenges such as overfitting and data
representation remain, particularly when dealing with limited or imbalanced datasets. The
use of transfer learning and hybrid models, combining CNNs with other machine learning
techniques such as an SVM, showed further improvement in model performance and
generalizability. Data augmentation plays a vital role in improving the robustness and ac-
curacy of deep learning models. By artificially expanding training datasets through various
transformations such as rotation, flipping, resizing, and adding noise, we found that rota-
tion and flipping were the most widely used augmentation techniques, followed by other
methods such as brightness enhancement and geometric transformations. These techniques
are helpful in scenarios where obtaining a large and diverse dataset is challenging, as they
help simulate real-world variations and introduce additional scenarios for the models to
learn from. In general, the integration of deep learning with data augmentation strategies is
shown to significantly enhance the ability of models to detect and diagnose plant diseases
accurately, thus contributing to more sustainable and efficient agricultural practices.
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In the context of pest and disease detection in crops, selecting the most suitable model
architecture is critical to achieve accurate and reliable results. Our systematic review of
the relevant literature suggests that CNN variants, particularly ResNet and InceptionV3,
stand out as preferred choices due to their effectiveness in handling the complexities of
image classification tasks inherent in agricultural pathology. ResNet, with its residual
connections, allows deeper networks to be trained to address the challenges posed by the
classification of complex disease symptoms. Similarly, InceptionV3’s architecture exhibits
robust adaptability to recognizing patterns characterized by extreme variability, a common
occurrence in plant disease symptoms. Our analysis highlights common datasets, with
the Plant Village dataset appearing as a common choice among researchers for evaluating
machine learning models.

The reviewed detection techniques have benefited from using transfer learning tech-
niques. According to [197], these techniques report at least 93% precision by using little
training data and adequately tuning the pre-trained model. In the work of [198], they
improved a VGGNet to detect plant diseases up to 92% with images with complex back-
grounds. In [199], they observed that a base YOLOv4 model performs poorly when trying
to classify the disease in a single leaf. To improve the accuracy, they modified the architec-
ture by adding the spatial pyramid pooling block, with which they achieved an accuracy
of up to 95.9%. Another alternative solution to disease detection is the use of hybrid
techniques. In [200], the authors implemented a TomSevNet as an inception layer in a
CNN algorithm by considering 30 different classes with an accuracy of 96.91%. The work
of [170] shows the performance of a model that integrates machine and deep learning in a
work environment with Optuna. They demonstrated that these techniques can achieve an
accuracy of at least 87.5% by testing with a public dataset for tomato early blight disease.
In [70], they implemented a Convolutional Autoencoder network with a CNN for the
detection of bacteria in peach crops, obtaining an accuracy of 98.38%. In addition, they
report that the model presents a significant reduction in plant detection compared to the
reported model because a significant amount was not required in the training stage.

Crop-specific models enhance accuracy by reducing false positives but need extensive,
specialized datasets. These models depend on large, diverse crop-specific datasets, which
are complex and resource-intensive to acquire [201,202]. A major limitation is their lack
of generalizability, requiring retraining for each crop and increasing complexity and cost.
They also struggle to adapt to new diseases or environmental changes, necessitating
continuous updates to maintain accuracy. This highlights the need for models that handle
environmental variability and can generalize across conditions.

Table 7 provides a comparative overview of key machine learning and deep learning
models, describing their characteristics to help readers select the right models. The analysis
also identifies areas for improvement, such as developing resilient models that adapt across
crops and types of disease for more practical and scalable agricultural disease management.

Table 7 analyzes machine learning and deep learning models. ResNet and VGG excel
in complex image classification. MobileNet and EfficientNet are efficient on resource-
limited devices. YOLOv5 is ideal for real-time detection. Traditional models like SVMs
and Random Forest are suitable for smaller datasets but are usually less accurate than deep
learning models.

Figure 10 summarizes the accuracy ranges of the models reviewed for the detection of
plant disease. The horizontal bars illustrate the performance variability across different
datasets and experimental setups as reported in the literature. Models such as ResNet and
YOLO consistently demonstrate high accuracy across datasets, while DeepLab exhibits
more variability, highlighting the challenges faced in specific tasks like segmentation.
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Table 7. Comparative analysis of machine learning and deep learning models for plant disease
detection.

Model High Accuracy
Needed

Low
Computational
Resources

Real-Time
Detection Large Datasets Small Datasets Generalize to

New Crops

Complex or
Hybrid
Decision
Boundaries

ResNet [22,26,35,44,45] X - - X - X X
MobileNet [43,147] X X X X X X -
EfficientNet [34,38,94,170] X X X X X X -
CNN-SVM [86] X - - X X X X
VGG [24,25,29,44,133] X - - X X X X
YOLO [33,62,95,96,104,136] X X X X X X X
Inception [41,44,45] X X X X X X X
Mask R-CNN [24] X - X X X X X
DeepLab [35] X X X X X X -
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Figure 10. Accuracy ranges of selected models for plant disease detection. The horizontal bars
represent the variability in performance across different datasets and experimental setups, as reported
in the literature.

The variability in model architecture, datasets, and preprocessing methods made a
comprehensive comparative analysis impractical. This review summarizes trends and iden-
tifies key gaps, like the need for robust augmentation and real-time detection. It synthesizes
trends and suggests areas for future validation, despite limited direct comparisons.

In addition to advances in research in machine learning for plant disease detection,
several commercial developments demonstrate the practical application of these technolo-
gies. As an example, [203,204] detail methods to improve accuracy in the identification
of plant diseases and pests through image analysis and the integration of environmental
data. Similarly, [205] highlights the use of active learning to improve model precision while
reducing manual data labeling costs. Other patents, such as [206,207], focus on intelli-
gent monitoring systems and lightweight models optimized for mobile devices, enabling
real-time field applications. These innovations illustrate the growing potential of machine
learning in agriculture, opening up opportunities for more automated and efficient disease
management solutions.

5. Conclusions

This systematic review has highlighted significant advances and the effectiveness of
machine learning techniques in the detection of pests and diseases in crops. Through a
detailed examination of recent studies, it has become evident that CNNs are particularly
effective in processing complex image data to identify and classify various plant diseases
and pest damage. These technologies not only improve the accuracy of diagnosis but also
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offer a rapid response capability that is crucial for timely pest management and disease
control in agriculture. The integration of machine learning into agricultural practices
promises not only to enhance crop productivity but also to contribute toward sustain-
able farming practices by reducing the reliance on chemical pesticides and improving
resource management.

Furthermore, the findings of this review advocate for continued research and develop-
ment in this field. Future research should focus on several key areas, including enhancing
datasets to improve the robustness of models under diverse environmental conditions,
developing more sophisticated algorithms that account for variability in crop types and
disease manifestations, and advancing the real-time deployment of these models in the
field through mobile and edge computing technologies. Additionally, integrating machine
learning systems with Internet of Things (IoT) devices for continuous monitoring and
early detection, as well as exploring the use of other machine learning paradigms like
unsupervised learning and reinforcement learning, offers promising directions for reducing
the reliance on manual annotations and improving model generalization.

On a broader scale, interdisciplinary collaboration between machine learning experts,
agronomists, and policymakers is essential to ensure that these solutions are scalable,
economically viable, and accessible to farmers in both developed and developing regions.
Future studies could also investigate ethical implications and concerns about data privacy
related to the widespread adoption of these technologies in agriculture to ensure that
innovations align with the goals of societal and environmental sustainability.

Finally, although this review has synthesized relevant findings from the Scopus
database, there may be valuable research present in other databases that have been over-
looked. Future work could broaden the scope to include a wider variety of sources,
providing a more complete understanding of progress in this field. Furthermore, research
could focus on developing models that are more adaptable and generalizable, reducing the
dependency on crop-specific datasets and addressing disease pattern variations due to en-
vironmental factors. Evaluating model performance across diverse environmental settings
and data types would also provide practical insights, helping to advance the robustness
and applicability of these models in real-world agricultural contexts and perform empirical
evaluations across standardized benchmarks. Moreover, the variability in reported metrics
across studies and proprietary or unpublished methods could also be analyzed, enabling a
direct comparison of methodologies across metrics such as accuracy, computational effi-
ciency, and robustness to environmental variability. Such a framework could also facilitate
the empirical validation of the trends identified in this review.
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Abbreviations
The following abbreviations are used in this manuscript:
Acronym Description
1D-ResNet One-Dimensional Residual Network
3D CNN Three-Dimensional Convolutional Neural Network
AdaBoostSVM Adaptive Boosting Support Vector Machine
AISDLT Artificial Intelligence System using Deep Learning Techniques
ANN Artificial Neural Network
ANN-HOG Artificial Neural Network with Histogram of Oriented Gradients
BAT-BCDPBM Bootstrap Crop Disease Prediction Model with BAT Algorithm
BEiT Bidirectional Encoder Representations from Transformers
BoVW Bag of Visual Words
CAE Convolutional Autoencoder
CapsNet Gabor Capsule Network
CCA-YOLO Correlation Coefficient Analysis with You Only Look Once
CenterNet Center-based Object Detection Network
CNN Convolutional Neural Network
CNN-HCF Convolutional Neural Network with Hand-Crafted Features
CNN-LSTM Convolutional Neural Network with Long Short-Term Memory
CNN-ReLU Convolutional Neural Network with Rectified Linear Unit
CNN-SVM Convolutional Neural Network with Support Vector Machine
CoDet Cotton Detection Network
ConLSTM-U-Net Convolutional Long Short-Term Memory U-Net
Conv-3 DCNN 3-Layer Convolutional Deep Neural Network
CRUNet Vanilla Network with Channel Reconstruction Unit
CSA Crow Search Algorithm
C-SVM Cost-sensitive Support Vector Machine
DbneAlexNet Deep Batch Normalized AlexNet
DbneAlexNet Deep batch normalized AlexNet
DCDM Deep Convolutional Decision Module
DCGAN Deep Convolutional generative adversarial network
DCNN Deep Convolutional Neural Network
dCNN Lightweight Deep Convolutional Neural Network
DeepLabV3 Deep Learning Lab Version 3
DLMC-Net Deeper Lightweight Multi-Class Convolutional Neural Network
DLPDS Deep Learning Plant Disease Detection System
DnCNN Denoising Convolutional Neural Network
DNN-CSA Deep Neural Network optimized using Crow Search Algorithm
DT Decision Trees
DV-PSO-Net Deep Mutual Learning Model with Particle Swarm Optimization
E-CNN Enhanced Convolutional Neural Network
EfficientNet Efficient Neural Network
EfficientNetv2-S Efficient Neural Network Version 2 Small
EffiNet-TS Efficient Network Time Series
EKNN Enhanced K-Nearest Neighbor
FA-SVM Hybrid Firefly Algorithm with Support Vector Machine
FCDCNN Edge-Cloud Fuzzy Deep Convolutional Neural Network
Few-shot Few-shot Learning
GA-Kmeans-ANN Genetic Algorithm with K-means and Artificial Neural Network
GAN Generative adversarial network
GLCM Gray-Level Co-occurrence Matrix
GoogLeNet Google Network Residual Network
GPR-CNN Algorithm Particle Swarm Optimization Convolutional Neural Network
GPR-CNN Genetic Algorithm Particle Swarm Optimization Convolutional Neural Network
HCF Hand-Crafted Features
HCO-CNN Hybrid Crow Optimization-based Convolutional Neural Network
HXTL-COKELM Hybrid Xception Transfer Learning with Crossover Optimized Kernel Extreme Learning Machine
I-LDD Interpretable Leaf Disease Detector
Inception V3 Inception Version 3
Inception-ResNet Inception Residual Network
IRNN-TL Transfer Learning with Improved Recurrent Neural Network
KNN K-Nearest Neighbors
LC3Net Lightweight Convolutional Neural Network with Channel Attention and SPPF Module
LDA Linear Discriminant Analysis
LeIAP Least Important Attention Pruning
LR Logistic Regression
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LTriTP Local Triangular-Ternary Pattern
Mask R-CNN Mask Region-based Convolutional Neural Network
MDSCIRNet Multi-head Attention Mechanism Depthwise Separable Convolution Inception Reduction Network
ML-HOG Machine Learning with Histogram of Oriented Gradients
ML-LM Machine Learning with Extreme Learning Machine
MLR Modified Logistic Regression
M-Net Modified AlexNet
MobileNet Mobile Neural Network
MobileNetV2 Mobile Neural Network Version 2
MobileNetV3 Mobile Neural Network Version 3
MResNet Modified Residual Network
MSA-CNN Multi-Scale Selective Attention CNN
MSSOA Memetic Salp Swarm Optimization Algorithm
Multi-class SVM Multi-Class Support Vector Machine
NB Naïve Bayes
NCA Neighborhood Component Analysis
NN Neural Network
ODCNN Optimized Deep Convolutional Neural Network
PDDCNN Potato leaf disease detection Convolutional Neural Network
PeachNet Peach Detection Network
PLS-LDA Partial Least Squares Discriminant Analysis
PMF+FA Pre-training Meta-learning Fine-tuning with Feature Attention
PWDNet Pine Wilt Disease Network
R-CNN Region-based Convolutional Neural Network

RDODL-APDC
Red Deer Optimization with Deep Learning for Agricultural Plant Disease Detection
and Classification

RDTNet Residual Deformable Transformer Network
ResNet Residual Network
ResNet-101 Residual Network 101 layers
ResNet-50 Residual Network 50 layers
ResNeXt Residual Network with Next-Generation Features
RF Random Forest
RFBDB-GAN Residual Feature Block Dense Block generative adversarial network
RiceNet Rice Detection Network
RM-SVM Redundant Multi-Class Support Vector Machine
RSODL-PDDC Rat Swarm Optimization Deep Learning Plant Disease Detection and Classification
S-CNN Segmented Convolutional Neural Network
SegNet Segmentation Network
Sentinel-2 Sentinel Satellite Data 2

SE-VRNet
Support Vector Machine and K-Nearest Neighbors Squeeze-and-Excitation Visual
Recognition Network

SLIC Simple Linear Iterative Clustering
SMbRF Spider Monkey-based Random Forest
SSAFS Swarm Algorithm for Feature Selection
SVM Support Vector Machine
TeenyNet Teeny Neural Network
T-HOG Triangular Histogram of Gradient
Unet Modified U-shaped Convolutional Neural Network
V Various
VGG16 Visual Geometry Group 16
VirLeafNet Viral Leaf Detection Network
VOCs Volatile Organic Compounds
WD2CNN Wasserstein Distance to Convolutional Neural Network
WeedDet Weed Detection Network
XGBoost-KNN XGBoost with K-Nearest Neighbors
YOLOv3 You Only Look Once Version 3
YOLOv4 You Only Look Once Version 4
YOLOv5 You Only Look Once Version 5
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