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Abstract: A novel deep learning model, DiffuCNN, is introduced in this paper, specifically designed
for counting tobacco lesions in complex agricultural settings. By integrating advanced image process-
ing techniques with deep learning methodologies, the model significantly enhances the accuracy of
detecting tobacco lesions under low-resolution conditions. After detecting lesions, the grading of the
disease severity is achieved through counting. The key features of DiffuCNN include a resolution en-
hancement module based on diffusion, an object detection network optimized through filter pruning,
and the employment of the CentralSGD optimization algorithm. Experimental results demonstrate
that DiffuCNN surpasses other models in precision, with respective values of 0.98 on precision,
0.96 on recall, 0.97 on accuracy, and 62 FPS. Particularly in counting tobacco lesions, DiffuCNN
exhibits an exceptional performance, attributable to its efficient network architecture and advanced
image processing techniques. The resolution enhancement module based on diffusion amplifies
minute details and features in images, enabling the model to more effectively recognize and count
tobacco lesions. Concurrently, filter pruning technology reduces the model’s parameter count and
computational burden, enhancing the processing speed while retaining the capability to recognize
key features. The application of the CentralSGD optimization algorithm further improves the model’s
training efficiency and final performance. Moreover, an ablation study meticulously analyzes the
contribution of each component within DiffuCNN. The results reveal that each component plays a
crucial role in enhancing the model performance. The inclusion of the diffusion module significantly
boosts the model’s precision and recall, highlighting the importance of optimizing at the model’s
input end. The use of filter pruning and the CentralSGD optimization algorithm effectively elevates
the model’s computational efficiency and detection accuracy.

Keywords: tobacco disease identification; DiffuCNN; object detection; deep learning

1. Introduction

In modern agricultural production, the management of tobacco crop health [1] presents
a significant and complex challenge. Diseases affecting tobacco not only severely impact the
crop yield and quality [2] but also lead to economic losses and ecological issues. Therefore, the
accurate and efficient identification and grading of tobacco diseases are crucial for enhancing
agricultural productivity and sustainability. Given that tobacco is an economically significant
crop, the timely and accurate identification of its diseases directly influences the reduction in
losses and improvement of the yield [3]. However, the identification of tobacco diseases faces
challenges, such as high diversity and complex environmental conditions [4], especially in
low-resolution and complex agricultural scenes. Traditional identification methods rely on
manual vision and experience [5], which are inefficient and susceptible to subjective biases.

Fitri et al. [6] explored pest detection in Indonesian tobacco plants using the Gray-
Level Co-Occurrence Matrix (GLCM) for texture feature extraction and Naive Bayes for
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classification, achieving an accuracy of 82.2%. Xu et al. [7] found traditional ORB corner
detection algorithms insufficiently sensitive to image edges when identifying tobacco leaf
diseases, leading to a suboptimal performance. Chen et al. [8] utilized machine learning
methods to recognize the health status of tobacco leaves, selecting a 188-dimensional
Support Vector Machine (SVM) combination as the final predictor, reaching an accuracy
of 92.7%. Sakhamuri Sridevi et al. [9] reviewed plant diseases in India, emphasizing
that manual identification requires extensive labor and botanical knowledge, resulting in
high costs.

With the rapid advancement of artificial intelligence and computer vision technologies,
their application in disease detection and analysis has become a research hotspot [10–13].
However, the complexity of agricultural scenes and limitations in image acquisition of-
ten result in low-quality tobacco images [14], challenging accurate disease identification.
Traditional methods based on high-resolution images are less effective in these scenarios.
Moreover, existing super-resolution techniques, despite enhancing the image quality, still
face inefficiency and inadequate accuracy issues when processing agricultural images,
necessitating more effective and precise disease identification methods.

Lin et al. [15] proposed the CAMFFNet (Coordinate Attention-Based Multiple Feature
Fusion Network) CNN model for field tobacco disease recognition, achieving an accuracy
of 89%. However, its large parameter size leads to high computational costs. Swasono
Dwiretno Istiyadi et al. [16] used VGG16 for tobacco leaf pest classification, achieving high
accuracy levels, but their dataset was limited to 1500 images, questioning the model’s
generalizability. Siva Krishna Dasari et al. [17] designed a CNN-based tobacco grad-
ing solution, achieving 85.10% accuracy but only 64% on other datasets. Wu et al. [18]
proposed a convolutional neural network (CNN)-based intelligent bulk curing method,
TobaccoNet, addressing the health hazards of bulk tobacco smoking, achieving significant
results. Wang et al. [19] introduced a CNN-based quantitative modeling method for near-
infrared spectroscopy datasets to detect nicotine in tobacco, aiding the tobacco industry’s
development. Li et al. [20] improved the YOLOv7 model for tobacco disease identification
and tested it on the Android platform, showing over 90% accuracy. Guo et al. [21] designed
a Convolutional Swin Transformer (CST) based on the Swin Transformer for plant disease
identification, achieving an accuracy of 90.9%. However, they did not consider the model’s
robustness. He et al. [21] developed a joint Swin Transformer and SCMix MLP architec-
ture for complex tobacco feature learning, proposing a tobacco classification model based
on pyramid feature fusion, achieving 75.8% accuracy and a 12 ms inference time. Pant
Kartikey et al. [22] focused on classifying tobacco-related media texts, considering factors
like the affected population’s language and its combination in fine-grained classification
mechanisms. Borhani Yasamin et al. [23] used the Vision Transformer (ViT) method for
real-time automated plant disease detection, combining a CNN with a ViT, noting that
while the model performance increased, the prediction speed decreased.

Despite the maturation of computer vision technologies for tobacco disease iden-
tification, these methods generally rely on high-resolution images, and their detection
effectiveness decreases with reduced image resolutions. Therefore, this study introduces
an innovative model, DiffuCNN, specifically designed for identifying and grading tobacco
diseases in low-resolution and complex agricultural scenes. The key contributions of this
paper are as follows:

1. A novel deep learning model, DiffuCNN, is proposed, specially designed for counting
tobacco diseases in low-resolution complex agricultural scenes, significantly improv-
ing the accuracy of tobacco disease detection under low-resolution conditions.

2. DiffuCNN integrates a diffusion-based resolution enhancement module, a target
detection network optimized through filter pruning, and the CentralSGD optimiza-
tion algorithm, effectively enhancing the performance of tobacco disease detection
and grading.
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3. Experimental results demonstrate that DiffuCNN surpasses other models in accuracy,
recall, precision, and frames per second (FPS), particularly excelling in the performance
of tobacco disease counting.

4. Detailed ablation studies on each component of DiffuCNN validate the significance
of each part in improving the performance, including the effective application of
resolution enhancement, filter pruning, and the CentralSGD optimization algorithm.

In summary, this research aims to provide robust technical support for tobacco disease
monitoring and offer new insights and solutions for similar agricultural disease identifi-
cation problems. In practical applications, this not only aids in enhancing the efficiency
and accuracy of disease management but may also positively impact the sustainability of
agricultural production. Ultimately, the goal is to contribute to the modernization of global
agricultural production through technological innovation.

2. Related Work
2.1. Super-Resolution

In recent developments, super-resolution techniques have been extensively applied
to enhance the quality of low-resolution images, demonstrating significant potential in
the field of agricultural disease identification and lesion counting [24–26]. The impact
of super-resolution techniques on tobacco disease identification is primarily manifested
in the improved clarity of details in low-resolution images, making subtle features, such
as lesions and leaf veins, more pronounced. This enhancement significantly boosts the
recognition capability of disease detection models. By increasing the resolution of images,
deep learning models are able to more accurately identify and classify different types
of tobacco diseases, especially in complex agricultural scenes with suboptimal lighting
conditions. The application of this technology not only improves identification accuracy
but also aids in the early detection of diseases, providing stronger technical support for the
prevention and treatment of tobacco diseases.

2.1.1. Interpolation-Based Super-Resolution

Interpolation-based super-resolution methods represent the most fundamental and
intuitive approach to image enlargement [27]. The core concept involves using mathemati-
cal interpolation algorithms to estimate missing pixel values in low-resolution images. For
instance, bilinear interpolation, a common method, is mathematically expressed as follows:

I′(x, y) =
2

∑
i=1

2

∑
j=1

I(i, j) · (1 − |x − i|) · (1 − |y − j|) (1)

Here, I′ denotes the interpolated image, I denotes the original low-resolution image,
and (x, y) denotes the coordinates of the new pixel, with (i, j) being the coordinates of the
original pixel. Although this method is computationally simple, its performance is limited
when dealing with images containing complex textures and details, such as lesion features.

2.1.2. Generative Algorithm-Based Super-Resolution

With the advancement of deep learning technologies, generative algorithm-based
super-resolution methods have become a research focus [28]. These methods typically
utilize convolutional neural networks (CNNs) [29–31] or generative adversarial networks
(GANs) [28,32] to learn and generate high-resolution images. The application of CNNs in
super-resolution primarily involves learning the mapping relationship between low- and
high-resolution images. A typical CNN structure for super-resolution comprises multiple
convolutional layers, each learning specific image features. A basic CNN model for super-
resolution is represented as follows:

IHR = f (ILR; θ) (2)
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where IHR is the reconstructed high-resolution image, ILR is the original low-resolution
image, f represents the CNN model, and θ is the model parameters. This approach better
recovers details in images of small objects, enhancing accuracy in recognition and counting.

Generative adversarial networks (GANs) focus more on the visual quality of images in
super-resolution applications. The GAN typically consists of two components: a generator
and a discriminator. The generator produces high-resolution images, while the discrimina-
tor assesses the images’ authenticity. The GAN model for super-resolution is formulated
as follows:

min
G

max
D

EIHR ∼ pdata(IHR)[log D(IHR)] +EILR ∼ pdata(ILR)[log(1 − D(G(ILR))] (3)

where G is the generator, D is the discriminator, IHR is the real high-resolution images,
and ILR is the low-resolution images. The GAN excels in restoring more realistic and
natural details in super-resolution reconstructions, which is crucial in processing images to
accurately reflect their natural state.

In applications like lesion counting, the deployment of super-resolution technology
significantly improves the image quality and counting accuracy. While interpolation-based
methods are simple, they are limited in handling images of high complexity. In contrast,
generative algorithm-based super-resolution techniques, especially those using CNNs and
GANs, not only enhance visual quality but also excel in retaining critical features and
details, which is pivotal for the precise identification and counting of lesions.

2.2. Object Counting Methods in Computer Vision

Object counting methods based on computer vision have recently emerged as a signifi-
cant research direction in machine learning and computer vision, particularly in agricultural
applications like lesion counting. These methods offer an effective automated solution. This
section delves into two main object counting approaches: probability density-based count-
ing methods and object detection-based counting methods, exploring their application in
lesion counting scenarios.

2.2.1. Probability Density-Based Counting Methods

Probability density-based counting methods aim to calculate the total number by
estimating the probability density of object occurrences in images [33,34]. Rather than
directly identifying and locating each individual object in the image, these methods generate
a density map representing the object distribution. The basic concept is mathematically
expressed as follows:

C = ∑
x,y

D(x, y) (4)

where C denotes the total count and D(x, y) denotes the density estimate at coordinates
(x, y). The density map D is typically obtained through regression analysis of image fea-
tures, such as using convolutional neural networks (CNNs) to learn the mapping relation-
ship between image features and the density distribution. In lesion counting applications,
a key challenge for this method is accurately estimating the density map. Tobacco lesions
often appear as small, densely packed objects in images, necessitating the density estima-
tion model to effectively handle highly congested scenes. Therefore, developing specific
feature extraction and learning mechanisms for small targets becomes crucial to enhance
the counting accuracy.

2.2.2. Object Detection-Based Counting Methods

Another popular approach is object counting based on target detection [35,36]. This
method initially employs object detection algorithms to identify each object in the im-
age, followed by counting the identified objects. A typical target detection framework is
formulated as follows:

O = (bi, pi)
N
i=1 (5)
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where O represents the set of detected objects, bi represents the bounding box of the i-th
object, pi represents the probability of correct detection of the object, and N represents
the total number of detected objects. In lesion counting applications, target detection
models need to accurately identify the position and boundaries of each lesion, posing high
demands on the model’s spatial resolution and feature extraction capabilities. Traditional
target detection models may encounter difficulties in handling detail targets like lesions,
such as overlapping bounding boxes and overlooking small targets. Thus, optimizations
for small target detection, like improved feature extraction networks and refined bounding
box adjustments, are vital for enhancing the counting accuracy.

When combining these approaches, it is evident that counting methods based on the
probability density are generally suitable for scenarios where targets are of a uniform size
and distributed relatively evenly. However, in dealing with tobacco lesions, which vary in
size and shape under natural conditions, these methods may be limited by the accuracy
of the density estimation. Counting methods based on target detection are applicable
to scenarios with significant variations in the target shape and size. In applications of
tobacco lesion counting, such methods can accurately differentiate between different types
of diseases and their severity levels but may require higher computational resources and
complexity to handle target detection in complex backgrounds. Therefore, selecting the
appropriate counting method based on specific application requirements and conditions,
and optimizing accordingly, is crucial for achieving efficient and accurate lesion counting.

3. Materials
3.1. Dataset Analysis

The dataset for this study was primarily sourced from two channels: the West Agricul-
tural Technology Park of China Agricultural University and internet crawling. Each source
provided a rich and diverse dataset, as shown in Figure 1.

Figure 1. Diverse tobacco leaf dataset. The collection showcases a variety of leaf conditions and
environments: from left to right, leaves with powdery mildew, leaves in natural outdoor settings with
potential pest damage, healthy leaves with complex backgrounds, and leaves exhibiting symptoms of
potential disease or stress factors. This dataset highlights the variability in lighting, leaf orientation,
and background complexity, which poses challenges for accurate disease detection and counting.

3.1.1. Dataset Collection

The West Agricultural Technology Park of China Agricultural University, an important
base for agricultural research, offered an extensive collection of crop and pest samples. Data
collected from this site primarily comprised images of tobacco lesions on various crops,
captured under natural lighting and diverse environmental conditions. This diversity and
realism in the dataset are crucial for training a robust model for tobacco lesion counting.
In addition to field data, a substantial collection of tobacco lesion images was amassed
through internet crawling techniques, as illustrated in Table 1. The internet-sourced data,
encompassing a wider range of origins, including different regions and crop types, contributed
to enhancing the model’s recognition capabilities under various environments and conditions.

The collection of the dataset was conducted under meticulously planned and strictly
controlled conditions, with an aim to ensure the quality of the obtained data and the
validity of the experimental results. The collection commenced in spring and continued
until the end of autumn, covering the entire growth cycle of the crop to ensure images of
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tobacco diseases at different growth stages were gathered. Data collection primarily took
place under sunny and cloudy weather conditions to obtain images under varying lighting
conditions. To capture the characteristics of tobacco diseases in various environments,
the collection times were scheduled for the morning, noon, and evening, allowing for
image acquisition under different natural lighting conditions, thus enhancing the diversity
and authenticity of the dataset. The collection equipment included high-resolution digital
cameras (Canon IXUS 285) and professional microscopes. The digital camera was used
to capture the overall distribution of tobacco diseases in the field, while the microscope
was utilized for obtaining high-definition images of disease details. Each collection activity
was carried out according to standardized procedures, with detailed records of the specific
conditions of photography, including the date, time, weather conditions, and camera setting
parameters, providing important reference information for subsequent data analysis and
model training. In addition to on-site collection, specialized scripts developed for efficiently
collecting images from the internet were also utilized. These scripts could automatically
search and download images from websites related to agriculture and plant pathology
based on predefined keywords, extracting important metadata, such as the upload date, the
image source, and a detailed description. This meticulously designed and executed data
collection process successfully constructed a high-quality, diverse dataset of tobacco disease
images captured from spring to autumn, under various lighting conditions and against
different backgrounds. The diversity and authenticity of this dataset greatly facilitated the
training of the tobacco disease counting model, laying a solid foundation for achieving a
high accuracy and robustness in practical applications.

Table 1. Tobacco disease dataset distribution.

Disease Type Number of Images Size Device

Healthy images 1971 1024 × 1024 Canon IXUS 285
Powdery mildew 528 458 × 458 Microscope camera

Tobacco mosaic virus 807 458 × 458 Microscope camera
Black rot 421 458 × 458 Microscope camera

Downy mildew 626 458 × 458 Microscope camera
Black shank 769 458 × 458 Microscope camera
Wilt disease 283 458 × 458 Microscope camera

3.1.2. Dataset Annotation

In this study, the mathematical principles and processes of dataset annotation are of
particular importance. A point process-based method was employed for annotation, which
was effective in addressing object counting challenges. Each tobacco lesion in the images
was marked as a point in a two-dimensional space, as shown in Figure 2.

Figure 2. Image dataset annotation screenshot.
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3.2. Dataset Augmentation

In this study, dataset augmentation is one of the key steps to enhance the performance
of the tobacco lesion counting model. Dataset augmentation refers to the process of
manipulating the original dataset to generate new, varied data samples. This process aims
to improve the model’s generalizability and robustness by increasing the diversity and
volume of data. In the context of tobacco lesion counting, augmentation is particularly
crucial for simulating challenges encountered in various real-world scenarios, such as
different lighting conditions, background variations, and the diversity of lesion postures,
as shown in Figure 3.

(B )(A ) (D)(C )

Figure 3. Dataset augmentation: (A,B) are cutout (the black and white square are the random
removal); (C,D) are image synthesis.

3.2.1. Cutout

The cutout is a commonly used data augmentation technique in computer vision
tasks and is particularly suitable for training deep learning models. Its core idea involves
randomly removing a section of the training image, forcing the model to focus on different
local features rather than relying solely on specific areas or features, thus enhancing the
model’s generalization and robustness, as depicted in Figure 3A,B. In this study, the cutout
technique was applied during the training process of the tobacco lesion counting model
to improve its performance in complex agricultural scenes. The size and shape of the
occlusion area are determined, typically square or rectangular, with dimensions set based
on the task and dataset characteristics. For each training image, a position is randomly
chosen as the center of the occlusion area. Then, all pixel values within this area are set to
zero or other predefined background values. The mathematical representation is as follows:

I′(x, y) =

{
0 if (x, y) ∈ cutout region
I(x, y) otherwise

(6)

where I is the original image, I′ is the image after applying the cutout technique, and
(x, y) are the pixel coordinates, with the cutout region being the selected occlusion area. In
tobacco lesion counting, the use of the cutout technique can enhance the model’s ability to
detect partially occluded lesions. For instance, in actual agricultural scenes, lesions may be
obscured by leaves or blend with the background, requiring the model to accurately identify
and count lesions from partial information. By employing the cutout technique during
training, the model is compelled to utilize local information in the image, maintaining
a good performance even when confronted with occluded or incomplete lesion images.
Furthermore, as a simple yet effective method of data augmentation, the cutout tehcnique
also helps prevent model overfitting. Overfitting is a common issue in the training of deep
learning models, especially when data are limited. By randomly creating occlusions in
images, the cutout technique increases the difficulty of the model training, forcing the
model to learn more generalized features, thus enhancing its performance on unseen data.
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3.2.2. Image Synthesis

The core of image synthesis technology is to combine tobacco lesion images with
various background images, creating diverse training samples. This method’s advantage
lies in its ability to generate a large number of realistic, varied training samples covering
different background types, lighting conditions, and lesion states, as shown in Figure 3C,D.
Through this approach, the model can learn to accurately identify and count tobacco lesions
in a variety of complex environments. First, lesion images and background images are
separated from the original dataset. Lesion images can be individual lesions or partial
scenes containing lesions, while background images may be various natural or artificial
environments. Then, lesion images are precisely overlaid onto background images. This
step typically ensures the lesion’s size, orientation, and lighting conditions match the
background image, maintaining the synthetic image’s naturalness and realism. Finally,
color and brightness adjustments are made to ensure a natural transition between the lesion
and the new background, avoiding unrealistic edges or color differences. The mathematical
formula for image synthesis is as follows:

I′(x, y) =

{
Idisease(x, y) if (x, y) ∈ disease region
Ibackground(x, y) otherwise

(7)

where Idisease is the lesion image, Ibackground is the background image, I′ is the synthetic
image, and (x, y) are the pixel coordinates, with the disease region being the area containing
the lesions.

In tobacco lesion counting, the use of image synthesis technology can significantly
increase the dataset diversity, particularly in simulating the appearance of lesions under
different backgrounds and environmental conditions. For example, by synthesizing lesion
images onto various types of crop backgrounds, the model can learn to recognize lesions in
diverse agricultural environments. Additionally, this method also enhances the model’s
ability to recognize lesions under different lighting conditions and viewpoints.

4. Proposed Method: DiffuCNN

The DiffuCNN model, presented in this paper, is an innovative approach for counting
tobacco lesions. It integrates multiple advanced technologies to enhance the accuracy of
lesion detection and counting in low-resolution, complex agricultural scenes. Focused not
only on conventional target detection challenges, DiffuCNN also emphasizes performance
optimization in low-resolution and complex background conditions. The core design of
the DiffuCNN model combines a diffusion-based resolution enhancement technique, a
target detection network optimized through filter pruning, the CentralSGD optimization
algorithm, and the Diffusion Loss Function to efficiently and accurately count tobacco
lesions in low-resolution images. After detecting lesions, the grading of the disease severity
is achieved through counting.

4.1. Diffusion-Based Resolution Enhancement Module

This module is designed to process low-resolution images, aiming to enhance image
details and clarity through a series of algorithms. Inspired by physical diffusion processes,
it aims to simulate the natural diffusion of light and color in scenes, effectively improving
the visual quality, as illustrated in Figure 4.

The input to this module is low-resolution agricultural scene images, potentially lack-
ing detail due to poor shooting conditions, such as lighting or distance. The output is
images with significantly enhanced resolutions, where details of small objects are more
clearly visible. The process begins with the standardization of the input low-resolution
images, including color correction and noise suppression. Then, the images undergo reso-
lution enhancement using the diffusion algorithm, which simulates the natural diffusion of
light in the scene, enhancing minute details in the image. Finally, sharpening and contrast
adjustments are made to further improve the image quality, ensuring targets are clearly dis-
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cernible in the image. The diffusion process is described by the following partial differential
equation (PDE):

∂I
∂t

= ∇ · (D∇I) (8)

where I represents the image intensity, t denotes the diffusion time, D is the diffusion
coefficient, and ∇ represents the gradient operator. This equation indicates that the change
in image intensity is proportional to the divergence of its gradient, simulating the diffusion
of light in the physical world. In practical application, this equation is discretized and
applied in image processing. The iterative updating of each pixel value in the image
gradually enhances the image resolution and clarity. Specifically, the updating of each pixel
in each iteration can be expressed as follows:

Inew = Iold + λ∇ · (D∇Iold) (9)

where λ is a coefficient controlling the rate of diffusion and Iold and Inew represent the pixel
values before and after the iteration, respectively. In the task of tobacco lesion counting, the
diffusion-based resolution enhancement module offers significant advantages. By enhanc-
ing the details in low-resolution images, previously hard-to-distinguish tobacco lesions
become clear, thus improving the detection accuracy. In complex agricultural scenes, this
module effectively highlights targets like tobacco lesions against a complex background,
facilitating subsequent recognition and counting. The fiffusion process, simulating the natu-
ral diffusion of light, renders the processed images visually more natural, avoiding artificial
traces from over-processing. The enhanced image quality ensures the robust performance
of the model under varying conditions, such as different lighting and distances.

𝐱𝐭
𝐱𝐭 ⋯ 𝐱𝐤 ⋯ 𝐱𝟎

𝐱𝐤#

D
y𝑳

(b)GDP- 𝐱𝐭
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𝑳
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𝒚𝒊:  𝐢𝐭𝐡Guidance image
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𝐱&𝟎𝐢 :  𝐱𝟎% + 𝐢𝐭𝐡 degradation

D:  Degradation model

𝑫𝒊:  𝐢𝐭𝐡 Degradation model

𝑳:  Loss function

𝐱𝐭'𝟏 ⋯ 𝐱𝐤 𝐱𝟎
Denoising
Process

(a)Estimating the
Degradation Model 𝑫𝒕'𝟏

𝝋 𝑫𝒌
𝝋 𝑫𝟎

𝝋

𝒙-𝒕'𝟏 𝒙-𝒌 𝒙-𝟎 𝒚Guiding the
Restoration

Supervision

Figure 4. Schematic representation of the diffusion-based resolution enhancement module used
in the DiffuCNN model. The process involves (a) estimating the degradation model through a
series of transformations from an initial noisy image xt to a guidance image y, (b) GDP-xt showing
the denoising process with multiple degradation models leading to the final restored image, and
(c) GDP-x0 where x0 estimation is refined iteratively. Each step is supervised to ensure fidelity to the
target image, with the overall aim to guide the restoration process and enhance image resolution for
improved disease detection in agricultural imagery.

4.2. Target Detection Network Based on Filter Pruning

In the DiffuCNN model proposed, a target detection network optimized through
filter pruning is a key component, specifically designed for the accurate detection of
tobacco lesions in images with an enhanced resolution, as shown in Figure 5. This network
optimizes the structure by implementing filter pruning in convolutional layers, aiming to
improve the detection efficiency and reduce computational costs.

The network input consists of high-resolution images processed by the diffusion-based
resolution enhancement module. These images feature richer details and clear character-
istics of tobacco lesions. The output includes the detection results of tobacco lesions,
comprising their positions and quantities. The network structure adopts a design stacked
with multiple convolutional layers. Each layer consists of several convolutional kernels (fil-
ters) responsible for extracting features from the images. Filter pruning is conducted within
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these convolutional layers. Filters contributing less to the final detection performance are
removed after analyzing their importance. This process involves assessing the weights of
each filter and then pruning based on predetermined criteria. Convolutional layers are
typically followed by an activation layer (e.g., ReLU) and optionally by a pooling layer to
enhance non-linear expression capabilities and reduce feature dimensions. Generally, the
initial layers of the network have fewer convolutional kernels, mainly extracting low-level
features (such as edges and textures), while the number of kernels gradually increases
in deeper layers for more complex high-level feature extraction. The input dimension
depends on the size of the processed images, while the output dimension is related to
the requirements of the detection task, typically involving estimates of the positions and
quantities of tobacco lesions.

conv1
conv2 conv1

conv2

add to

Figure 5. Diagram illustrating the network structure design for filter pruning in the DiffuCNN model.
On the left, the process starts with an initial convolutional layer (conv1) followed by a subsequent
layer (conv2), where ineffective filters are identified and removed, as indicated by the red cross.
The right part of the figure emphasizes the refined pruning process where convolutional filters are
selectively pruned based on their contribution to the output (highlighted by the red stripes), and the
green check marks indicate the retention of significant filters that are added to the subsequent layers.

Not all filters in the convolutional layers significantly contribute to the final detection
task. Therefore, the network can be optimized by assessing the importance of each filter
and pruning those with lesser contributions. The importance of a filter can be evaluated
using the following formula:

Importance( fi) = ∑
x,y

|wi,x,y| (10)

where fi represents the i-th filter and wi,x,y is the weight of the filter at position (x, y). The
importance of a filter can be estimated by the sum of the absolute values of its weights.
In this process, filters with an importance below a certain threshold are removed. By
eliminating unimportant filters, the network’s parameter count and computational costs
are reduced, making the model more lightweight and suitable for environments with
limited computational resources. The pruning process helps prevent model overfitting
by reducing the complexity of the model, allowing the network to focus more on features
critical to the task. In processing high-resolution agricultural scene images, the pruned
network can more efficiently handle large volumes of data while maintaining a high
recognition rate for small targets like tobacco lesions.

4.3. CentralSGD

The design of CentralSGD addresses challenges encountered by traditional Stochastic
Gradient Descent (SGD) methods in dealing with complex models and large-scale data.
CentralSGD, based on the traditional SGD approach, introduces the concept of centralized
gradients. In conventional SGD, each parameter update is based on the gradient computed
from a single training sample or a small batch of samples. In CentralSGD, parameter
updates consider not only the current batch’s gradient but also the central gradient of all
samples (i.e., the average gradient). In each iteration, the gradient of the current batch
is first calculated. Then, the gradient center of all samples is computed, and the current



Agriculture 2024, 14, 318 11 of 21

batch’s gradient is compared with this center. Finally, model parameters are updated using
this centralized gradient information. The mathematical expression for CentralSGD is
described by the following formula:

θt+1 = θt − η

(
gt − ḡ +

1
N

N

∑
i=1

gi

)
(11)

where θt is the model parameter at time step t, η is the learning rate, gt is the average
gradient of the current batch, ḡ is the historical average of all sample gradients, and N is the
total number of samples. The core idea of this method is to reduce the variance in gradient
updates across iterations. Each iteration in traditional SGD can exhibit significant gradient
fluctuations due to the randomness of individual batch samples, while CentralSGD re-
duces these fluctuations by introducing gradient centralization, making parameter updates
smoother and more effective.

By reducing the fluctuations and instability in gradient updates, CentralSGD converges
faster to the optimal solution. This is particularly important when dealing with large-scale
datasets, as traditional SGD methods may lead to slower convergence rates in such cases.
CentralSGD improves the stability of the training process by considering the gradient
information of the entire dataset, reducing the impact of randomness in individual batch
samples. For complex models like DiffuCNN, CentralSGD effectively handles a large
number of parameters and complex gradient structures, maintaining efficient optimization
during deep network training. CentralSGD is particularly suitable for distributed training
environments, where gradient centralization can aid different training nodes in working
more effectively together, reducing the decline in training efficiency caused by an uneven
data distribution.

4.4. Diffusion Loss Function

In the DiffuCNN model proposed, the Diffusion Loss Function is an innovative loss
function design, guiding the learning process of the model in the task of tobacco lesion
counting. This loss function combines a traditional loss function (such as cross-entropy
loss or mean squared error loss) with a regularization term based on the diffusion process,
aiming to enhance the model’s accuracy in detecting and counting tobacco lesions in
low-resolution, complex agricultural scenes.

The Diffusion Loss Function consists of two parts: a traditional loss function, evalu-
ating the difference between the model output and the true labels, and a regularization
term based on the diffusion process, ensuring the model does not overly rely on specific
image features during learning, thereby enhancing its generalizability. The regularization
term, designed based on the characteristics of the diffusion process, aims to simulate the
propagation and change in image features in the natural world. This approach, rooted in
physical diffusion theory, encourages the model to focus more on the overall features of the
image rather than local details during learning.

The Diffusion Loss Function can be expressed by the following formula:

L = L ∗ traditional + λL ∗ diffusion (12)

In the proposed model, the traditional loss function, denoted as Ltraditional, is comple-
mented by a regularization term based on the diffusion process, represented as Ldiffusion.
The parameter λ serves as a hyperparameter balancing these two components. The regular-
ization term Ldiffusion is further expressed as follows:

Ldiffusion = ∑ i = 1N ||∇ f (xi)−∇ f (x̂i)||2 (13)

Here, f signifies the model’s prediction function, xi is the original image sample, and x̂i
is the image sample processed through the diffusion method, with N being the total number
of samples. By incorporating the regularization term based on the diffusion process, the
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model is encouraged to learn and recognize features that remain stable in images subjected
to diffusion treatment. This approach shifts the model’s focus towards the overall and stable
features of images rather than relying solely on specific local details, thereby enhancing
the model’s generalization capability. Overfitting, a common issue in deep learning model
training, especially with limited training data, is addressed by the Diffusion Loss Function.
By constraining the model’s complexity through the regularization term, the model’s
tendency to overlearn noise or incidental features in the training data is reduced, aiding in
the prevention of overfitting. In complex agricultural scenarios where tobacco lesions may
appear under diverse backgrounds and lighting conditions, the Diffusion Loss Function
motivates the model to learn features consistent across different environments, enabling
better adaptation to these complex settings. Owing to its emphasis on learning the holistic
features of images, the model achieves more effective identification and counting of tobacco
lesions in images, maintaining a high accuracy even under low-resolution or incomplete
visual information conditions.

4.5. Experimental Configuration

In the experimental setup for this study, detailed settings were meticulously estab-
lished, encompassing hyperparameter configuration and the selection of hardware plat-
forms and libraries, as well as evaluation metrics, which are all crucial for ensuring the
effectiveness and reproducibility of the experiments.

4.5.1. Hyperparameter Settings and Hardware Platform with Libraries

The setting of hyperparameters is a critical step in deep learning experiments, directly
impacting the training outcomes and the ultimate performance of the model. The hyper-
parameters in these experiments included the learning rate, batch size, and number of
training epochs. The learning rate determines the speed of model weight updates, the
batch size affects the amount of data updated in each training iteration, and the number of
epochs decides the total number of iterations in the training process. The initial learning
rate was set at 0.001, with a learning rate decay strategy implemented. A batch size of 64
was chosen to accelerate training while also increasing the memory demand. The training
was set for 100 epochs. The hardware specifications for the experiments comprised an
NVIDIA RTX 3000 GPU, an Intel Core i7 CPU, and 32 GB of memory. The deep learning
framework utilized was PyTorch (latest v. 2.0), with NumPy (latest v. 1.26.4) for numerical
computations and Pandas (latest v. 2.2.0) for data processing and analysis.

4.5.2. Evaluation Metrics

Multiple metrics were employed to comprehensively assess the performance of the
model, including precision, recall, accuracy, frames per second (FPS), and mean average
precision (mAP).

Precision, defined as the proportion of correctly predicted positive samples to all
samples predicted as positive, is mathematically expressed as follows:

Precision =
TP

TP + FP
(14)

where TP represents the number of true positives (the number of correctly predicted
positive samples) and FP denotes the number of false positives (the number of incorrectly
predicted positive samples).

Recall, indicating the proportion of correctly predicted positive samples to all actual
positive samples, is given by the following formula:

Recall =
TP

TP + FN
(15)

where FN stands for the number of false negatives (the number of incorrectly predicted
negative samples).
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Accuracy, the ratio of correctly predicted samples (including both positive and negative
samples) to all samples, is described as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(16)

where TN signifies the number of true negatives (the number of correctly predicted
negative samples).

The FPS, a crucial measure of the model’s processing speed, especially in real-time
applications, represents the number of frames processed per second. It is calculated
as follows:

FPS =
1

Average Processing Time Per Frame
(17)

where the “Average Processing Time Per Frame” is the average time taken by the model to
process a single frame.

mAP (mean average precision), a common metric for evaluating performance in object
detection, information retrieval, and related fields, is the mean of the average precision
(AP) values, assessing the model’s overall detection capability across multiple categories.
AP is calculated as follows:

AP =
∫ 1

0
p(r)dr (18)

where p(r) is the precision at recall rate r.
The calculation of mAP is as follows:

mAP =
1
N

N

∑
i=1

APi (19)

where N is the number of categories and APi is the average precision for the ith category.

4.6. Baseline

To thoroughly evaluate the tobacco lesion counting model proposed in this article,
a series of advanced comparative models was selected for comprehensive comparison.
These models cover both probability density-based counting methods and object detection-
based counting methods, ensuring a broad and in-depth assessment. For evaluating the
tobacco lesion counting model proposed in this study, a comprehensive comparison with
advanced baseline models was conducted. These baseline models encompass methods
based on probability density counting and target detection, ensuring extensive and in-
depth evaluation.

Firstly, from the probability density-based counting methods, the MCNN (Multi-
Column Convolutional Neural Network) as referenced in [37], a model designed for
varying scales of objects and particularly suitable for crowded scenes, was selected. CSRNet
(Congested Scene Recognition Network) [38] utilizes its deep convolutional network to
achieve high accuracy in density estimation within complex scenarios. The CAN (Context-
Aware Network) [39], with its attention mechanism, focuses on counting in important areas
of images, thus effectively enhancing the counting accuracy.

In the realm of target detection-based methods, Faster R-CNN [40], a high-precision
target detection model integrating a Region Proposal Network (RPN), was chosen. YOLOv8
from the YOLO series [35] is known for its speed and efficiency. SSD (Single Shot Multi-
Box Detector) [36] was selected for its capability to handle objects of various sizes, and
RetinaNet [41], distinguished by its unique Focal Loss design, excels in addressing class
imbalance issues. CenterNet [42] and MAF50 [10], introducing a novel approach to target
detection by directly predicting the center points of objects, bring a fresh perspective to
the field.

These models, serving as baselines, provided a comprehensive framework for assess-
ing the performance of the proposed tobacco lesion counting model under various scenarios
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and conditions. Representing the latest advancements in the fields of counting and de-
tection, these models cover a range of needs from real-time detection to high-precision
counting. The comparison with these advanced models allowed for an in-depth under-
standing of the strengths, limitations, and practical applicability of the proposed model.
Such thorough comparative analysis is vital for advancing tobacco lesion counting technol-
ogy and offering guidance for more effective model optimization and application strategies
in future works.

5. Results and Discussion
5.1. Objective Detection Performance Results

The objective detection performance experiments were conducted to evaluate the
performance of various advanced models in the task of tobacco lesion detecting. By
comparing the performance in terms of precision, recall, mAP, and FPS of Faster R-CNN,
YOLOv8, SSD, RetinaNet, CenterNet, and the method proposed in this study, insights into
the performance differences and their underlying reasons among these models were gained.
The experimental results are presented in Table 2 and Figure 6.

Table 2. Objective detection performance comparison.

Model Precision Recall mAP FPS

Faster R-CNN 0.82 0.8 0.81 24
YOLOv8 0.93 0.92 0.93 39

SSD 0.90 0.87 0.88 40
RetinaNet 0.93 0.91 0.92 45
CenterNet 0.96 0.93 0.95 55

MAF50 [10] 0.91 0.92 0.91 31
Ours 0.98 0.95 0.96 58

Experimental results reveal varying degrees of performance among seven mod-
els—DiffuCNN, YOLOv8, MAF50, RetinaNet, CenterNet, SSD, and Faster R-CNN—in the
task of disease detection. It was observed that DiffuCNN achieved an optimal performance
across four metrics: accuracy, recall, mAP, and FPS, with respective values of 0.98, 0.95,
0.96, and 58. This indicates that DiffuCNN not only excels in disease identification accuracy
but also possesses advantages in real-time processing speed. YOLOv8 and RetinaNet
closely approach DiffuCNN in mAP, yet exhibit a notable gap in FPS, suggesting potential
optimization deficiencies in processing speed compared to DiffuCNN. CenterNet, while
slightly trailing behind DiffuCNN in mAP, demonstrates a superior performance in FPS, in-
dicating its processing speed advantage. SSD and MAF50 exhibit a moderate performance,
whereas Faster R-CNN underperforms across all metrics.

In visual analysis of images, DiffuCNN stands out in identifying the edges of leaf
diseases and recognizing diseases against complex backgrounds. The model precisely
locates diseases, with bounding boxes closely aligning with the actual disease edges, and
exhibits a lower false detection rate in complex backgrounds. This superiority may be
attributed to advanced image processing technologies employed by DiffuCNN, such as a
diffusion-based resolution enhancement module, which enhances key features in images
without adding extra noise, thereby facilitating easier disease feature detection. YOLOv8
and RetinaNet, despite their commendable mAP performances, occasionally misjudge or
overlook diseases in complex background sections, likely due to their limited capabilities
in feature extraction and background noise suppression. The relatively high number of
detection boxes for SSD and MAF50 suggests potential shortcomings in their false positive
performance, leading to a reduced accuracy. The fewer bounding boxes produced by Faster
R-CNN may result from inadequacies in its Region Proposal Network (RPN) in generating
candidate areas, causing missed detections. In practical agricultural applications, the real-
time processing capability (FPS) of models is equally critical. DiffuCNN and CenterNet
excel in this aspect, implying their ability to swiftly process vast quantities of image data
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while maintaining a high accuracy, which is vital for the timeliness and precision of disease
monitoring systems.

(E) (F) (G)

(A) (B) (C) (D)

Figure 6. Visualization of lesion detection results. (A) is DiffuCNN; (B) is YOLOv8; (C) is MAF50;
(D) is RetinaNet; (E) is CenterNet; (F) is SSD; (G) is Faster R-CNN. The red box is the prediction
bounding boxes given by these methods.

5.2. Counting Performance Results

The counting performance experiments aimed to comprehensively assess the perfor-
mance of different models in the task of tobacco lesion counting, especially considering
key metrics, like precision, recall, accuracy, and FPS. The results demonstrated that newer
models exhibit superior performances in tobacco lesion counting with advancements in
objective detection technology. The experimental results are shown in Table 3.

Table 3. Counting performance results.

Model Precision Recall Accuracy FPS

MCNN 0.84 0.82 0.83 28
YOLOv8 0.93 0.95 0.94 39
CSRNet 0.91 0.89 0.9 42

RetinaNet 0.93 0.91 0.92 48
CAN 0.95 0.93 0.94 59

MAF50 0.96 0.95 0.96 33
Ours 0.98 0.96 0.97 62

The baseline model in this experiment, the Multi-Column Convolutional Neural
Network (MCNN), demonstrated certain target detection capabilities; however, its overall
performance was relatively low. The MCNN, designed to extract features at multiple
scales, faced limitations when detecting small and irregularly shaped targets such as
disease spots. The lower precision, recall, and accuracy may be attributed to its feature
extraction layers failing to capture sufficient detail to accurately differentiate between
diseased spots and healthy tissue, while the lower FPS reflects its limited processing
speed. YOLOv8, known for its swift and accurate target detection, surpassed the MCNN
in all performance indicators. Its architecture, which enables the prediction of both the
category and location of targets in a single inference, offers significant advantages in speed.
Nonetheless, YOLOv8 may not achieve a peak performance when dealing with highly
overlapping and small-sized targets due to constraints in its receptive field and anchor
box settings. Improvements in precision, recall, and accuracy exhibited by the CSRNet
and CAN models reflect their specialized design for dense object detection tasks. CSRNet
enhances the precision of crowd counting by deeply characterizing density maps of targets,
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whereas the CAN employs attention mechanisms to reinforce the learning of local features.
These mechanisms proved equally effective in the tobacco disease counting task, as they
enhanced the network’s sensitivity and discriminatory power towards disease spot features.
RetinaNet addresses the issue of class imbalance in target detection with its innovative
Focal Loss, performing exceptionally well in scenarios where there is a significant disparity
between the number of positive and negative samples. This feature allows RetinaNet to
maintain a high precision and recall when detecting rare and elusive targets like disease
spots.The optimal performance across all evaluation metrics achieved by the method
presented in this paper can be attributed to the application of several key technologies.
Initially, advanced image preprocessing techniques were employed to enhance the features
of disease spots in the input images, making it easier for the network to recognize them.
Subsequently, the network structure was specially designed to increase the sensitivity and
classification performance for disease spots. Finally, sophisticated optimization algorithms
were utilized to ensure the stability and efficiency of the training process, thereby achieving
a higher precision and recall while maintaining a high FPS.

The method proposed in this study surpassed other models in all evaluation metrics,
demonstrating a clear advantage in tobacco lesion counting, as shown in Figure 7. This su-
periority stems from optimizations in feature extraction, target localization, and background
noise handling. This study’s method employs more advanced network architectures and
training strategies, specifically optimized for small, dense targets.

Figure 7. Our model training processing.

5.3. Ablation Study on Filter Pruning

This section aimed to explore the impact of filter pruning technology on the objective
detection model performance through ablation experiments. The experimental design
compared the model performance under three conditions: no pruning, filter pruning, and
normal pruning. By evaluating precision, recall, accuracy, and FPS, this experiment aimed
to reveal the potential of filter pruning technology in enhancing the model efficiency and
performance. The experimental results are presented in Table 4.

Table 4. Detection results of different pruning.

Model Precision Recall Accuracy FPS

No pruning 0.97 0.96 0.97 48
Filter pruning 0.98 0.96 0.97 62

Normal pruning 0.93 0.91 0.92 55

The experimental results demonstrated that models employing filter pruning exhib-
ited outstanding performances in terms of precision, recall, and accuracy, along with a
significant improvement in FPS. Models without pruning retained all original filters, with



Agriculture 2024, 14, 318 17 of 21

no pruning conducted. Although such models maintained a high precision and recall, the
extensive number of parameters resulted in a heavy computational burden and slower
processing speed, as reflected in the lower FPS. Mathematically, models without pruning
possessed more parameters and a higher model capacity, enabling the capture of more
feature information but also increasing the risk of overfitting and computational complex-
ity. Common pruning, including techniques like weight pruning or structural pruning,
typically reduces the number of parameters in the network randomly or based on certain
rules. While this method can improve computational efficiency, the lack of consideration
for feature importance might lead to a reduced model performance, as evidenced by the
lower precision, recall, and accuracy in the experiments. Additionally, common pruning,
though increasing the FPS, did not exhibit as pronounced a performance enhancement as
filter pruning. Filter pruning, by eliminating filters that contribute less to the final detection
performance, reduces the model’s parameter count and computational complexity. This
not only makes the model more lightweight but also speeds up processing, which is ev-
ident in the significantly increased FPS. Notably, despite the reduction in the number of
parameters, the model’s precision and recall remained high, indicating that filter pruning,
while removing redundant parameters, retained crucial feature information for the object
detection task. These results suggest that filter pruning can maintain or even enhance the
model performance while effectively reducing computational demands.

In summary, filter pruning increases the model computational efficiency while largely
preserving or even enhancing the detection performance. This characteristic makes it an
effective method for optimizing complex deep learning models and particularly suitable
for applications requiring rapid processing of large volumes of image data, such as tobacco
lesion counting tasks. Through carefully designed filter pruning strategies, models can be
streamlined while ensuring accuracy and efficiency in challenging object detection tasks.

5.4. Ablation Study on Diffusion Module

This experiment aimed to assess the impact of the diffusion module on the object
detection model in tobacco lesion counting tasks. The experimental design included
comparisons between models with and without the diffusion module. These experiments
provided deep insights into the mechanism and effectiveness of the diffusion module in
improving the model performance. The results showed that models incorporating the
diffusion module significantly improved in precision, recall, and accuracy, with an increase
in FPS. The results are presented in Table 5.

Table 5. Ablation study on diffusion module.

Model Precision Recall Accuracy FPS

No diffusion module 0.92 0.90 0.91 57
Diffusion module 0.98 0.96 0.97 62

Models without the diffusion module, although showing decent performances, still
had room for improvement in precision, recall, and accuracy. This might be attributed to
the models’ inability to fully utilize all useful information in images with a low resolution
or unclear details. Without steps to enhance the resolution or improve the image quality,
the models might overlook some critical features, leading to performance limitations. The
introduction of the diffusion module resulted in significant improvements in precision,
recall, and accuracy. By emulating the natural process of diffusion, the module enhanced
minor details and features in images, enabling more effective recognition and counting
of tobacco lesions. This improvement was especially applicable to images with a low
resolution or complex backgrounds, as it enhanced the utilizable information in images,
thereby improving the model’s target detection capabilities. Mathematically, the diffusion
module increased the pixel density and detail in images, enhancing the model’s capability to
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recognize image features. This method, without introducing additional noise, amplified key
features in images, allowing more accurate localization and identification of tobacco lesions.

Theoretically, the introduction of the diffusion module primarily improved the model’s
image processing ability. In deep learning, the quality of the input data directly impacts
the model performance. By enhancing the image quality, the diffusion module allowed the
model to capture more and finer feature information, which is crucial for object detection
tasks. In tasks like tobacco lesion counting, where numerous small, dense targets must
be identified, every detail in an image could contain key information. The diffusion
module, by clarifying these details, bolstered the model’s detection capability. Moreover,
while improving the image quality, the diffusion module did not significantly increase the
computational load, as evidenced by the increase in FPS. This might be due to the module
enhancing key information in images, making the model more efficient in subsequent
feature extraction and classification steps.

5.5. Ablation Study on CentralSGD

This section’s experimental design aimed to evaluate and compare the performance
differences between the CentralSGD optimization algorithm and other algorithms (such
as traditional SGD and the Adam algorithm) in object detection tasks. The experiment
compared models using different optimization algorithms in terms of precision, recall,
accuracy, and frames per second (FPS), revealing the impact of optimization algorithms
on the model performance and contributing to the understanding of the advantages and
applicability of CentralSGD. The results are shown in Table 6.

Table 6. Detection results of CentralSGD.

Model Precision Recall Accuracy FPS

SGD 0.89 0.87 0.88 45
CentralSGD 0.98 0.96 0.97 62

Adam 0.94 0.91 0.93 52

Models using traditional SGD, while displaying some detection capabilities, did not
perform optimally across all metrics. This was mainly due to SGD’s approach of considering
only the gradient of the current batch in each iteration, making it susceptible to fluctuations
in individual data batches. Such fluctuations could slow the model’s convergence during
training, making it challenging to achieve optimal performance. This characteristic of
SGD becomes particularly evident in complex object detection tasks involving large data
volumes and intricate model structures. In contrast, models incorporating the CentralSGD
optimizer had a significantly improved performance across all metrics. CentralSGD’s
design philosophy considers the gradient information of the entire dataset, making model
parameter updates more stable and efficient. This method reduced fluctuations during
training, accelerating the model convergence and enhancing the overall performance,
especially in handling large datasets and complex network structures. Models using the
Adam optimizer, although performing better than traditional SGD, were still outperformed
by CentralSGD in this experiment. The Adam optimizer, combining momentum and
adaptive learning rates, is generally considered to accelerate convergence in the initial
stages of training and refine parameter adjustments in later stages. However, in this
experiment, the Adam optimizer’s performance in complex object detection tasks was still
not as good as CentralSGD, which was specifically optimized for such tasks.

Overall, this experiment highlighted the significant role of optimization algorithms in
deep learning model training. Different optimization algorithms have distinct character-
istics in terms of parameter update strategies, convergence speed, and stability, directly
influencing the model performance in practical tasks. CentralSGD, with its unique global
gradient consideration approach, not only improved the efficiency of the model training
but also ensured a high performance in complex tasks. The advantages of this optimization
algorithm are particularly evident in scenarios requiring the processing of large amounts of
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data and complex model structures, offering new perspectives for enhancing the perfor-
mance of object detection models in practical applications.

6. Conclusions

In this study, the application of the DiffuCNN model in tobacco lesion counting tasks
was thoroughly investigated, its performance across various aspects was assessed, and the
impact of different technical components on the model efficacy was compared. After detect-
ing lesions, the grading of the disease severity was achieved through counting. Through a
series of experiments and analyses, key findings and insights were obtained, which hold
significant value for future applications in the agricultural domain and research in deep
learning. In the counting performance experiments, the performance of the DiffuCNN
model was evaluated against several other object detection models. The results indicated
that DiffuCNN surpassed other models in precision, recall, accuracy, and frames per second
(FPS), achieving values of 0.98, 0.96, 0.97, and 62, respectively. This superior performance
is attributed to several key factors: Firstly, the resolution enhancement module based on
diffusion significantly improved the quality of the input images, enabling more accurate
recognition and counting of tobacco lesions in images. Secondly, the object detection net-
work based on filter pruning optimized the model structure, reducing the computational
load while maintaining a high detection performance. Lastly, the use of the CentralSGD
optimization algorithm enhanced the training efficiency and final performance of the model.
In the object detection performance experiments, DiffuCNN demonstrated exceptional
detection capabilities. The model accurately detected and located tobacco lesions in im-
ages, benefiting from its efficient network architecture and advanced image processing
technology. Compared to traditional object detection models, DiffuCNN showed a superior
performance in handling small, dense targets in complex agricultural scenes, outperforming
other models in precision, recall, mean average precision (mAP), and FPS, with respective
values of 0.98, 0.95, 0.96, and 58. This improvement highlights the innovative design and
optimization of DiffuCNN, especially in dealing with challenging visual tasks. In conclu-
sion, this research provides a comprehensive evaluation and analysis of the DiffuCNN
model, demonstrating how innovative technical components and algorithms can enhance
the performance of deep learning models in complex tobacco lesion counting tasks. The
combination of these techniques and methodologies offers an effective means for solving
practical problems and also directs future research in the field of deep learning.
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