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Abstract: Hardness is a critical mechanical property of grains. Accurate predictions of grain hardness
play a crucial role in improving grain milling efficiency, reducing grain breakage during transporta-
tion, and selecting high-quality crops. In this study, we developed machine learning models (MLMs)
to predict the hardness of Jinsui No.4 maize seeds. The input variables of the MLM were loading
speed, loading depth, and different types of indenters, and the output variable was the slope of
the linear segment. Using the Latin square design, 100 datasets were generated. Four different
types of MLMs, a genetic algorithm (GA), support vector machine (SVM), random forest (RF), and
long short-term memory network (LSTM), were used for our data analysis, respectively. The result
indicated that the GA model had a high accuracy in predicting hardness values, the R2 of the GA
model training set and testing set reached 0.98402 and 0.92761, respectively, while the RMSEs were
1.4308 and 2.8441, respectively. The difference between the predicted values and the actual values
obtained by the model is relatively small. Furthermore, in order to investigate the relationship
between hardness and morphology after compression, scanning electron microscopy was used to
observe the morphology of the maize grains. The result showed that the more complex the shape of
the indenter, the more obvious the destruction to the internal polysaccharides and starch in the grain,
and the number of surface cracks also significantly increases. The results of this study emphasize the
potential of MLMs in determining the hardness of agricultural cereal grains, leading to improved
industrial processing efficiency and cost savings. Additionally, combining grain hardness prediction
models with the operating mechanisms of industry machinery would provide valuable references
and a basis for the parameterization of seed grain processing machinery.

Keywords: mechanical properties of maize; numerical simulation; hardness prediction; indentation
load curve method

1. Introduction

Maize is one of the most important food crops in the world [1]; in 2022, the global
maize yield exceeded one billion tons. Maize is also an essential food ingredient in countries
such as Asia, Africa, and Latin America. Due to its high content of starch and various
types of glucose, maize is used extensively as a raw material for food and industrial
manufacturing, presenting significant potential in the market [2]. Previous studies have
shown that soft maize can generate a greater starch content through wet milling. However,
hard maize is better suited for dry milling and is commonly used to make low-starch
products, such as pasta and maize flour [3]. Food-grade maize specifically used for dry
grinding can be used to make cereal, baked goods, beer, and other daily items. Currently,
the demand for food-grade maize is expanding internationally [4]. Research has found
that maize that is more suitable for dry milling often has special requirements for the
hardness value of the seeds. In addition, the weight, glassiness, and screening efficiency
of the maize are quality characteristics that are important in the dry milling industry [5].
Mechanized harvesting has become the predominant method. However, grain harvesting
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entails numerous processes, including mixing, storage, transportation, and unloading.
The above processes can largely destroy the surface of the grain and even accompany the
occurrence of cracks and localized fragmentation, which ultimately affect the quality of
the grain. Therefore, it is essential to take reasonable and effective measures to mitigate
the effects of mechanization on grain to protect its integrity [6]. In recent years, grain
hardness has become a standard for market pricing and grain classification, as well as
an indicator used in world trade. Endosperm hardness is the primary determinant of
maize grain quality. Enhancing endosperm hardness can boost flour output and generate
economic gains for the food, feed, and brewing industries; additionally, it can decrease
the likelihood of grain damage during mechanized operations and improve resistance to
external environmental factors [7]. In addition, the hardness of grains is closely related to
their internal PIN genetic genes [8]. A deeper understanding of the genetic characteristics
of grains can accelerate the process of achieving breeding optimization. Therefore, it is
necessary to develop a model capable of predicting grain hardness for applications in
variety breeding and industrial processing to improve grain quality, reduce raw material
losses, and improve processing efficiency.

In recent years, due to the increasing demand for a greater accuracy of maize quality
parameters in various terminal products, there is an urgent need for technology that can
achieve rapid detection with low detection costs to meet the needs of digital products.
Maize grains are generally composed of water, starch, protein, fat, and soluble sugars.
Scholars have conducted research on the physical properties of maize from different per-
spectives, such as measuring the density and volume of maize grains using X-ray computed
tomography (µCT) [9]. The protein content and grain weight have a significant impact on
grain hardness. In addition, some scholars have studied the growth environment of maize
and the influence of starch content on grain hardness and found that there is also a certain
relationship between the content of amylose and grain hardness [10]. The hardness of maize
is also related to its moisture content. Normally, the higher the moisture content, the smaller
the hardness value. Currently, there is a great deal of attention paid to the testing methods
for grain hardness. Traditional grain quality testing methods mainly include commonly
used hardness testing methods, such as the keratinization rate method, grinding method,
and single-particle hardness index method [11]. However, these methods can damage the
integrity of test samples and generally target multiple test samples. The measurement pro-
cess is relatively complex, the accuracy is low, and it is difficult to compare different grains
horizontally, which, to some extent, limits the measurement efficiency. With the continuous
development of computer technology, tomography technology, near-infrared spectroscopy,
and hyperspectral imaging technology are increasingly being used for the quality inspec-
tion of agricultural products [12–15]. It has been found that most previous studies on grain
hardness have combined hardness with the genetic characteristics of protein, starch, and
genes in the body. Currently, near-infrared spectroscopy is the mainstream method for
detecting the hardness of single grains. Near-infrared spectroscopy can reliably predict the
protein content, density, and endosperm vitrification inside grains with a high accuracy [16].
Biological and infrared imaging technology can quickly and non-destructively evaluate
the quality parameters of maize as well as reliably predict the protein content and density
with a high accuracy. It can evaluate the hardness of different grain segments, allowing
for a more accurate understanding of the correlation between grain hardness and seed
composition [17]. Grain hardness and starch content are the main determining factors for
the ultimate use of grains. Some scholars have successfully measured the grain hardness of
wheat and maize using near-infrared spectroscopy and predicted the particle size index [18].
However, this technology has high detection costs and limited detection capabilities. At
present, it is only suitable for testing the quality characteristics of small-scale grains and is
not suitable for large-scale finished product testing in many processing fields, such as in
industry and agriculture [19]. Zhang et al. [20] used the indentation loading curve method
to measure the hardness of grains such as wheats, peas, maize, and mung beans. The
results showed that this method has a high measurement accuracy and good applicabil-
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ity and can measure the hardness of various grains. The principle of this method is to
analyze the loading curve, calculate the slope of the linear segment (SLS), and then use
the virtual elastic modulus method to characterize the grain hardness [21,22]. It is more
suitable for detecting the hardness information of large-scale agricultural materials. MLMs
are currently a prominent area of academic research in the world. Compared to conven-
tional regression models, MLMs exhibit remarkable benefits in terms of their data fitting
capability, adaptive learning, parallel processing, and resilience [23]. Many researchers
have used MLMs for crop yield prediction in the agricultural field, including for maize,
wheat [24], tomato [25], etc. In addition, there are also applications of MLMs in agricultural
research related to the fragmentation rate of maize grains [26], the soil nutrient content [27],
forestry fertilization [28], etc. However, in the field of grain hardness research, the majority
of studies using neural network models to predict grain hardness are focused on wheat
grains. For instance, Zhang, et al. [29] used an ant colony algorithm to optimize the SVM
for wheat hardness inversion. This indicates the feasibility of an MLM in predicting grain
hardness. Similarly, Hui, et al. [30] established a radial basis function and used visible
near-infrared spectroscopy to predict wheat hardness. However, relatively few studies
have been conducted on the prediction of maize hardness using MLMs. This may be due
to the variable shape of maize grain and the fact that hardness is strongly influenced by the
internal moisture and drying method used.

From the above analysis, it can be seen that MLMs have strong advantages in research
index prediction, can lower the costs of experimental research, and can improve efficiency.
The purpose of this study is to measure maize hardness using the indentation loading curve
method and to train experimental data through MLMs to establish an algorithm model
that can accurately predict the hardness of maize grain. The design of the experiment
adopted the optimal Latin hypercube design (OPTLHD) to measure the hardness of maize
and compared the changes in grain microstructure before and after loading the sample.
Subsequently, a regression prediction analysis based on the MLMs were carried out using
loading speed (LS), loading depth (LD), and different types of indenters (DI) as input
variables; additionally, the slope of the linear segment (SLS) can characterize the grain
hardness as the output variable. We explore the sensitivity and predictive effect of the
GA, SVM, RF, and LSTM models on the relationship between maize hardness and the
input variables to explore the correlation between the three input variables and maize
hardness, as well as determine the optimal maize hardness prediction model. We attempt
to provide accurate and reliable maize hardness indicators for industries such as breeding,
food processing, and transportation and for applications such as grain classification pricing.

2. Materials and Methods
2.1. Experiment Samples of Maize Grain

The experimental materials were derived from commercially available Jinsui No.4
naturally dried maize seeds. The weight of 1000 maize grains was 351 g. These maize
grains exhibited a yellowish hue, and their morphology featured a mildly serrated form.
The average length, width, and height of maize grains were 14.25 mm, 7.85 mm, and
4.09 mm, respectively (Figure 1a). The moisture content of maize grain was measured
by means of hot air drying. The measuring instruments included an electronic balance
(PTX-FK210S, Fuzhou Huazhi Scientific Instrument Co., Ltd, Fuzhou, China) and electric
drying oven (GZX-9023MBE, Shanghai Boxun Industrial Co., Ltd. Medical Equipment
Factory Shanghai, China). In order to eliminate measurement errors, 50 samples were
measured for moisture content, with an average value of 36.54% being the final moisture
content value. The formula for calculating the moisture content of samples is as follows:

Q =
m1 − m2

m1
× 100% (1)

where Q is the moisture content of maize grains; m1 is the initial grain weight, g; and m2 is
the grain weight after drying, g.
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Figure 1. Preparation of maize samples. (a) Untreated maize grain; (b) Polished maize grain.

The surface of untreated maize grains is smooth and uneven. In order to avoid lateral
displacement between the grains and the contact components during the experiment, which
may cause unnecessary measurement errors, it is necessary to polish the smooth surface
of the maize, while the concave surface (seating plane) of the maize is not treated. The
polished sample surface (the surface to be measured) should be parallel to the base surface,
as shown in Figure 1b. During polishing, an electric polishing machine (S1J-SFK-003,
Yonghong Strength Supplier, Jinhua, China) is used to polish the surface of 100 samples, in
order to improve the stability, efficiency, and safety of the sample testing.

2.2. Design of Experiments and Methods
2.2.1. Experiment Methods

In this study, the instrument used to measure the hardness of the maize grains was the
texture analyzer (TA-XT plus, Stable Micro Systems, Godalming, UK), with a maximum
load of 500 N, an accuracy of 0.1 g, a force resolution of 0.0001 N, and a displacement
resolution of 0.01 mm. The loading force curve and coefficient of variation can be displayed
dynamically. Furthermore, the macro commands in the system allow for the direct computa-
tion and recording of desired parameters, including sample heights and curve peak points,
as well as the determination of inflection points. The maize hardness measurement test
consists of three main steps. Firstly, the polished maize specimen was placed horizontally
on the test bench of the texture analyzer, as shown in Figure 2a. Secondly, the tip of the
indenter was aligned with the center of the maize endosperm. Finally, maize hardness
measurement was taken according to the combination of parameters set in the design
of experiment (see Section 2.2.2). The shapes of steel needle indenters were triangular,
quadrangular, conical, and spherical, respectively. All indenters had a diameter of 2 mm
and a conical degree of 30◦, as shown in Figure 2b.
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This study used the indentation loading method to determine the hardness of maize
grains. The principle of this method is to use a texture analyzer to press a special shaped
indenter into the maize grains and indirectly obtain the hardness of maize grains by
studying the indentation (indentation depth) loading curve obtained from the experiment.
We obtained a virtual elastic modulus value He that is proportional to the slope of the curve,
used the virtual elastic modulus to obtain the physical meaning of He, and obtained the
slope of the maize grain indentation loading curve according to a unified scaling ratio to
measure the hardness information of the compressed material. The indentation loading
curve and its slope comprehensively reflect the changes in indentation depth and applied
load during the test process. The indentation loading curve obtained from the experiment
is shown in Figure 3. This method can not only obtain the hardness of the test material at
any depth but also test the hardness of the material at the nanoscale. Due to the lack of
a clear physical meaning for hardness, its definition also varies depending on the testing
method. In this study, hardness is considered to be the resistance to deformation and failure
within a small volume of the material surface, and its value is expressed by the slope of the
indentation loading curve in MPa. The calculation formula is as follows:

He = k =
F2 − F1

D2 − D1
(2)

where F2 is the load at the end of the linear segment, N; F1 is the load at the beginning
of the linear segment, N; D2 is the displacement at the end of the linear segment, mm;
D1 is the displacement at the beginning of the linear segment, mm; and k is the slope of
linear segment.
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2.2.2. Design of Experiment

After comparing and analyzing the research on using indentation loading method to
measure grain hardness, it was found that loading speed, loading depth, needle tip taper,
and moisture content have a significant impact on grain hardness measurements [17,20,31,32].
Based on the experimental environment, LS, LD, and DI were ultimately selected as the
main factors affecting maize hardness, and the SLS of the loading curve obtained from the
experiment was used as the response index of the experiment. Among them, the normal
operating range of loading speed is between 0.10 and 2.00 mm/s. If it is too fast, it will lead to
inaccuracies in the data collection of the instrument, and if the pressure head works at high
speed for a long time, it will cause certain degree of damage. If it is too slow, it will prolong
the running cycle of the experiment, reduce work efficiency, and increase the difficulty of data
processing. A reasonable loading depth range can improve the accuracy of experimental data.
Through preliminary experiments, it was found that if the loading depth is too deep, the maize
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grains will crack; moreover, if the loading depth is too small, it will cause the experiment to
stop before the linear segment appears, resulting in unnecessary errors. Due to the difficulty
in maintaining consistency in height among the selected maize grain samples, the concept
of normalization was introduced, and the range of loading depth was set to 30–70% of the
initial height of the polished sample. Pre-experiments were conducted, and it was found that
maize grains did not undergo fragmentation. The essence of the indentation loading method
is that the indenter does work on the test, and there is a reaction force inside the sample to
resist deformation of the indenter. The more complex the shape of the indenter, the larger
the hardness value obtained. Therefore, four types of indenters were selected for hardness
measurement experiments. The distribution range of each sampled parameter is shown in
Table 1. The most commonly used sampling methods for designing experiments include
the full factorial, central composite, orthogonal array, Latin hypercube, and optimal Latin
hypercube methods. The OPTLHD optimizes the order of the occurrence of each level in each
column of the experimental design matrix, which can ensure a more uniform distribution of
the factor levels at each sample point with excellent spatial filling and balance and avoid the
appearance of gap areas [33,34]. Therefore, to ensure the uniformity of the sample points, the
optimized Latin hypercube method with stratified sampling technique was used to sample
the three input parameters, and the experiment collected a combination of 100 sample data.
We applied the combination parameters of their respective variables to the maize hardness
test, taking 100 maize hardness measurements.

Table 1. Range of sampling parameters.

Symbol Value/Interval

loading speeds (mm/s) 0.1~1.6
loading depths (mm) 30%~70% of the sample height

different types of indenters

triangular
quadrangular

conical
spherical steel needle

The above are the three variables and their respective ranges (types) for maize hardness
test. The specific values of the three variable combinations in the test are summarized in
Table A1 through the optimal Latin square design. We divided these 100 sets of data into
the training and testing sets of the neural network with a 3:1 ratio. The training set contains
75 samples for training the network and the test set includes the remaining 25 samples to
test the reliability of the model and evaluate its predictive performance.

2.3. MLM Prediction Model

MLMs are able to simulate highly nonlinear systems well and establish functional
relationships between input and output variables. MLMs are essentially mathematical
models that simulate biological neural networks for information processing. MLMs are
based on the information transmission method of biological neural networks, abstracting,
simplifying, and simulating the organizational structure and operational mechanism of the
brain from the perspective of information processing. The essence of neural networks is to
use numerical algorithms to connect a large number of neural nodes according to set rules
and methods, forming a network model with high error tolerance, level of intelligence,
independent learning ability, and parallel distribution. At present, MLMs have been widely
applied in fields such as information technology, medicine, economics, engineering, trans-
portation, and psychology [35]. This study took LD, LS, and DI as the input variables of the
neural network system and SLS as the output variable to establish functional relationships.
The topology of neural networks generally consists of input layers, hidden layers, and
output layers. In this study, the number of neural nodes in the input layer is 3, representing
three input variables. The output layer neuron node is maize hardness, and four neural
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network regression models were established, namely GA, SVM, LSTM, and RF models.
The research technology roadmap is shown in Figure 4.
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2.3.1. GA Prediction Model

The GA was proposed by Holland [36] as a approach to simulate the genetic mecha-
nisms and biological evolution of natural selection. This algorithm possesses global search
capability and can quickly search the solution space to obtain the global optimal solution
for weights and thresholds. The GA network generates new subpopulations of individuals
with high fitness values through operations such as crossover, mutation, and recombination
and then undergoes multiple cycles to obtain the optimal individual [37]. Figure 5 shows
the flowchart of the GA network structure. Based on backpropagation network (BP), GA
used real number encoding to encode the initial weights and thresholds between each
layer of neural nodes, transforming the solution space of the optimal problem into a search
space that can be recognized by genetic algorithms. This study used mean square error
as the fitness function and found the minimum fitness value after undergoing roulette
chromosome selection, two-point crossover, and Gaussian mutation. We then assigned
the weights and thresholds corresponding to the network to the initial neuron nodes and
retrained the model again.

2.3.2. SVM Prediction Model

The SVM was proposed by Cortes and Vapnik [38] on the basis of statistical learning
theory. The SVM model is commonly used to handle regression and classification problems.
Based on the theory of structural risk minimization, the core of SVM is to divide data
samples into both sides of a hyperplane, as shown in Figure 6a. The solid line represents
the hyperplane, and the distance between two parallel dashed lines and the solid line is
equal. In the SVM model, nonlinear mapping functions were used to map the training
samples to the vicinity of the hyperplane to achieve the training process of the network.
The SVM model has strong mathematical theoretical support, strong interpretability, and
does not rely on statistical methods. Therefore, the problems of regression and classification
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have essentially been simplified. However, the initial samples and network parameters of
the model have a significant impact on the network structure and prediction performance.
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2.3.3. LSTM Prediction Model

The LSTM network was proposed by Hochreiter and Schmidhuber [39] and solved
the problems of recurrent neural networks in long-term memory and gradient vanishing
by adding gating systems. The optimized network can efficiently handle multivariable
and multi-sample problems and exhibits extremely high memory performance. Compared
with recurrent neural network, LSTM network has stronger data processing capabilities,
especially in preserving historical data and making selective decisions. Therefore, LSTM is
commonly used to solve time series analysis and regression analysis problems. Figure 6b
shows the structure of the LSTM model, whose core is a cell unit with a memory function,
which selectively updates the unit state in the form of a gate structure to achieve forgetting
and memory functions. Each LSTM unit consists of three gate units, namely input gate,
output gate, and forgetting gate. The forgetting gate limited the output value of the sigmoid
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function to 0~1 to control the amount of information flowing through the sigmoid layer.
The closer the output value was to 1, the more historical information was retained, while
the closer the output value was to 0, the more historical information was forgotten.

2.3.4. RF Prediction Model

The RF model was first proposed by Breiman [40]. As a type of machine-learning
algorithm, RF is a powerful model based on bagging ensemble learning theory and is
highly integrated with random subspaces. The RF model is composed of multiple decision
trees, and the introduction of random variables on the basis of these decision trees provides
advantages in terms of the model’s high accuracy, strong generalization ability, and fast
convergence speed. It is widely used in solving classification and regression problems. In a
regression analysis, RF prediction result is the average of all decision tree prediction results.
In classification problems, the decision tree result with the highest number of voting results
is the final prediction result.

2.4. Data Preprocessing

Through the maize hardness measurement experiment, 100 sets of experimental data
and curves were obtained, but these data cannot be directly imported into the MLM as
data input, because the MLM has dimensional requirements for the input of initial data.
Dimensional differences between initial data can reduce the accuracy of the model and
generate significant system errors, ultimately affecting the predictive performance of the
entire network. Normalization is a commonly used data preprocessing method in MLMs,
which can eliminate dimensional differences between data and reduce errors [41,42]. This
study consistently restricts the input variables of the network to between 0 and 1; the
formula for normalization is as follows:

y =
(ymax − ymin)(x − xmin)

(xmax − xmin)
+ ymin (3)

where ymax is the upper limit of the normalized interval; ymin is the lower limit of the
normalized interval; x is the sample point of the data; xmin is the minimum value of the
data of any variable group; and xmax is the maximum value of the data of any variable
group.

3. Results and Discussion
3.1. Model Hyper-Parameter Optimization

In order to compare the predictive performance of the above four models for maize
hardness, these models were assigned the optimized hyper-parameter, and the root mean
square error (RMSE) and R-Square (R2) were used as analysis indicators for the four models.
To visually compare the training effectiveness of the models, the prediction performance
and fitting scatterplots of four regression model training and testing sets were analyzed.
The error between the actual and predicted values of the model was also analyzed.

In this study, the grid search method [43] was used to optimize the number of hidden
layer nodes in the four networks. Firstly, the approximate range of changes in the hidden
layer nodes was determined using empirical formulas. Then, the trends of the changes in
the R2 and mean absolute error (MAE) of the selected model under different hidden layer
nodes were compared to find the optimal solution for the hyper-parameters of the network.
The empirical formulas for the hidden layer, MAE, RMSE, and R2 are as follows:

n =
√

m + l + a (4)

MAE =
1
N

N

∑
i=1

|ŷi − yi| (5)
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RMSE =

√√√√ 1
N

N

∑
i=1

(ŷi − yi)
2 (6)

R2 = 1 −

N
∑

i=1
(ŷi − yi)

2

N
∑

i=1
(yi − yi)

2
(7)

where n is the number of neuron nodes in the hidden layer; m is the number of input
variables; l is the number of neuron nodes in the output layer; and a is any number between
0 and 10. In this study, m is taken as 3, l is taken as 1, and N is the number of samples; yi
and ŷi are the actual and predicted values, respectively; and yi is the mean value of yi.

3.1.1. Optimizing GA Network Parameter

The GA network added a fitness function on the basis of the backpropagation network,
aiming to optimize the initial weights and thresholds between neurons in each layer, and
the topology structure is consistent with the backpropagation network. The total length
of the real number encoding was 41, the initial population size was set to 100, and the
maximum evolutionary algebra was 30 generations. After repeated experiments and testing,
it was found that the mutation probability has a minor impact on the network prediction
performance, while the crossover probability (CP) has a significant impact. The mutation
probability was set to 0.01, and the maximum number of iterations was 1000. The learning
rate, minimum error of training objectives, display frequency, momentum factor, minimum
performance gradient, and maximum allowable failure frequency were 0.01, 1 × 10−6, 0.01,
1 × 10−6, and 6 per 25 iterations, respectively. Moreover, the changes in the MAE and R2 of
the GA network training and testing sets with the CP were analyzed, as shown in Figure 7.
Obviously, the change in CP has a significant impact on both the MAE and R2. When the
CP was 0.7, the R2 of the training and testing sets reached the maximum value, which
happened to be the MAE value with the minimum error. Taking into account both the GA
training set and the testing set, when the CP value is 0.7, the network is within the optimal
operating parameters.
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3.1.2. Optimizing SVM Network Parameters

The radial basis function was selected as the grain function of the SVM network, in
which the penalty factor C and the radial basis parameter Gamma (g) had a significant
impact on the prediction performance of the models. The changes in the training and
testing sets’ MAE and R2 for the SVM model under different parameter combinations
were analyzed, as shown in Figure 8a–d. Compared with the g parameter, the change in
penalty factor C has a significant impact on the network MAE and R2. As the penalty factor
C increases, the MAE first decreasesand then increases, while the R2 first increases to a
specific value and then remains stable. When the penalty factor C is 1200, a turning point
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occurs, while when the g parameter increases to 0.7, the R2 in both the test and training
sets reaches its peak. Combining the prediction performance of the training and testing
sets of the network, the hyper-parameter penalty factors C and g of the SVM model were
set to 1200 and 0.7, respectively.
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3.1.3. Optimizing LSTM Network Parameters

As a deep learning algorithm, the LSTM adopts an Adam optimizer to significantly
improve its learning speed and training effectiveness. We conducted experiments on and
made comparisons of numerous hyper-parameters of the LSTM, among which the initial
learning rate and the number of hidden layers have a significant impact on the prediction
performance of the model. We analyzed the impact of the initial learning rate and the number
of hidden layers on the MAE and R2 of the LSTM model training and testing sets under
different parameter combinations, as shown in Figure 9a–d. Compared with the number
of hidden layers, the initial learning rate has a greater impact on the model’s prediction
performance. As the initial learning rate increases, the MAE first decreases and then increases,
while the R2 first increases and then tends to stabilize. Unlike the trend of the changes in MAE,
an increase in the number of hidden layers will first decrease and then increase the MAE
value of the model. On the contrary, R2 indicates that increasing the number of hidden layers
appropriately can improve the predictive performance of the model. However, when the
number of hidden layers reaches a certain value, the model will exhibit obvious overfitting,
which will decrease the predictive performance of the model. By comprehensively analyzing
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the predictive performance of the model, the number of hidden layers and an initial learning
rate of 60 and 0.08 were optimal for the LSTM model, respectively.
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3.1.4. Optimizing RF Network Parameters

The number of decision trees and the maximum number of leaves are the two parame-
ters that have the greatest impact on the RF model. The variation trends of MAE and R2

in the training and testing sets of the RF model under different parameter combinations
were analyzed, as shown in Figure 10a–d. Compared with the number of decision trees, the
change in the maximum number of leaves will cause significant fluctuations in the MAE of
the model, first decreasing and then increasing. The turning point will appear when the
maximum number of leaves is 3; at this point, the prediction performance of the network
is optimal. The increase in the number of decision trees has little impact on the changes
in MAE; even increasing the number of decision trees will not improve the training effect
of the model and instead will make the network more complex. However, increasing the
number of decision trees will cause R2 to first increase and then decrease, indicating that
as the number of decision trees increases, the model will experience initial overfitting and
gradually move towards a stable state. Taking into account the predictive performance of
the model, the number of decision trees and the maximum number of leaves for the RF
model were set to 50 and 3, respectively.



Agriculture 2024, 14, 224 13 of 23

Agriculture 2024, 14, x FOR PEER REVIEW 14 of 25 
 

 

combinations; (c) Variation in R2 in LSTM model training set with different parameter combinations; 
(d) Variation in R2 in LSTM model testing set with different parameter combinations. 

3.1.4. Optimizing RF Network Parameters 
The number of decision trees and the maximum number of leaves are the two param-

eters that have the greatest impact on the RF model. The variation trends of MAE and R2 
in the training and testing sets of the RF model under different parameter combinations 
were analyzed, as shown in Figure 10a–d. Compared with the number of decision trees, 
the change in the maximum number of leaves will cause significant fluctuations in the 
MAE of the model, first decreasing and then increasing. The turning point will appear 
when the maximum number of leaves is 3; at this point, the prediction performance of the 
network is optimal. The increase in the number of decision trees has little impact on the 
changes in MAE; even increasing the number of decision trees will not improve the train-
ing effect of the model and instead will make the network more complex. However, in-
creasing the number of decision trees will cause R2 to first increase and then decrease, 
indicating that as the number of decision trees increases, the model will experience initial 
overfitting and gradually move towards a stable state. Taking into account the predictive 
performance of the model, the number of decision trees and the maximum number of 
leaves for the RF model were set to 50 and 3, respectively.  

  
(a) (b) 

  
(c) (d) 

Figure 10. Variation in MAE and R2 in the training set and testing set of RF model with different 
parameter combinations. (a) Variation in MAE in training set of RF model with different parameter 
combinations; (b) Variation in MAE in testing set of RF model with different parameter combina-
tions; (c) Variation in R2 in RF model training set with different parameter combinations; (d) Varia-
tion in R2 in RF model testing set with different parameter combinations. 

Figure 10. Variation in MAE and R2 in the training set and testing set of RF model with different
parameter combinations. (a) Variation in MAE in training set of RF model with different parameter
combinations; (b) Variation in MAE in testing set of RF model with different parameter combinations;
(c) Variation in R2 in RF model training set with different parameter combinations; (d) Variation in R2

in RF model testing set with different parameter combinations.

3.2. Analysis of Training Set Prediction Effect

The neural network model first trains the data provided by the training set, and the
prediction performance of the training set reflects the prediction trend of the entire network.
Therefore, the change trend between the true and predicted values of the four model
training sets was analyzed first, as shown in Figure 11a–d. It can be observed that there is
only a small portion of sample points with significant errors between the predicted values
of the training set and the true values, while the errors between all other samples are within
a reasonable range of variation. From the overall prediction trend, the actual change trend
of the sample points is highly consistent with the predicted trend of the model. From the
magnitude of data changes, it can be seen that the training set data fitting performance
of the GA and SVM models is more reliable than that of the other two models. Although
the LSTM and RF models still have certain advantages when it comes to predicting trends,
they demonstrate significant disadvantages in terms of model accuracy. The prediction
performances of the training sets are ranked in descending order as follows: SVM, GA,
LSTM, and RF.
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Scatterplots can effectively represent the overall dispersion of sample data, facilitating
the evaluation of the predictive performance of the model. Based on this, scatterplots were
drawn for the true sample points of the training and testing sets and the predicted values
of the four models, and their respective fitting lines are as shown in Figure 12a–d. It is not
difficult to see from the fitting scatterplot that there is a good linear relationship between
the 75 samples used in the training set for training the network and the predicted values of
each model, and the sample points are relatively evenly distributed on both sides of the
fitting line, with fewer significant deviation points. This indicates that the sample points in
the model training set have a high degree of agreement with the predicted values of the
model, and the model training is effective. The degrees of dispersion of the sample points
in the models are listed in descending order as follows: SVM, GA, RF, and LSTM.

The amplitude of the error plot can to some extent reflect the fluctuation of a set of data,
and the model can be evaluated to different degrees based on the size of the data sample
points. To further compare the predictive performance of the selected model training set,
the error between the true values of the samples and the predicted values of the model was
analyzed, as shown in Figure 13. From the error chart, it can be seen that the error between
the 75 samples in the training set and the predicted values of the model is relatively flat,
with an error range of −8 to 8. The amplitude of error changes in the model training set can
be arranged in ascending order as follows: SVM, GA, LSTM, and RF. This order is similar
to the results obtained from analyzing the scatterplots. Finally, comparing the evaluation
indicators of the model is more intuitive and persuasive. We calculated the R2 and RMSE of
the model training and testing sets, as shown in Table 2. It can be seen that the R2 of the four
selected model training sets is above 0.91, and the RMSE is less than 3.6, indicating that the
overall training effect of the training set is good. Among them, the R2 of the LSTM model
is the smallest, 0.91435, while the RMSE is the largest, 3.5413. Compared with the other
three models, the R2 values of the SVM, GA, and RF are 8.56%, 7.62%, and 6.44% higher
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than the LSTM, respectively, while the RMSE values of the SVM, GA, and RF are 72.58%,
60%, and 5.3% lower than the LSTM, respectively. The maximum errors between the true
and predicted values of the training set in the four models are 3.2708 (SVM), 4.3151 (GA),
7.9228 (RF), and 7.6466 (LSTM), and the minimum errors are 0.0384 (SVM), 0.0195 (GA),
0.0687 (RF), and 0.0048 (LSTM), respectively. Based on the above analysis, the predictive
abilities of the training set are as follows: SVM, GA, RF, and LSTM, in descending order.
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Table 2. Root mean square error (RMSE) and R-Square (R2) for different models.

Prediction Models
Training Set Testing Set

RMSE R2 RMSE R2

GA 1.4308 0.98402 2.8441 0.92761
SVM 0.9712 0.99262 3.3362 0.90211

LSTM 3.5413 0.91435 4.0137 0.84443
RF 3.3537 0.97320 4.1300 0.88714

3.3. Analysis of Testing Set Prediction Effect

The testing set of neural networks is used to test the trained network model. Generally,
the predictive performance of the test set determines the data fitting and generalization ability
of the entire network model to a certain extent. Except for the 75 samples used in the training
set, the remaining 25 sets of data will be used as sample points in the test set to evaluate
the predictive performance of the model. Similar to the analysis method of the training set,
Figure 14a–d shows the trend of changes between the 25 samples in the test set and the
predicted values of the four models. From the figure, it can be seen that, compared with the
training set, the similarity between the predicted values and the actual values is significantly
reduced, which is related to the prediction accuracy of the model itself. However, the trend
of the predicted values is basically consistent with the actual values, with a relatively large
error between the two, indicating that the model does not have overfitting. According to the
trend of data changes, the data-fitting performance of the GA and SVM model test sets is
significantly better than that of the other two models, which is consistent with the results of
the training set. We ranked the models in ascending order according to the similarity of their
predicted trends as follows: RF, LSTM, SVM, and GA.
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Observing the scatterplot of fitting the 25 sample points in the test set, it can be seen
that, like in the training set, there is also a linear correlation between the 25 samples used
to test the predictive performance of the model, but the fitting effect is significantly inferior
to that of the training set. Overall, the test set sample points are evenly distributed on both
sides of the fitting line, but there are individual data points that deviate from the fitting line.
We ranked them in terms of the degree of dispersion of the test set data as follows: GA,
SVM, RF, and LSTM, in descending order. In addition, the errors in the test set were also
statistically analyzed, as shown in Figure 15. It can be seen from the figure that the number
of errors between the actual and predicted values in the test set has increased. Among the
four models, the GA has the smallest error, followed by the SVM and LSTM, and the RF
has the largest error. During network operation, it was found that the running speed of the
LSTM and GA networks is longer than that of the RF and SVM, because the difference in
computational principles between the models is significant.
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Finally, the two evaluation metrics, R2 and RMSE, of the test set were compared, as
shown in Table 2. The R2 of all four models in the test set is above 0.84, and the range of
RMSE variation is between 2.8 and 4.2. Among them, the R2 of the LSTM is the smallest,
0.84443, and the RMSE of the RF is 4.0137. The R2 of the GA, SVM, and RF increased by
9.85%, 6.83%, and 5.06%, respectively, on the basis of the LSTM. The RMSE of the GA, SVM,
and LSTM decreased by 31.14%, 19.22%, and 2.82%, respectively, on the basis of the RF. The
maximum errors between the actual and predicted values of the model are 7.1609 (GA),
7.3419 (SVM), 0.88714 (RF), and 0.84443 (LSTM), respectively. The minimum errors are
0.204 (GA), 0.06482SVM), 0.1359 (RF), and 0.867 (LSTM), respectively.

By comprehensively comparing the overall predictive performance of the four network
model testing sets, it was found that the GA model outperforms the other models in terms
of both the fitting of the scatterplot between the actual and predicted values and the error
fluctuation in the testing set. The sorting results of the testing set based on the predicted
performance are the GA, SVM, LSTM, and RF. Combining the training and testing sets,
the overall prediction performance of the GA model is optimal, with a small range of
error fluctuations. It also indicates that the GA model can improve the training speed and
prediction performance of the backpropagation model [44]. During the training process, the
SVM model actually experienced overfitting, and the optimization method for the hyper-
parameters of the network still needs improvement. The most important feature of the RF
model is the randomness of the training, which has no restrictions on the input and output
of variables. In terms of the importance of variables, the results were as follows: DI, LD, and
LS. This outcome is consistent with the research results in the literature [31]. However, the
RF model is not highly sensitive to experimental data on maize grain hardness. The LSTM
model is a deep learning network with many variables that affect network accuracy, and
the training time of the general network is relatively long. Therefore, by comprehensively
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analyzing the prediction accuracy and efficiency of various models, the GA model is more
suitable for predicting maize grain hardness.

In order to more intuitively and accurately demonstrate the predictive ability of the
model on initial data, the predicted values of each of the four models, along with the maize
hardness values measured in the indentation loading test, are summarized together. The
first 75 sets of data are the training set samples of the model, and the remaining 25 sets of
data are the testing set samples. The specific values of LS, LD, and DI designed through
the optimal Latin square method are listed in Table A1.

3.4. Microstructure Analysis of Maize Surface before and after Compression

We used the direct sample preparation method to grind five randomly selected maize
grains into a square sample with a height of 2 mm. Four samples were subjected to loading
tests using four DI values, while the other sample was untreated. Then, the sample was
adhered to the conductive adhesive platform of the electron microscope and subjected
to a gold-spraying treatment using an ion-sputtering instrument. The internal structure
of the maize was observed via a scanning electron microscope. The scanning electron
microscope is a tungsten wire scanning electron microscope (SEM, Hitachi-S3400N) with
a resolution of 3.0 nm (30 kV) and a BSE resolution of 4.0 nm (30 kV). The magnitude
of enlargement is 5~300,000 times, as shown in Figure 16a. The outer layer of maize
endosperm is composed of many cells, which are wrapped in starch granules and closely
connected to the protein matrix.
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Figure 16. Endosperm microstructure of maize grains before and after loading with different types of
indenters. (a) Untreated seeds, magnified 1500 times; (b) A 30◦ conical indenter, magnified 320 times;
(c) A 30◦ triangular indenter, magnified 130 times; (d) A 30◦ quadrangular indenter, magnified
150 times; (e) A spherical steel needle indenter, magnified 85 times; (f) A spherical steel needle
indenter, magnified 80 times.

There are many small pores inside the starch particles, which are spherical in shape
and have an unsmooth surface. This may be due to the breakage of protein matrix filaments
during the natural drying process of maize, resulting in the formation of fine pore texture
shapes in the endosperm [45]. From Figure 16b, it can be seen that the arrangement of
starch particles inside the maize endosperm is relatively tight. Compression can disrupt the
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cohesion between starch particles, causing the crushed starch particles to be pushed around
the indentation and form cracks. As shown in Figure 16c–f, after compression, obvious
cracks and gaps will form around the indentation of the maize endosperm. The deformation
of these cracks is influenced by the shape and hardness of the indenter used, with the
pyramid-shaped indenter having the greatest degree of destruction to the surface of the
maize. During the pressing process, the indenters compress the wall and bottom structures,
and the internal structure of the grain resists this deformation, eventually forming cracks or
breaking after exceeding the maximum binding force. Hardness is the ability of a material
to resist deformation and damage within a small volume on its surface, and the shape of
the indenter has a significant impact on the degree of structural damage inside the grains.
This also deepens our understanding of the hardness characteristics of maize grains at
the micro level. This conclusion was consistent with the importance degree results of the
factors affecting maize hardness in the RF model.

4. Conclusions

(1) The hardness of the endosperm part of the selected maize grains was determined
by using the indentation loading curve method and a texture analyzer. It was shown
that under different types of loading indenters, the hardness of the maize endosperm
ranges from 38 to 81 MPa when the loading speed varies from 0.2 to 1.6 mm/s and the
loading depth varies from 30 to 70% of the sample height. The prediction ranges of maize
hardness for the four network models are as follows: the GA model predicts the range
from 39.71 to 82.77 MPa, the SVM model predicts the range from 39.35 to 84.95 MPa, the
RF model predicts the range from 45.65 to 77.53 MPa, and the LSTM model predicts the
range from 44.28 to 83.94 MPa.

(2) The RF model ranks DI, LD, and LS in order of importance in terms of the input
variables. After analyzing the internal structure of the maize grains from a microscopic
perspective, it was found that the surface of the maize endosperm contains a large number
of starch particles, which are arranged tightly. The degree of damage to the surface of the
grains varies with the different shapes of the indenters. The more complex the shape of the
indenter, the more severe the structural damage to the internal grains, and obvious cracks
will appear on the surface of the grains. When the loading pressure reaches a certain value,
the grains will be crushed.

(3) After optimizing the hyper-parameters of the model using the grid search method,
we compared the RMSE and R2 of the training and testing sets of the GA, SVM, LSTM,
and RF regression models. The results showed that the GA model had the best prediction
performance, with the smallest error between the actual and predicted values. The RMSE
values of the training and testing sets are 1.4308 and 2.8441, respectively, and the R2 values
are 0.98402 and 0.92761, respectively. This indicated that a genetic algorithm (GA) can
significantly optimize the weights and thresholds of the initial network, thereby improving
the prediction performance of the network. Compared to other models, the SVM model
exhibited overfitting, while the RF and LSTM models exhibited significant errors between
actual and predicted values, resulting in a poor overall prediction performance. Therefore,
the GA model can serve as a stable and reliable regression model to provide maize hardness
information for industries such as transportation, processing, and milling.

(4) This study focuses on seed maize with a moisture content of 36.54%. The grain
hardness was measured using the indentation loading method, and the measured hardness
information was imported into mechanical learning models to predict the maize hardness
information. This can be used for cultivating high-quality varieties and industrial classifi-
cation processing, improving grain quality, minimizing raw material loss, and improving
processing efficiency. However, this study only investigated maize grains with the same
moisture content for a single variety, without involving changes in maize hardness infor-
mation between different moisture contents or the sensitivity of network models to such
data. In addition, there is still room for improvement in the selection of network models for
predicting hardness information, with only four common regression models selected here.
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In future research, we will increase the variation in hardness between different varieties
under different moisture contents, as well as the response of each variety to the model.
In addition, we will continue to study deep learning and its optimization algorithms to
provide reliable models for predicting the hardness information of agricultural materials.
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Appendix A

Table A1. Maize grain hardness measurements and model predictions.

Number LS (mm/s) LD(%) DI Hardness (MPa) GA SVM LSTM RF

1 0.858 61.5 3 75.2 77.6793 77.1186 80.1878 74.7386
2 0.752 53.0 2 68.1 64.6445 65.0205 61.3048 65.0596
3 0.494 32.4 3 66.3 62.9560 64.1105 66.0335 62.7279
4 0.433 55.1 1 49.1 48.1072 48.6574 53.2738 53.9378
5 1.494 34.0 1 40.4 39.8996 40.3616 46.5257 47.8861
6 1.176 36.9 3 62.1 64.4225 62.5252 67.0208 62.0313
7 0.358 31.6 2 56.4 53.3637 55.9586 52.8238 56.4974
8 0.888 40.1 3 62.6 66.9152 64.5260 69.2150 63.5969
9 0.903 51.0 2 61.1 63.6378 64.1234 60.3918 63.6307

10 1.433 63.1 4 78.9 79.5367 79.3572 80.3839 74.8125
11 1.524 62.3 3 75.4 77.1389 75.8569 79.1988 74.2628
12 1.342 52.2 3 72.7 72.7195 74.1361 74.5175 70.7549
13 0.13 43.7 3 73.1 70.2840 69.8846 72.5521 69.7725
14 1.403 33.6 4 64.3 64.9010 64.7512 66.1458 62.8923
15 1.585 52.6 3 71.9 72.5455 71.9805 74.2258 71.4070
16 0.221 36.5 2 53.1 56.4130 56.3708 54.7594 54.8164
17 0.267 51.4 4 77.3 76.1667 76.8558 77.2953 72.6166
18 0.797 37.7 3 62.7 65.6436 63.1587 68.1496 63.6333
19 0.524 39.3 3 66.6 67.1053 66.5256 69.4927 64.0426
20 1.024 56.3 4 78.7 77.2508 79.1565 77.9446 75.9578
21 0.721 47.0 3 70.7 71.0211 70.3974 73.0788 70.4179
22 1.07 38.5 2 57.2 56.8418 56.7503 55.1722 58.0825
23 0.979 32.8 2 53.9 53.4626 53.4043 53.0031 55.8158
24 0.297 66.4 2 69.2 69.9637 68.7452 66.9145 66.6189
25 0.615 53.4 4 77.6 76.5786 78.0240 77.4980 74.0144
26 0.342 67.2 1 51.1 51.3815 51.5426 57.5752 56.6073
27 1.418 68.0 3 80.7 79.5844 79.5037 82.1673 76.9007
28 0.933 68.8 3 80.1 80.4667 79.6607 83.5416 77.4458
29 0.57 64.8 3 78.1 79.3534 78.3741 82.3058 74.6589
30 0.403 51.4 2 64.1 64.0369 65.0644 60.7573 63.6654
31 0.706 30.8 3 61.9 61.4761 61.4982 64.8418 60.8856
32 1.221 47.8 2 63.0 61.8522 63.4548 58.8934 64.6603
33 1.6 57.1 2 66.7 66.1024 66.2383 62.5600 66.9238
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Table A1. Cont.

Number LS (mm/s) LD(%) DI Hardness (MPa) GA SVM LSTM RF

34 1.267 56.7 3 76.5 74.9749 76.0433 76.9230 74.5833
35 0.145 59.9 1 49.6 49.0214 50.0251 54.8966 54.8586
36 1.327 54.7 1 49.4 49.4890 49.3452 53.2754 55.3952
37 0.206 35.3 3 65.0 65.2875 65.4468 68.0024 60.6685
38 1.509 42.9 4 72.1 70.0776 71.6524 70.2352 71.1017
39 1.312 31.2 2 52.8 52.0068 53.2271 52.2897 56.1437
40 0.161 45.8 2 61.8 61.4489 61.3578 58.5165 62.7182
41 0.676 63.9 1 50.5 51.3200 50.0401 56.5092 54.9905
42 0.585 44.6 4 73.1 72.4358 73.4093 73.1101 72.8603
43 1.13 47.4 1 44.9 46.2653 45.3288 50.7008 52.8229
44 0.979 54.2 3 75.1 74.2551 74.5589 76.2859 73.8603
45 1.373 43.3 3 68.4 67.9096 68.8421 69.9208 68.9786
46 0.842 60.3 2 67.5 67.7208 67.3406 64.2838 65.4786
47 1.388 30.4 3 60.1 59.7684 59.6517 63.4095 60.8247
48 1.555 38.1 3 65.3 64.4396 65.5619 66.9068 64.5259
49 1.206 45.4 3 71.3 69.3358 69.6647 71.2842 71.3713
50 0.115 40.5 1 42.2 41.8396 41.7715 48.3311 48.9927
51 0.373 33.2 4 64.5 66.5993 64.9368 68.1035 62.9332
52 0.448 41.3 2 59.1 58.9656 59.1496 56.6068 59.2060
53 1.145 37.3 1 39.9 41.4313 40.1941 47.3411 47.2515
54 1.297 69.2 3 80.1 80.1920 80.5304 82.9970 76.9057
55 0.661 34.9 1 38.9 39.7142 39.3545 46.5766 45.6451
56 0.479 62.7 4 81.7 80.5237 81.2670 82.5232 75.8693
57 0.691 34.4 2 54.5 54.7792 54.9422 53.7506 56.1823
58 0.873 41.7 2 59.6 58.8711 58.4296 56.5770 60.0761
59 0.948 30.0 2 52.2 51.6550 52.6587 52.0128 55.8043
60 0.782 35.7 4 67.0 67.2742 66.5643 68.3812 64.9563
61 0.494 59.5 2 67.2 67.4514 67.6516 64.0505 66.9347
62 1.115 65.2 2 68.8 69.5508 69.2411 66.1807 69.0721
63 1.085 65.6 4 83.0 80.8695 82.5530 82.4631 77.5252
64 0.1 53.4 3 73.9 75.1569 74.3463 77.5722 70.9103
65 0.464 42.1 3 69.3 68.8275 68.8354 71.0705 67.3143
66 1.191 61.9 3 78.2 77.4106 77.7561 79.6973 75.9553
67 0.191 50.6 2 64.1 63.7439 64.3127 60.4834 62.8886
68 0.327 36.1 1 40.6 39.9866 40.8748 46.9411 46.2117
69 0.964 57.9 1 49.1 50.0417 48.6529 54.4057 55.6349
70 0.539 50.2 2 63.7 63.4227 64.1386 60.2238 64.8700
71 1.539 38.9 2 58.2 56.6142 58.6589 55.0959 60.7751
72 1.055 32.0 4 63.9 64.5729 63.4505 66.1352 63.6514
73 0.903 48.6 4 75.5 73.9372 75.5386 74.3870 73.1514
74 0.312 58.3 3 77.5 77.0240 77.0397 79.6208 73.3080
75 1.358 64.3 1 53.1 52.8085 53.5515 56.8090 56.4638
76 0.767 44.1 2 60.9 60.2632 60.0277 57.6156 64.3905
77 1.236 39.7 2 58.6 57.4005 58.3864 55.5796 60.2598
78 1.009 66.8 1 53.7 52.7969 51.4872 57.6350 61.0312
79 0.827 60.7 3 76.8 77.3779 76.8648 79.8499 74.4751
80 0.63 68.4 2 69.6 70.6859 69.0368 67.6464 69.9052
81 1.252 58.7 2 67.2 66.9506 67.9803 63.4219 67.0204
82 0.736 49.0 1 46.0 46.3880 45.1469 51.2320 54.3548
83 0.252 63.5 3 78.8 79.2664 77.8685 82.3111 72.4188
84 0.418 45.0 1 46.6 44.2351 44.3052 49.8285 52.6769
85 0.388 48.2 3 71.1 72.1821 73.1042 74.3600 70.5142
86 1.1 55.5 2 65.8 65.5960 66.4977 62.1466 65.4816
87 1.039 46.6 3 76.6 70.2823 69.9029 72.2421 71.7513
88 0.282 67.6 3 79.4 80.7679 79.1365 84.1882 73.8329
89 0.645 69.6 4 79.9 82.7700 84.9483 85.5306 75.1910
90 0.176 57.5 2 68.7 66.6824 66.6787 63.3013 64.2805
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Table A1. Cont.

Number LS (mm/s) LD(%) DI Hardness (MPa) GA SVM LSTM RF

91 0.555 61.1 2 66.7 68.0765 67.8645 64.6989 67.7930
92 0.6 55.9 3 72.5 75.5567 75.6966 77.8771 73.8728
93 1.57 49.4 2 65.4 62.4348 63.6315 59.3768 65.5359
94 1.464 66.0 2 67.2 69.8064 71.1005 66.3330 70.2209
95 1.448 59.1 2 62.2 67.0518 68.1354 63.4856 66.8242
96 0.812 70.0 2 76.7 71.2430 69.3581 68.2486 69.7254
97 1.282 49.8 4 72.9 73.9487 76.5850 74.1011 72.3672
98 1.479 46.2 1 53.3 46.1391 46.2393 50.3027 55.2773
99 0.236 42.5 4 70.1 71.9640 70.7809 72.8929 69.1834

100 1.161 40.5 4 68.5 69.3507 70.1782 69.8549 63.9372

Note: In the fourth column of the table, 1 represents a 30◦ conical indenter, 2 represents a spherical indenter,
3 represents a 30◦ triangular indenter, and 4 represents a 30◦ quadrangular indenter.
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