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Abstract: To improve the operational efficiency of a hammer mill and delve into a high-efficiency,
energy-saving grinding mechanism, the crucial parameters influencing the grinding of corn straw
were identified as the spindle speed, hammer–sieve gap, and sieve pore diameter. According to
the force analysis and kinematics analysis, the key factors affecting corn straw grinding were the
spindle speed, the hammer–sieve gap, and the sieve pore diameter. The grinding process of corn
straw was studied using computational fluid dynamics (CFDs) and the discrete element method
(DEM) gas–solid coupling numerical simulation and experiment. The numerical simulation results
showed that with the growth of time, the higher the spindle speed, the faster the bonds broke in each
part, and the higher the grinding efficiency. When the energy loss of the hammer component was in
the range of 985.6~1312.2 J, and the total collision force of the corn straw was greater than 47,032.5 N,
the straw grinding effect was better, and the per kW·h yield was higher. The experimental results
showed that the optimum combination of operating parameters was a spindle speed of 2625 r/min, a
hammer-screen gap of 14 mm, and a sieve pore diameter of 8 mm. Finally, the CFD–DEM gas–solid
coupling numerical simulation validation tests were performed based on the optimal combination
of the operating parameters. The results showed that the energy loss of the hammer component
was 1189.5 J, and the total collision force of the corn straw was 49,523.5 N, both of which were
within the range of better results in terms of numerical simulation. Thus, the CFD–DEM gas–solid
coupling numerical simulation could accurately predict the corn straw grinding process. This study
provides a theoretical basis for improving a hammer mill’s key components and grinding performance.
Meanwhile, the proposed gas–solid two-phase flow method provided theoretical references for other
research in agricultural machinery.

Keywords: corn straw; hammer mill; gas–solid coupling numerical simulation; grinding performance test

1. Introduction

As a valuable biomass resource, straw has a variety of uses. Among them, straw
feed technology can not only broaden the source of feed materials, improve the utiliza-
tion rate of straw, and alleviate the contradiction between livestock and grass but also
improve the ecological environment and develop straw animal husbandry, which is of
great significance [1–3]. As the most commonly used raw material pretreatment in feed
processing, the grinding effect directly affects feed quality and subsequent processing [4,5].
To improve the working performance of a hammer mill, it is necessary to study the mecha-
nism of straw grinding. Due to the fast speed of the hammers in the grinding chamber and
the small hammer–sieve gap, the test device cannot be installed [6–8], leading to an urgent
problem concerning the accurate testing of the corn straw grinding process
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With the improvement of numerical simulation technology, the discrete element method
has been popularized in feed processing and agricultural machinery [9–13]. Xu et al. [14]
conducted a numerical simulation study on the crushing process of cucumber straw using
EDEM and observed the effects of changing the number of hammers, hammer thickness,
and hammer–sieve gap on grinding efficiency and power consumption. Naik et al. [15]
quantitatively analyzed the flow of material particles during the operation of a hammer
mill and explored the influence of spindle speed on the kinetic energy of material particles.
Shi et al. [16] simulated the process of multifunctional seeder grinding straw using the
discrete element method (DEM). The study results showed that the main factors affecting the
uniformity of the straw cover were grinding spindle speed and grinding shaft speed. The
best parameter for the working performance of the seeder was obtained through response
surface optimization analysis. The best parameter combination for the seeder performance
was obtained after response surface optimization analysis.

To improve the accuracy of the numerical simulation, some scholars used the multi-
phase flow coupling method for in-depth study [17–19]. Cao et al. [20] used the EDEM–
FLUENT coupling method to simulate the materials out of the sieving process and analyzed
the impact of the installation angle of the sieve on the screening efficiency. Li Qi et al. [21]
used the CFD–DEM coupling method to simulate the screening process of materials in the
grinding chamber with a new type of hammer mill as the research object and obtained
the feeding rate, the feeding amount, and the diameter of the return pipe, which were the
key factors affecting screening efficiency. At the same time, the variation in the velocity of
the material particles under different working conditions, the number of collisions, and
the amount of materials discharged with time was proved. Hirohisa et al. [22] used the
CFD–DPM coupling method to simulate the fluid flow and particle motion process in the
impact mill and analyzed the velocity and frequency of the collisions between the particles
and the whole grinding chamber wall under different rotor speeds and particle sizes. The
research results can provide a theoretical basis for the structural optimization of the impact
mill. J et al. [23] took the mill as the research object and analyzed the particle flow char-
acteristics under a macroscopic steady state, such as velocity field, particle velocity and
acceleration distribution in the radial direction, and power changes using the CFD–DEM
coupling method. The simulation results were compared with PEPT measurements of
straw in detail to verify the accuracy of the numerical simulation.

Material grinding is a highly complex process, and there are few studies on the motion
state of material particles in multiphase flow, a lack of quantitative analysis, and few
studies on the influence of the corn straw node section on the grinding effect. To address
the impact of the airflow field caused by the high-speed rotation of the hammers on the
grinding of straw during the working process of the hammer mill, this study adopted the
CFD–DEM gas–solid coupling method to numerically simulate the process of corn straw
grinding according to different physical parameters and operating parameters to simulate
the actual grinding process of straw and the motion process inside the grinding chamber
and combined this with the experiments to obtain the optimal operating parameters. The
research results can provide a theoretical basis for a structural optimization design of
hammer mills.

2. Materials and Methods
2.1. Test Materials and Equipment

The test materials were selected from naturally air-dried corn straw after harvesting in
Donghuaying Village, Tumetzuo Banner, Hohhot City (111◦59′ E, 40◦58′ N). The variety was
Xinsheng 18, and the moisture content was 8.83%. The instruments used in the experiment
were a tachometer, a frequency converter, a torque transducer, an electronic platform scale
(accuracy of 0.01 kg), an electronic stopwatch, and a standard sieve.
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2.2. Machine Structure and Working Principle

In this study, the CPS-420 hammer mill, widely used by family farmers, was used as a
test prototype, as shown in Figure 1. The mill mainly consists of a motor, upper and lower
feeding hoppers, straw knife, hammer, sieve, frame, outlet, and other parts.
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Figure 1. Three-dimensional model and sample machine of CPS-420 hammer mill: 1. upper feeding
hopper; 2. sieve; 3. lower feeding hopper; 4. straw knife; 5. outlet; 6. frame; 7. hammer; 8. motor.

When the mill is operating, the materials are sent to the grinding chamber from the
feeding hopper. The high-speed rotating hammers bring the materials into the acceleration
zone and perform circular motions with the grinding chamber hammers. The hammers
break the materials, and under the combined action of the impact force and the airflow,
they rush to the sieve. After the impact and friction with the sieve, they are further broken
into small particles. Under the action of centrifugal force and airflow, the small material
particles with particle sizes less than the diameter of the sieve pores fall out through the
sieve pores and are discharged from the discharge port. The larger material particles bounce
back after hitting the sieve and are hit again by the hammers. The process is repeated until
all of the material particles in the grinding chamber are discharged from the body. The
main parameters of the mill are shown in Table 1.

Table 1. The main technical parameters of the CPS-420 hammer mill.

Parameter Value

Size (length × width × height) 850 mm × 800 mm × 1300 mm
Grinding chamber diameter 420 mm

Grinding chamber width 180 mm
Rotor diameter 340 mm
Motor power 3 kW

Hammer numbers 16–24
Machine capacity 600–1000 kg/h

2.3. Force Analysis of Corn Straw in a Grinding Chamber

This study captured the corn straw grinding process using high-speed photography,
as shown in Figure 2. The figure shows that the hammers struck the corn straw during the
grinding process, and the relative motion occurred between the hammers and sieve, which
was subjected to extrusion and rubbing force under the joint action. The corn straw was
further ground through the extrusion and tearing action.
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Figure 2. Corn straw grinding process. (The location and grinding of the straw marked by the red square).

The force analysis diagram of corn straw is shown in Figure 3. According to the law of
conservation of momentum, it can be obtained as follows:

Mv = Mv1 + mv2 (1){
v = πn1D

60
v1 = πn2D

60
(2)
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We can obtain Formula (3) as follows:

v2 =
πMD(n1 − n2)

60m
(3)

where M is the mass of the hammer, (kg); m is the unit mass of corn straw, (kg); v is the
linear velocity of the hammer, (m/s); v1 is the speed of the hammer after hitting the corn
straw, (m/s); v2 is the speed of the corn straw after being hit, (m/s); n1 is the speed of the
hammer before hitting the corn straw, (r/min); and n2 is the rotation speed of the hammer
after hitting the corn straw, (r/min).

According to the D’Alembert principle, the balance equation of the friction force of
the corn straw unit is established as follows:{

∑ Fx= 0 G sin α + Ff1 − Fk − Ff = 0
∑ Fy= 0 FD + G cos α − Fic = 0

(4)


Ff = µFD

Ff1 = µm v2

D+δ = µ
m2π2D2(n1−n2)

2

3600(D+δ)

Fic = 2mωvr
Fk = 1

2 CρSvr2

(5)
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We can obtain Formula (6) as follows:

FD = µ
M2π2D2(n1 − n2)

2

3600m(D + δ)
(6)

where G is the gravity of the corn straw, (N); FD is the rubbing force of the corn straw unit,
(N); Ff is the friction force of the hammer to the corn straw, (N); Ff1 is the friction of the
sieve to the corn straw, (N); Fk is the resistance of air, (N); Fic is the Coriolis inertia force,
(N); D is the outer diameter of the rotor, (m); µ is the friction coefficient of the corn straw
unit with the sieve and hammer; δ is the hammer–sieve gap, (m); C is the air resistance
coefficient; ρ is the air density, (kg/m3); S is the windward area of the corn straw, (m2); and
vr2 is the relative velocity of the straw and air, (m/s).

2.4. Motion Analysis of the Corn Straw Grinding Process

The motion analysis of the corn straw unit was carried out. The corn straw unit is
assumed to be a particle with a mass of m, and the motion analysis is shown in Figure 4.

→
um =

→
ue +

→
ur (7)

ue = ω1L (8)

1 

 

 

Figure 4. Motion analysis diagram of the corn straw unit.

We can obtain Formula (9) as follows:

um =
ω1L

cos γ1
(9)

where um is the absolute velocity of the corn straw, (m/s); ue is the implicated speed of the
corn straw, (m/s); ur is the relative velocity of the corn straw unit along the hammer, (m/s);
ω1 is the rotor angular velocity and r2 is the distance from the corn straw unit to the center
of the rotor, (m).

The force analysis of the corn straw unit during the impact process is shown in Figure 5.
According to Newton’s second law, it can be obtained as follows:

ma = ∑ F = G1 + Ff2 + Fic1 + Fk1 (10)

where G1 is the gravity of the corn straw, (N); Ff2 is the friction force of a hammer on the
corn straw, (N); Fic1 is the Coriolis inertia force, (N); and Fk1 is the air resistance, (N).
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In x direction:

ma = FL1· cos γ2 − G1· sin γ4 − Ff2 − Fk1· sin γ3 (11)

In y direction:

0 = N + G1· cos γ4 − Fic1 − Fk1· cos γ3 − FL1· cos γ2 (12)
G1 = mg
Ff2 = µN
Fic1 = 2mω1ur
Fk1 = 1

2 C1ρ1S1um

(13)

The differential equation of the motion of the materials along the direction of the
hammer can be obtained from Formula (14) as follows:

m
dur

dt
= mω2

1 L· cos γ2 − mg· sin γ4 − µN − ω1L
2 cos γ1

C1ρ1S1· sin γ3 (14)

The differential equation of motion of the materials along the direction of the hammer
can be obtained from Formula (15) as follows:

0 = N + mg· cos γ4 − 2mω1ur −
ω1L

2 cos γ1
C1ρ1S1· cos γ3 − mω2

1 L· cos γ2 (15)

We can obtain Formula (16) as follows:

dur

dt
= g(µ cos γ4 − sin γ4) + ω2

1 L(sin γ2 + cos γ2)− 2µω1ur −
ω1L

2 cos γ1
C1ρ1S1(cos γ3 − sin γ3) (16)

The above theoretical analysis concluded that the force on the corn straw was mainly
related to the spindle speed, the linear speed of the end of the hammer, the outer diameter
of the rotor, and the hammer–sieve gap. In this study, the spindle speed and the hammer–
sieve gap were selected as the experimental factors for subsequent numerical simulation
and physical tests.

2.5. Numerical Simulation Model
2.5.1. Numerical Simulation Model Establishment and Grid Division of the Hammer Mill

The numerical simulation model of the hammer mill was established using SolidWorks
2018 software, and the model size was the same as the actual size. To improve the quality of
the mesh in the subsequent fluid calculation domain and reduce the number of calculations,
the model needed to be simplified, and the simplified model of the hammer mill is shown
in Figure 6. The combined model of the pulverizer rotor was saved as a *.prt file to form an
independent part. The bool operation in SolidWorks 2018 software was used to subtract
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the combined parts of the rotor inside the grinding chamber to obtain the 3D model of the
grinding chamber fluid domain.
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Figure 6. Simplified model.

The 3D model of the fluid domain of the grinding chamber, the feed opening, and the
sieve were saved as Parasolid format files and imported into Ansys ICEM for meshing. The
interface was set up on the contact surfaces of each part for information transfer. The body
grid cell type was selected as Tetra/Mixed, and the grid generation method was Robust
(Octree). The meshes of each part of the completed delineation were combined, the mesh
delineation results were calculated, and a total of 5,051,110 meshes were delineated, as
shown in Figure 7.
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2.5.2. Establishment of the Numerical Simulation Model of Corn Straw

The corn straw model was established through the use of EDEM 2018 software, and
three kinds of particles were filled inward, representing the outer skin, inner pulp, and
node of the corn straw. The Hertz–Mindlin with Bonding model was selected as the particle
contact mechanics model, according to the preliminary research of the subject group [24,25].
The model parameters are set as shown in Table 2. The numerical simulation model of
the corn straw and the schematic diagram of the bonds are shown in Figures 8 and 9. The
position coordinates of the three particles were derived separately for subsequent API
particle replacement.

Table 2. Parameter settings of Hertz–Mindlin with bonding model.

Parameter Normal Stiffness
(N/m3) Shear Stiffness (N/m3)

Critical Normal
Stress (Pa)

Critical Shear
Stress (Pa)

Outer skin–Outer skin 5.5 × 109 5.2 × 108 1.22 × 108 7.89 × 106

Inner pulp–Inner pulp 5.05 × 108 5 × 107 1.4 × 106 3.9 × 105

Node–Node 5.23 × 108 4.89 × 107 1.35 × 106 3.88 × 105

Outer skin–Inner pulp 5.05 × 108 5 × 107 1.4 × 106 3.9 × 105

Outer skin–Node 5.21 × 108 5.02 × 107 1.39 × 106 3.68 × 105

Inner pulp–Node 5.05 × 108 5 × 107 1.4 × 106 3.9 × 105
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Figure 9. Diagram of bonds.

In this study, 101 single-sphere particles with a radius of 10 mm were utilized to
superimpose the large particle model of corn straw. The mesh file of the simplified hammer
mill model was imported into EDEM 2018 software, the particle-to-particle contact model
was set to be the Hertz–Mindlin with Bonding model, and the contact model between
the particles and the geometry was set to be the Hertz–Mindlin (no slip) model. The four
file paths of the contact model, particle body force, particle, and factory, were replaced
with 3 API program files of the outer skin, inner pulp, and node to complete the particle
replacement, as shown in Figure 10.
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2.5.3. Fluent Parameter Setting

Ansys Fluent 17.0 software was applied to read the ICEM delineated mesh file, the
pressure steady state solver was selected for numerical simulation calculations, the standard
k-ε model was selected for the computational model, and the material was air. The feed
inlet was defined as the speed inlet, the screen sheet was defined as the stationary wall,
the rotor combination parts were defined as the moving wall, the speed was added, and
the outer surface of the screen sheet was defined as the pressure outlet. SIMPLE was
selected for the solution method, PRESTO! According to the preliminary research of the
subject group [26,27], the format was selected for the pressure gradient, and the boundary
conditions were set, as shown in Table 3.
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Table 3. The setting of boundary conditions.

Boundary Condition Value

Inlet velocity 10 m/s
Inlet turbulence intensity 5%
Inlet hydraulic diameter 108 mm

Outlet turbulence intensity 5%
Outlet hydraulic diameter 200 mm

Outlet pressure 0 Pa

2.5.4. Coupling Link Settings

To ensure the efficiency of numerical simulation and maintain the coupling stability,
it was necessary to set the time steps of the two software and the interval of data storage
times as an integer multiple. The specific settings are shown in Table 4.

Table 4. EDEM–FLUENT coupling time step relationship.

Software Time Step (s) Data Storage Time (s)

EDEM 2018 1.2 × 10−6 0.01
FLUENT 17.0 1.2 × 10−4 0.1

2.6. Performance Evaluation of the Hammer Mill

To accurately evaluate the grinding performance of the hammer mill, refer to the
national standard: GB/T6971-2007 [28]. The test process is shown in Figure 11. This study
used per kW·h yield and the grinding pass rate as the evaluation indexes of the straw
grinding performance test:

(1) The per kW·h yield Z
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The hammer mill consumes the quality of corn straw ground by 1 degree of electricity.

Z =
Qc

Zc
(17)

where Z is the per kW·h yield, (kg/(kW·h)); Qc is the quality of the corn straw ground
during the working time of the grinder, (kg); and Zc is the power consumption during the
working hours of the mill, (kW·h).

(2) Grinding pass rate S

S =
z1

z2
× 100% (18)
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where S is the grinding pass rate, (%); z1 is the quality of the qualified corn straw in the
sample, (kg); and z2 is sample quality, (kg).

Three people completed the test, and one controlled the frequency converter to adjust
the spindle speed. Another one operated the computer, and M400 data acquisition and
management software were used to record the spindle torque, speed, and power data and
store them on the computer’s hard disk. The last one fed the corn straw to the grinding
chamber corresponding to the test number and received the sample at the discharge port.
After each test, 100 g was taken and stored in a sealed bag after sampling. At the same time,
the test number was marked on a sealed bag for the subsequent calculation of electricity
output and the grinding pass rate. The test process is shown in Figure 11.

3. Results
3.1. Numerical Simulation Results and Analysis
3.1.1. Analysis of Flow Field Velocity in Grinding Chamber

The velocity cloud diagram of the flow field inside the grinding chamber at different
spindle speeds is shown in Figure 12, from which it can be seen that from the spindle to
the end of the hammer, the velocity was distributed in a gradient and was more uniform.
With the increase in spindle speed, the flow velocity at the end of the hammer showed
an increasing trend. Among them, the minimum flow field velocity near the spindle was
close to 0 m/s, and the flow field velocity at the end of the hammer was the highest.
Too high of a flow field velocity would increase the movement speed of corn straw, thus
reducing the number of times the feed was hit, affecting the grinding efficiency. Therefore,
the appropriate flow field velocity is conducive to improving straw grinding efficiency
and yield.
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Figure 12. Velocity variation in the flow field inside the grinding chamber at different spindle speeds.

3.1.2. Analysis of Pressure Field in Grinding Chamber

The pressure field inside the grinding chamber at different spindle speeds is shown in
Figure 13, from which it can be seen that the pressure was distributed in a gradient and
was more uniform from the spindle to the sieve. With the increased spindle speed, the flow
field pressure inside the grinding chamber showed an increasing trend. Among them, the
pressure near the spindle was the smallest, and the pressure near the sieve was the largest.
The greater the pressure of the sieve, the easier the corn straw comes out of the sieve, and
the appropriate flow field pressure is conducive to improving the feed-out of the sieve rate.
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3.1.3. Analysis of Bonds

The degree of the fracture of the bonding key used to connect the discrete elemental
particle model of corn straw can simulate the natural grinding effect of corn straw. There-
fore, the fracture characteristics of the bonds were analyzed for the numerical simulation
of the corn straw grinding process. When the spindle speed was 2000 r/min, 2500 r/min,
and 3000 r/min, respectively, the results of the number of broken bonds of the outer skin,
inner pulp, and node with the spindle speed were studied, as shown in Figure 14. From
the diagram, it can be seen that with the increase in time, the higher the spindle speed,
the faster the speed of breaking the bonds between the outer skin, inner pulp, and node
particles, and the higher the grinding efficiency.
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3.1.4. Analysis of Energy Losses in Hammer Components

The simulation results concerning the energy losses of the hammer components were
analyzed by applying the EDEM post-processing part to derive the results of the total
energy loss in the collision process between the hammer components and the corn straw.
In this study, 100 data points were extracted from the analysis of 1 s in the continuous
feeding process. The energy loss of the hammer components and the particle collision of
each analysis data point were accumulated, and the energy loss results of the hammer of
the 100 data points were added. The average value was taken three times to obtain the
energy loss of the hammer components when the discrete element numerical simulation
was 1 s. The results of the analysis are shown in Figures 15–17.
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According to the analysis of the results in Figure 15, the energy losses of the hammer
components showed a growth–decrease–growth trend with increased spindle speeds. The
higher spindle speed led to a higher linear velocity at the end of the hammer, which
increased the impact force of the hammers on the straw, increased the number of times
the straw was struck, and resulted in energy waste, leading to a high percentage of over-
ground corn straw after processing. Therefore, it is necessary to reduce the spindle speed
appropriately. According to the pre-grinding performance single-factor test results, when
the spindle speed was 2500~2700 r/min, the grinding effect was better, and the per kW·h
yield was higher. Therefore, to ensure the per kW·h yield, the spindle speed should be
no higher than 2700 r/min, and the energy loss of the hammer components should be no
higher than 1290.1 J.

According to the analysis of the results in Figure 16, it can be seen that with the increase
in hammer–sieve gap, the energy loss of the hammer components shows a growing trend.
When the hammer–sieve gap is large, the hammer length is small, decreasing the contact
area between the hammer and the corn straw. Corn straw must be struck many times
before being ground into qualified feed and discharged from the machine, thus consuming
additional energy and increasing the energy loss of the hammer components. According to
the pre-grinding performance single-factor test results, when the hammer–sieve gap was
12~16 mm, the grinding effect was better, and the per kW·h yield was higher. Therefore,
the energy loss of the hammer components should not be higher than 1312.2 J.

According to the analysis of the results in Figure 17, the energy loss of the hammer
components showed a decreasing trend with the increase in sieve pore diameter. The corn
straw feed did not quickly come out when the sieve pore diameter was small. This led to
feed with the qualified particle size being hit repeatedly, increasing the mass proportion
of unqualified feed and causing energy waste. Therefore, it is necessary to increase the
sieve pore diameter to ensure the efficiency of sieving, and the energy loss of the hammer
components should be more than 985.6 J.

Based on the above results, it can be concluded that when the energy loss of the
hammer components is 985.6~1312.2 J, the grinding effect is better, and the per kW·h yield
is higher.

3.1.5. Analysis of Corn Straw Collision Force

The collision force between the corn straw and the hammer components can reflect
the grinding effect when the collision force reaches a certain degree to grind the straw, and
the larger the collision force, the higher the grinding efficiency. According to the grinding
performance test, the spindle speed had a more significant effect on the grinding effect of
corn straw; therefore, spindle speed was used as a test factor to analyze the collision force
of corn straw, as shown in Figure 18, which shows the force diagrams of corn straw at the
5th s under different spindle speeds.
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In the numerical simulation calculation, the running time was set to 5 s, and the
storage time interval was set to 0.01 s. The discrete element numerical simulation of corn
straw was selected to simulate all the particles, and the continuous feeding of 1 s was taken
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for analysis. A total of 100 data points were extracted. The collision force of corn straw at
each time data point was accumulated, and then the collision force of 100 data points was
added. Finally, the total collision force of corn straw was obtained. The collision force of
the corn straw changes with spindle speed, as shown in Figure 19.
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According to the results of the pre-grinding performance single-factor test analysis,
the grinding effect was better when the spindle speed was more than 2500 r/min. In the
numerical simulation process, when the spindle speed was 2500 r/min, the total collision
force of the corn straw was 47,032.5 N. Therefore, to ensure a better grinding effect, the
total collision force of corn straw should be greater than 47,032.5 N.

3.2. Test Results
3.2.1. The Influence of Various Factors on the Performance of the Hammer Mill

According to Figure 20a, it can be seen that the per kW·h yield with the increase in
spindle speed showed a trend of growth and then a decrease. When the spindle speed
was 2600 r/min, the per kW·h yield was the highest. The grinding pass rate tended to
increase and then decrease with the increase in spindle speed, and when the spindle
speed was 2500 r/min, the per kW·h yield was the highest. Therefore, according to the
analysis of the results, the degree of corn straw grinding is better when the spindle speed is
2500~2700 r/min.
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According to Figure 20b, the per kW·h yield tended to grow and then decrease with
the increase in the hammer–sieve gap, and the per kW·h yield was the highest when the
hammer–sieve gap was 14 mm. The grinding pass rate grew with the increase in the
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hammer–sieve gap. Therefore, according to the analysis of the results, the degree of corn
straw grinding is better when the hammer–sieve gap is 12~16 mm.

According to Figure 20c, the per kW·h yield tends to increase and decrease with the
increase in sieve pore diameter. The per kW·h yield was the highest when the sieve pore
diameter was 8 mm. The grinding pass rate showed an increasing and then decreasing
trend with the increase in sieve pore diameter, and it was the highest when the sieve pore
diameter was 10 mm. Therefore, according to the analysis of the results, the degree of corn
straw grinding is better when the sieve pore diameter is 6~10 mm.

3.2.2. Optimization of Working Parameters of Hammer Mill

Optimization of the working parameters can improve the working efficiency and
service life of the machine, greatly reduce the production cost, and is also necessary for
optimizing the structure of the machine [29–31].

In order to make the hammer mill achieve the best working efficiency, this study
used the Numerical function in Design-Export 10 data analysis software to optimize the
per kW·h yield, Z, and grinding pass rate, S, as the double objective optimization. Then,
parameter optimization was carried out in combination with the value range of each factor
test to obtain a set of optimal working combination parameters, and the constraints are
as follows: 

maxZ
maxS
2500 < A < 2700
12 < B < 16
6 < C < 10

(19)

where A is the spindle speed, (r/min); B is the hammer–sieve gap, (mm); and C is the sieve
pore diameter, (mm).

After optimization, the optimal working parameters of the hammer mill were obtained
as follows: a spindle speed of 2625 r/min, a hammer–sieve gap of 14 mm, and a sieve
pore diameter of 8 mm. According to the optimized working parameters, the grinding
performance test was carried out again, and the test was repeated three times to take the
average value. The test results showed that the per kW·h yield was 36.85 kg/(kW·h), and
the grinding pass rate was 76.56%.

3.2.3. Numerical Simulation Verification Test

Based on the combined optimized working parameters, CFD–DEM gas–solid cou-
pling numerical simulation calculation was carried out, and the simulation was repeated
three times to obtain the average value. The results showed that the energy loss of the
hammer was 1189.5 J, and the total collision force of corn straw was 49,523.5 N. Both values
were within the range of optimal numerical simulation results, which verified the accuracy
of the gas–solid coupling numerical simulation.

4. Discussion

This study established a discrete elemental model of corn straw containing nodes,
and the corn straw grinding process was numerically simulated based on the CFD–DEM
gas–solid coupling method. Cao et al. [32] used Fluent software to numerically simulate
the airflow field in the grinding chamber of the mill. The results showed that the neg-
ative pressure in the grinding chamber increased with the increasing speed of the mill.
Zhang et al. [25] used EDEM 2016 software to numerically simulate the movement process
of the straw group in the grinding chamber. They obtained the motion law of the straw
group at different speeds. All of the above scholars used the single-phase flow method
for research. Based on their research, through theoretical analysis, we have determined
that airflow has a particular influence on the straw grinding effect. Therefore, the gas–solid
two-phase flow is used for research focusing closer on the actual grinding process.
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Most scholars have established corn straw models. Zhang et al. [33] established a
corn straw discrete element model based on the BPM contact model, which significantly
improved the bond strength of the model. Liu et al. [34] established a bimodal distribution
model of a double-layer bonding of corn straw using the discrete element method, which
distinguishes between the outer skin and the inner flesh of the straw. The results showed
that the uniaxial compression test was comparable with the simulation test. The results
showed that the model is more accurate than the single-layer corn straw model. Based on
the above research, due to the difference between the mechanical properties of the node,
outer skin, and inner pulp of straw, we established a discrete element model for corn straw
containing the node. The model is more in line with real corn straw and improves the
authenticity and accuracy of numerical simulations.

The corn straw also includes bracts, sheaths, and other parts. Exploring its mechanical
properties, obtaining contact parameters, and establishing numerical simulation models to
ensure further improvement of the authenticity and accuracy of numerical simulation are
the focus of the next step.

5. Conclusions

In this study, the CPS-420 hammer mill was used as a test prototype. The corn straw
grinding process in the grinding chamber was studied through the use of theoretical
analysis, discrete element simulation, and experiments. The results showed the following:

The theoretical analysis results showed that according to the force equation, as well
as the differential equation of motion, it could be concluded that the key factors affecting
grinding performance were spindle speed, hammer–sieve gap, and sieve pore diameter.

The numerical simulation results showed that with the increase in time, the higher the
spindle speed, the faster the fracture of each part of the bonds, and the higher the grinding
efficiency when the energy loss of the hammer components was 985.6~1312.2 J, and the
total collision force of corn straw was greater than 47,032.5 N, the straw grinding effect was
better. The per kW·h yield was higher.

The results of the grinding performance test showed that when the spindle speed
was 2500~2700 r/min, the hammer–sieve gap was 12~16 mm, and the sieve pore diameter
was 6~10 mm, the per kW·h yield was higher, and the grinding degree was better. After
optimizing the working parameters, the optimal working parameter combination was
obtained: a spindle speed of 2625 r/min, a hammer–sieve gap of 14 mm, and a sieve pore
diameter of 8 mm. Based on the optimal working parameter combination, the grinding
performance test results were as follows: the per kW·h yield was 36.85 kg/(kW·h), and
the grinding pass rate was 76.56%. Finally, the CFD–DEM gas–solid coupling numerical
simulation validation tests combined the optimal working parameter combinations. The
results showed that the energy loss of the hammer components was 1189.5 J, and the
total collision force of corn straw was 49,523.5 N. Both values were within the range of
the optimal numerical simulation results, which verified the accuracy of the CFD–DEM
gas–solid coupling numerical simulation of the corn straw grinding process.
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